文档库 最新最全的文档下载
当前位置:文档库 › 不锈钢板冲压成型过程的有限元模拟

不锈钢板冲压成型过程的有限元模拟

不锈钢板冲压成型过程的有限元模拟
不锈钢板冲压成型过程的有限元模拟

不锈钢板冲压成型过程的有限元模拟原思宇,张立文,王宇挺,吕成,陈磊,王富岗

大连理工大学材料工程系

不锈钢板冲压成型过程的有限元模拟

Finite element simulation in stainless steel

sheet forming process

原思宇,张立文,王宇挺,吕成,陈磊,王富岗

(大连理工大学材料工程系)

摘要:基于弹塑性有限元变形理论,采用有限元软件MSC.Marc建立不锈钢板材冲压成型过程有限元模型。分析了变形过程中应变、厚度和摩擦力的分布情况以及凸凹模间隙尺寸对成形过程的影响。通过板材法兰形状的模拟结果与实验结果进行的比较证实了模型的可靠性和可行性。

关键词:不锈钢冲压成型有限元 MSC.Marc

Abstract:Based on the elastic-plastic finite element method, a finite element model has been used to simulate the forming process of stainless steel sheet by the FE software MSC.Marc. The model has been used to analyze the strain, thickness of element and contact friction force distribution. And the gaps between blank and die filleted affects the forming process has been analyzed. Comparison between theoretical and experimental results of the flange shape shows the security and the feasibility of the model.

Key words: stainless steel,sheet metal forming,finite element,MSC.Marc

1 概述

金属板料成形是利用冲压模具使金属薄板发生塑性变形生产薄壳零件的一种塑性成形工艺。传统的板材冲压工艺要经过模具设计—反复冲压实验、修改模具-定型、实际生产一系列复杂的过程。这种过程耗费大量的人力、物力、财礼,而且由于周期较长、增加成本,已经不适合当今社会小批量、快速、低成本的生产模式。板材成形过程是多重非线性的复杂变形过程,采用有限元法模拟板材成形过程可以减少试模时间,缩短产品开发周期,降低产品的开发费用[1]。目前,板材成形的数值模拟方法已经受到广泛的重视,并且正在逐步实现实际生产中的模具设计、冲压过程模拟、缺陷的预防及分析等[2]。对于U形和盒形类的简单冲压成形过程的数值模拟已进行了较多的研究[3-4],而对复杂冲压件成形过程的数值模拟[5]研究进行的较少。本文采用大型有限元分析软件包MSC.Marc对不锈钢板水槽冲压成型过程进行了模拟,模型考虑了板材的回弹过程。对模拟结果的分析考察了板材在冲压成型过程中的应变分布、板材厚度变化与分布以及摩擦力的分布情况,讨论了凸凹模间隙大小对板材冲压过程的影响。通过比较板材边缘的模拟结果与实验结果,证明了模型的可靠性与可行性。

2 有限元模型的建立

2.1 基本模型的建立

不锈钢水槽制件图如图1所示。在冲压过程中,压边圈将不锈钢板料压在凹模上,压边通过给定压边力实现。板料随着冲头的匀速向下运动被压入型腔。卸载后,冲头与板料间的接触消失,板材经回弹后得到最后形状。采用MSC.Marc软件绘制模型,模具、毛坯有限元网格图如图2所示。为了简化模型缩短计算时间,根据水槽结构沿中线左右对称、受力和变形也沿中线对称的特点,在取其1/2创建有限元模型。材料参数如表1所示。模具采用刚性体,不可变形。板料与凸模间的摩擦系数为0.3,与凹模间的摩擦系数为0.1。考虑到板料在拉延过程中发生大位移,因而采用更新的拉格朗日法和网格自适应技术。

表1 材料参数

材料弹性模量(GPa) 屈服点(MPa)应力、应变关系式(MPa) 板厚(mm) STS304BA 292.95 287.4 4923

.0

σ=0.8

3.

1560ε

图1 不锈钢水槽制件图图2 模具、毛坯有限元模型

2.2 板壳单元

板材定位为可变形体。由于板材厚度仅为0.8mm,且板厚与产品的曲面曲率半径相比很小,因而采用双线性四边形壳单元。双线性四边形壳单元具有两个自由度,分别是体位移和转动。并且在几何特性定义中输入壳单元的厚度。

2.3 回弹过程的处理

材料的冲压成形卸载后,回弹是不可避免的现象。由于不锈钢材料塑性变形后的回弹较大,如果忽略将对模拟结果产生一定程度的影响。因此在建立模型过程中加入对回弹过程的模拟。模型中回弹的实现是当冲压件达到成形要求时,计算此时各结点所受外力大小,然后将这些外力卸除,此时要分步进行卸载,以保证真实的回弹数值模拟。由于回弹是伴随卸载过程而发生,因此回弹的计算类似于成形的计算,采用逐步卸载的方法,并且载卸在计算中采用弹塑性本构方程。卸载回弹分析仍采用平衡迭代方法求解方程。

2.4 模型的其他处理

冲压过程是一个复杂的变形过程,一些限制条件对实际过程影响很小,因而可以进行一些必要的简化与假设。模型的主要简化及假设如下:

1) 材料采用各向同性模型且均质;

2) 忽略在加工过程中的温度变化及热效应对板材的影响;

3)

采用V on Mises 屈服准则、各向同性硬化法则和Prandtl-Reuss 关联流动准则描述塑性; 4) 摩擦采用Coulomb 摩擦模型,且假设整个过程中摩擦系数保持不变。

3 模拟结果与分析

3.1 应变分布与分析

在水槽冲压过程中,板材受到冲头的作

用变形,变形后等效塑性应变分布如图3所

示。从图中可以看出模具拐角处,即板材变

形较大处应变最大(图上A 、B 、C 区),侧

壁、底面及上表面所受应变较小。这是由于

在冲压过程中,冲压头边缘与板料接触处首

先变形,板料在此处受力的作用下继续变

形。这些拐角处也是应力集中的位置。 3.2 厚度变化分布与分析

如图4所示,板材冲压后板料厚度变化分布。从图中可以看出在冲压头拐角与板料接触部分板料厚度变化最大,板料不同位置上厚度均有不同程度的减小。厚度最薄的部分仅为0.4718mm ,此处也是在加工和使用过程中最容易发生破裂,产生缺陷的部位。而位于凹模表面部分的板材出现 一定程度的板料堆积。这是由于变形的不均匀性以及凸凹模间隙挤压的影响,在这些部位板材处于压应力状态。

3.3 接触摩擦力分布与分析

图5所示为板材冲压后板料与冲头间接触摩擦力的分布情况。由图可以看出在板材与凹模圆角接触部位的接触摩擦力最大,其他部位的摩擦力分布较为均匀且数值不大。因此在生产过程中应该注意在这些接触摩擦力大的部位施加润滑,减小摩擦系数,降低摩擦力的大小。

3.4 凸凹模间隙大小对成形过程的影响

凸凹模间隙大小Z与板材厚度t满足关系式:Z=kt,系数k的选取对于板材的成形过程、板材缺陷的形成起到非常重要的作用。如图6所示为k值过大时板材起皱的模拟结果,与实际结果一致。当k值较大时,板材悬空区域受到垂直于变形方向的切向的压应力,这是产生起皱现象的主要原因。当k值逐渐减小时,板材悬空区域沿变形方向的切向的拉应力增大,当超过许用应力范围时将会发生拉裂的缺陷,这也是板材冲压过程中较为常见的缺陷之一。此外k值的减小,也将导致板材在凹模表面上的产生严重堆积。

3.5 法兰的模拟结果与实验结果比较

图7所示为板材法兰形状实验与模拟结果比较,从图中可以看出两结果基本吻合,相差很小,从而证明了模型的正确性和可行性。

4 结论

(1) 有限元模拟方法可以很好地再现板材成型过程。有限元分析软件MSC.Marc可以有效的模拟变形过程中板材受力、变形、缺陷的产生等情况;

(2) 冲压头拐角与板料接触的地方应变最大,厚度减小也大,板材位于凹模表面的部分存在一定程度的板料堆积;

(3) 板材与凹模圆角接触部位的摩擦力最大;

(4) k值较小时板材容易产生拉裂的缺陷,k值较大时板材悬空区容易产生起皱的缺陷,合理的k值将影响板材冲压的成形性。

(5) 数值模拟的变形后法兰形状与实验结果基本吻合。

参考文献:

[1] A. Makinouchi. Sheet metal forming simulation in industry[J] Journal of

Materials Processing Technology 1996 (60):19-26。

[2] 郑莹,吴勇国,李尚健,等。板料成形数值模拟进展[J] 塑性工程学报 1996

3(4):34-47。

[3] D.Zhou, R. H. Wagoner.Development and application of sheet-forming

simulation[J] Journal of Materials Processing Technology 1995 (50):1-16。[4] Li-Ping Lei, Sang-Moon Hwang, Beom-Soo Kang Finite element analysis and

design in stainless steel sheet forming and its experimental comparison[J] Journal of Materials Processing Technology 2001 (110):70-77。

[5] M. Samuel Experimental and numerical prediction of springback and side wall

curl in U-bendings of anisotropic sheet metals[J]Journal of Materials Processing Technology 2000 (105):382-393。

[6] 张立文,陈磊,王富岗。油底壳成形过程数值模拟的优化建模研究[J] 塑性工程学报

2002 9(2):68-71

有限元分析实验报告

武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析 开课学院机电工程学院 指导老师姓名 学生姓名 学生专业班级机电研 1502班 2015—2016 学年第2学期

实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 1.1方形截面悬臂梁模型建立 建模环境:DesignModeler 15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。(2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图1.1所示。 图1.1 方形截面梁模型 1.2 定义单元类型: 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图1.2所示:

图1.2 网格划分 1.21 定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示: 图1.3 定义边界条件 1.23 应力分布如下图1.4所示: 定义完边界条件之后进行求解。

有限元理论方法

关于有限元分析法及其应用举例 摘要:本文主要介绍有限元分析法,作为现代设计理论与方法的一种,已经在 众多领域普遍使用。介绍了它的起源和国内外发展现状。阐述了有限元法的基 本思想和设计方法。并从实际出发,例举了有限元法的一个简单应用———啤 酒瓶的应力分析和优化,表明了利用有限元分析法的众多优点。随着计算机的 发展,基于有限元分析方法的软件开发越来越多。本文也在其软件开发方面进 行阐述,并简单介绍了一下主流软件的发展情况和使用范围。并就这一领域的 未来发展趋势进行阐述。 关键词:有限元分析法软件啤酒瓶 Abstract:This thesis mainly introduces the finite element analysis, as a modern design theory and methods used widely in in most respects. And this paper introduces its origins and development in world. It also expounds the basic thinking and approach of FEM..Proceed from the actual situation,this text holds the a simple application of finite-element method———the analysis and optimized of an beer bottle and indicate the the numerous benefits of finite element analysis .As computers mature and based on the finite element analysis of the software development is growing. This article introduces its application in the software development aspects as well, and briefly states the development and scope of the mainstream software. And it’s also prospect future development tendency in this area . Key: Finite Element Analysis Software Beer bottle 0 绪论 有限元法(Finite Element Method,FEM),是计算力学中的一种重要的方法,它是20世纪50年代末60年代初兴起的应用数学、现代力学及计算机科学相互渗透、综合利用的边缘科学。有限元法最初应用在工程科学技术中,用于模拟并且解决工程力学、热学、电磁学等物理问题。对于过去用解析方法无法求解的问题和边界条件及结构形状都不规则的复杂问题,有限元法则是一种有效的分析方法。有限元法的基本思想是先将研究对象的连续求解区域离散为一组有限个且按一定方式相互联结在一起的单元组合体。由于单元能按不同的联结方式进行组合,且单元本身又可以有不同形状,因此可以模拟成不同几何形状的求解小区域;

有限元分析实验报告

学生学号1049721501301实验课成绩 武汉理工大学 学生实验报告书 实验课程名称机械中的有限单元分析机电工程学院开课学院 指导老师姓名

学生姓名 学生专业班级机电研1502班 学年第学期2016—20152 实验一方形截面悬臂梁的弯曲的应力与变形分析 钢制方形悬臂梁左端固联在墙壁,另一端悬空。工作时对梁右端施加垂直 向下的30KN的载荷与60kN的载荷,分析两种集中力作用下该悬臂梁的应力与应变,其中梁的尺寸为10mmX10mmX100mm的方形梁。 方形截面悬臂梁模型建立1.1 建模环境:DesignModeler15.0。 定义计算类型:选择为结构分析。 定义材料属性:弹性模量为 2.1Gpa,泊松比为0.3。 建立悬臂式连接环模型。 (1)绘制方形截面草图:在DesignModeler中定义XY平面为视图平面,并正 视改平面,点击sketching下的矩形图标,在视图中绘制10mmX10mm的矩形。 (2)拉伸:沿着Z方向将上一步得到的矩阵拉伸100mm,即可得到梁的三维模型,建模完毕,模型如下图 1.1所示。

图1.1方形截面梁模型 :定义单元类型1.2 选用6面体20节点186号结构单元。 网格划分:通过选定边界和整体结构,在边界单元划分数量不变的情况下,通过分别改变节点数和载荷大小,对同一结构进行分析,划分网格如下图 1.2

所示: 图1.2网格划分 1.21定义边界条件并求解 本次实验中,讲梁的左端固定,将载荷施加在右端,施以垂直向下的集中 力,集中力的大小为30kN观察变形情况,再将力改为50kN,观察变形情况,给出应力应变云图,并分析。 (1)给左端施加固定约束; (2)给悬臂梁右端施加垂直向下的集中力; 1.22定义边界条件如图1.3所示:

有限元模拟分析

天津理工大学 材料成型过程模拟 题目:关于紫铜管正挤压成型过程模拟姓名:余玉洋 学号: 20090771 组长: 陈磊 其他成员:焦智、张雪平、周桐、吴天昊、 张艳艳、张秋婕、刘学力

目录 1、题目描述 2、题目分析 3、解题模拟、思路 4、模拟过程 5、模拟结果分析 6、结论 7、参考文献 一、题目描述: 如图1.1所示为金属紫铜坯料和挤压模具结构示意图,紫铜的应力应变关系如图1.2所示,坯料与模具之间的摩擦系数为0.15。求挤压过程中坯料内部的应力场变化、应变场变化。 ①坯料紫铜的材料参数: 弹性模量:MP;泊松比:;密度:;屈服强度:。 ②模具材料参数: 弹性模量:MP;泊松比:;密度:;屈服强度:。 二、题目分析: 三、解题模拟、思路: 1、定义工作文件名和工作标题: 1.1、定义工作文件名执行Utility Menu-File→Chang Jobname-20090771,

单击OK按钮。 1.2、定义工作标题执行Utility Menu-File→Change Tile-yuyuyang20090771,单击OK按钮。 1.3、更改目录执行Utility Menu-File→change the working directory –D/ansys。 2、定义单元类型和材料属性: 2.1、设置计算类型 ANSYS Main Menu: Preferences →select Structural →OK,如图2.1. 图2.1 2.2、选择单元类型 执行ANSYS Main Menu→Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Brick 8node 185 →OK Options…→select K3: Plane strain →OK→Close如图2.2所示,选择OK接受单元类型并关闭对话框。 图2.2定义单元类型对话框 2.3、定义材料属性

基于ansys的切削加工受力分析

1绪论 金属切削是机械制造行业中的一类重要的加工手段。美国和日本每年花费在切削加工方面的费用分别高达1000 亿美元和10000亿日元。中国目前拥有各类金属切削机床超过300 万台, 各类高速钢刀具年产量达 3.9 亿件, 每年用于制造刀具的硬质合金超过5000吨。可见切削加工仍然是目前国际上加工制造精密金属零件的主要办法。19世纪中期, 人们开始对金属切削过程的研究, 到现在已经有一百多年历史。由于金属切削本身具有非常复杂的机理, 对其研究一直是国内外研究的重点和难点。过去通常采用实验法, 它具有跟踪观测困难、观测设备昂贵、实验周期长、人力消耗大、综合成本高等不利因素。本文利用材料变形的弹塑性理论, 建立工件材料的模型,借助大型商业有限元软件ANSYS, 通过输入材料性能参数、建立有限元模型、施加约束及载荷、计算, 对正交金属切削的受力情况进行了分析。以前角10°、后角8°的YT 类硬质合金刀具切削45号钢为实例进行计算。切削厚度为 2 mm时形成带状切屑。提取不同阶段应力场分布云图, 分析了切削区应力的变化过程。这种方法比传统实验法快捷、有效, 为金属切削过程的研究开辟了一条新的道路。 2设计要求 根据有限元分析理论,根据ANSYS的求解步骤,建立切削加工的三维模型。对该模型进行网格划分并施加约束边界条件,最后进行求解得出应力分布云图,并以此云图分析得出结论。 3金属切削简介[3] 金属切削过程,从实质讲,就是产生切屑和形成已加工表面的过程。产生切屑和形成已加王表面是金属切削时密切相关的两个方面。 3.1切削方式 切削时,当工件材料一定,所产生切屑的形态和形成已加工表面的特性,在很大程度上决定于切削方式。切削方式是由刀具切削刃和工件间的运动所决定,可分为:直角切削、斜角切削和普通切削三种方式。 3.2切屑的基本形态 金属切削时,由于工件材料、刀具几何形状和切削用量不同,会出现各种不同形态的切屑。但从变形观点出发,可归纳为四种基本形态。 1.带状切屑切屑呈连续状、与前刀面接触的底层光滑、背面呈毛葺状。

有限元上机实验报告

有限元上机实验报告结构数值分析与程序设计 上机实验 院系: 土木工程与力学学院专业: 土木工程 班级: 姓名: 学号: 指导教师: 1、调试教材P26-30程序FEM1。 1.1、输入数据文件为: 6,4,12,6,1.0E0,0.0,1.0,0.0,1 3,1,2 5,2,4 3,2,5 6,3,5 0.0,2.0 0.0,1.0 1.0,1.0 0.0,0.0 1.0,0.0 2.0,0.0

1,3,7,8,10,12 1.2、输出数据文件为: NN NE ND NFIX E ANU T GM NTYPE 6 4 12 60.1000E+01 0.000 1.0000.0000E+00 1 NODE X-LOAD Y-LOAD 1 0.000000E+00 -0.100000E+01 2 0.000000E+00 0.000000E+00 3 0.000000E+00 0.000000E+00 4 0.000000E+00 0.000000E+00 5 0.000000E+00 0.000000E+00 6 0.000000E+00 0.000000E+00 NODE X-DISP Y-DISP 1 -0.879121E-15 -0.325275E+01 2 0.879121E-16 -0.125275E+01 3 -0.879121E-01 -0.373626E+00 4 0.117216E-1 5 -0.835165E-15 5 0.175824E+00 -0.293040E-15 6 0.175824E+00 0.263736E-15 ELEMENT X-STR Y-STR XY-STR 1 -0.879121E-01 -0.200000E+01 0.439560E+00 2 0.175824E+00 -0.125275E+01 0.256410E-15 3 -0.879121E-01 -0.373626E+00 0.307692E+00 4 0.000000E+00 -0.373626E+00 -0.131868E+00 2、修改FEM1,计算P31例2-2。

机械零件有限元分析——实验报告

中南林业科技大学机械零件有限元分析 实验报告 专业:机械设计制造及其自动化 年级: 2013级 班级:机械一班 姓名:杨政 学号:20131461 I

一、实验目的 通过实验了解和掌握机械零件有限元分析的基本步骤;掌握在ANSYS 系统环境下,有限元模型的几何建模、单元属性的设置、有限元网格的划分、约束与载荷的施加、问题的求解、后处理及各种察看分析结果的方法。体会有限元分析方法的强大功能及其在机械设计领域中的作用。 二、实验内容 实验内容分为两个部分:一个是受内压作用的球体的有限元建模与分析,可从中学习如何处理轴对称问题的有限元求解;第二个是轴承座的实体建模、网格划分、加载、求解及后处理的综合练习,可以较全面地锻炼利用有限元分析软件对机械零件进行分析的能力。

实验一、受内压作用的球体的有限元建模与分析 对一承受均匀内压的空心球体进行线性静力学分析,球体承受的内压为 1.0×108Pa ,空 心球体的内径为 0.3m ,外径为 0.5m ,空心球体材料的属性:弹性模量 2.1×1011,泊松比 0.3。 承受内压:1.0×108 Pa 受均匀内压的球体计算分析模型(截面图) 1、进入 ANSYS →change the working directory into yours →input jobname: Sphere 2、选择单元类型 ANSYS Main Menu : Preprocessor →Element Type →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element Types window)→ Options… →select K3: Axisymmetric →OK →Close (the Element Type window) 3、定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3→ OK 4、生成几何模型生成特征点 ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints →In Active CS →依次输入四个点的坐标:input :1(0.3,0),2(0.5,0),3(0,0.5),4(0,0.3)→OK 生成球体截面 ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Spherical ANSYS Main Menu: Preprocessor →Modeling →Create →Lines →In ActiveCoord → 依次连接 1,2,3,4 点生成 4 条线→OK Preprocessor →Modeling →Create →Areas →Arbitrary →By Lines →依次拾取四条线→OK ANSYS 命令菜单栏: Work Plane>Change Active CS to>Global Cartesian 5、网格划分 ANSYS Main Menu : Preprocessor →Meshing →Mesh Tool →(Size Controls) lines: Set

有限元分析理论基础

有限元分析概念 有限元法:把求解区域看作由许多小的在节点处相互连接的单元(子域)所构成,其模型给出基本方程的分片(子域)近似解,由于单元(子域)可以被分割成各种形状和大小不同的尺寸,所以它能很好地适应复杂的几何形状、复杂的材料特性和复杂的边界条件 有限元模型:它是真实系统理想化的数学抽象。由一些简单形状的单元组成,单元之间通过节点连接,并承受一定载荷。 有限元分析:是利用数学近似的方法对真实物理系统(几何和载荷工况)进行模拟。并利用简单而又相互作用的元素,即单元,就可以用有限数量的未知量去逼近无限未知量的真实系统。 线弹性有限元是以理想弹性体为研究对象的,所考虑的变形建立在小变形假设的基础上。在这类问题中,材料的应力与应变呈线性关系,满足广义胡克定律;应力与应变也是线性关系,线弹性问题可归结为求解线性方程问题,所以只需要较少的计算时间。如果采用高效的代数方程组求解方法,也有助于降低有限元分析的时间。 线弹性有限元一般包括线弹性静力学分析与线弹性动力学分析两方面。 非线性问题与线弹性问题的区别: 1)非线性问题的方程是非线性的,一般需要迭代求解; 2)非线性问题不能采用叠加原理; 3)非线性问题不总有一致解,有时甚至没有解。 有限元求解非线性问题可分为以下三类:

1)材料非线性问题 材料的应力和应变是非线性的,但应力与应变却很微小,此时应变与位移呈线性关系,这类问题属于材料的非线性问题。由于从理论上还不能提供能普遍接受的本构关系,所以,一般材料的应力与应变之间的非线性关系要基于试验数据,有时非线性材料特性可用数学模型进行模拟,尽管这些模型总有他们的局限性。在工程实际中较为重要的材料非线性问题有:非线性弹性(包括分段线弹性)、弹塑性、粘塑性及蠕变等。 2)几何非线性问题 几何非线性问题是由于位移之间存在非线性关系引起的。 当物体的位移较大时,应变与位移的关系是非线性关系。研究这类问题一般都是假定材料的应力和应变呈线性关系。它包括大位移大应变及大位移小应变问题。如结构的弹性屈曲问题属于大位移小应变问题,橡胶部件形成过程为大应变问题。 3)非线性边界问题 在加工、密封、撞击等问题中,接触和摩擦的作用不可忽视,接触边界属于高度非线性边界。 平时遇到的一些接触问题,如齿轮传动、冲压成型、轧制成型、橡胶减振器、紧配合装配等,当一个结构与另一个结构或外部边界相接触时通常要考虑非线性边界条件。 实际的非线性可能同时出现上述两种或三种非线性问题。

有限元实验报告模板

有限元实验报告 T1013-5 20100130508 蔡孟迪

ANSYS有限元上机报告(一) 班级:T1013-5 学号:20100130508 姓名:蔡孟迪 上机题目: 图示折板上端固定,右侧受力F=1000N,该力均匀分布在边缘各节点上;板厚t=2mm 材料选用低碳钢,弹性模量E=210Gpa,μ=0.33. 一、有限元分析的目的: 1.利用ANSYS构造实体模型; 2.根据结构的特点及所受载荷的情况,确定所用单元类型;正确剖分网格并施加外界条件;3.绘制结构的应力和变形图,给出最大应力和变形的位置及大小;并确定折板角点A处的应力和位移; 4.研究网格密度对A处角点应力的影响; 5.若在A处可用过渡圆角,研究A处圆角半径对A处角点应力的影响。 二、有限元模型的特点: 1.结构类型 本结构属于平面应力类型 2.单位制选择 本作业选择N(牛),mm(毫米),MPa(兆帕)。 3.建模方法 采用自左向右的实体建模方法。 4.定义单元属性及类型 1)材料属性:弹性模量:EX=2.10E5MPa, 泊松比:PRXY=0.33 2)单元类型:在Preferences选Structural,Preprocessor>ElemmentType>Add/Edit/Delete中定义单元类型为:Quad4 node 182,K3设置为:平面薄板问题(Plane strs w/thk) 3)实常数:薄板的厚度THK=2mm 5.划分网格 在MeshTool下选set,然后设置SIZE Element edge length的值,再用Mesh进行网格划分。6.加载和约束过程:在薄板的最上端施加X、Y方向的固定铰链,在薄板的最右端施加1000N 的均匀布置的载荷。

有限元法复习题

1、有限元法是近似求解(连续)场问题的数值方法。 2、有限元法将连续的求解域(离散),得到有限个单元,单元与单元之间用(节点)相连。 3、从选择未知量的角度看,有限元法可分为三类(位移法力法混合法)。 4、以(节点位移)为基本未知量的求解方法称为位移量。 5、以(节点力)为基本未知量的求解方法称为力法。 7、直梁在外力作用下,横截面上的内力有(剪力)和(弯矩)两个。 8、平面刚架结构在外力作用下,横截面上的内力有(剪力)、(弯矩)、(轴力)。 9、进行直梁有限元分析,节点位移有(转角)、(挠度)。 10、平面刚架有限元分析,节点位移有(转角)、(挠度)、(???)。 11、在弹性和小变形下,节点力和节点位移关系是()。 12、弹性力学问题的方程个数有(15)个,未知量个数有(15)个。 13、弹性力学平面问题方程个数有(8),未知数(8)个。 15h、几何方程是研究(应变)和(位移)关系的方程。 16、物理方程描述(应力)和(应变)关系的方程。 17、平衡方程反映(应力)和(位移)关系的方程。 18、把进过物体内任意一点各个(截面)上的应力状况叫做(该点)的应力状态。

19、形函数在单元节点上的值,具有本点为(1),他点为零的性质,并在三角形单元的后一节点上,三个形函数之和为(1)。 20、形函数是(三角形)单元内部坐标的(线性位移)函数,它反映了单元的(位移)状态。 21、节点编号时,同一单元相邻节点的(编号)尽量小。 25、单元刚度矩阵描述了(节点力)和(节点位移)之间的关系。矩形单元边界上位移是(线性)变化的。 从选择未知量的角度来看,有限元法可分为三类,下面那种方法不属于其中( C )。 力法 B、位移法 C、应变法 D、混合法 下面对有限元法特点的叙述中,哪种说法是错误的( D )。可以模拟各种几何形状负责的结构,得出其近似值。 解题步骤可以系统化,标准化。 容易处理非均匀连续介质,可以求解非线性问题。 需要适用于整个结构的插值函数。 几何方程研究的是( A )之间关系的方程式。 应变和位移 B、应力和体力 C、应力和位移 D、应力和应变 物理方研究的是( D )之间关系的方程式。 应变和位移 B、应力和体力 C、应力和位移 D、应力和应变 平衡方程研究的是( C )之间关系的方程式。

有限元实验报告

一、实验目的 通过上机对有限元法的基本原理和方法有一个更加直观、深入的理解;通过对本实验所用软件平台Ansys 的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE 软件进行工程分析奠定初步基础。 二、实验设备 机械工程软件工具包Ansys 三、实验内容及要求 1) 简支梁如图3.1.1所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚 度t=10mm 。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: 图3.1.1 ①在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 ②计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 ③针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 2) 一个正方形板,边长L = 1000mm ,中心有一小孔,半径R = 100mm ,左右边 受均布拉伸载荷,面力集度q = 25MPa ,如图 3.2.1所示。材料是 206E GPa =,0.3μ=,为平面应力模型。当边长L 为无限大时,x = 0截面上理论解为: ) 534()4 (6222 23-+-=h y h y q y x L h q x σ

)32(2|44 220r R r R q x x ++==σ 其中R 为圆孔半径,r 为截面上一点距圆心的距离。x = 0截面上孔边(R r =)应力q x 3=σ。所以理论应力集中系数为3.0。 图3.2.1 用四边形单元分析x = 0截面上应力的分布规律和最大值,计算孔边应力集中系数,并与理论解对比。利用对称性条件,取板的四分之一进行有限元建模。 3) 如图3.3.1所示,一个外径为0.5m ,内径为0.2m ,高度为0.4m 的圆筒,圆 筒的外壁施加100MPa 的压强,圆筒的内部约束全部的自由度,材料参数是密度。 使用平面单元,依照轴对称的原理建模分析。 q

ABAQUS金属切削实例

CAE联盟论坛精品讲座系列【二】 ABAQUS金属切削实例 主讲人:fuyun123CAE联盟论坛—ABAQUS版主 背景介绍: 切削过程是一个很复杂的工艺过程,它不但涉及到弹性力学、塑性力学、断裂力学,还有热力学、摩擦学等。同时切削质量受到刀具形状、切屑流动、温度分布、热流和刀具磨损等影响,切削表面的残余应力和残余应变严重影响了工件的精度和疲劳寿命。利用传统的解析方法,很难对切削机理进行定量的分析和研究。计算机技术的飞速发展使得利用有限元仿真方法来研究切削加工过程以及各种参数之间的关系成为可能。近年来,有限元方法在切削工艺中的应用表明,切削工艺和切屑形成的有限元模拟对了解切削机理,提高切削质量是很有帮助的。这种有限元仿真方法适合于分析弹塑性大变形问题,包括分析与温度相关的材料性能参数和很大的应变速率问题。ABAQUS作为有限元的通用软件,在处理这种高度非线性问题上体现了它独到的优势,目前国际上对切削问题的研究大都采用此软件,因此,下面针对ABAQUS的切削做一个入门的例子,希望初学者能够尽快入门,当然要把切削做好,不单单是一个例子能够解决问题的,随着深入的研究,你会发现有很多因素影响切削的仿真的顺利进行,这个需要自己去不断探索,在此本人权当抛砖引玉,希望各位切削的大神们能够积极探讨起来,让我们在切削仿真的探索上更加精确,更加完善。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 切削参数:切削速度300m/min,切削厚度0.1mm,切削宽度1mm 尺寸参数:本例作为入门例子,为了简化问题,假定刀具为解析刚体,因为在切削过程中,一般我们更注重工件最终的切削质量,如应力场,温度场等,尤其是残余应力场,而如果是要进行刀具磨损或者涂层刀具失效的分析的话,那就要考虑建立刀具为变形体来进行分析了。工件就假定为一个长方形,刀具设置前角10°,后角6°,具体尺寸见INP文件。 下面将切削过程按照ABAQUS的模块分别进行叙述,并对注意的问题作出相应的解释。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 建模:建模过程其实没有什么好注意的,对于复杂的模型,我一般用其他三维软件导入进来,注意导入的时候尽量将格式转化为IGES格式,同时要把一些不必要的东西去掉,比如一些尖角,圆角之类的,如果不是分析那个部位的应力集中的话就没必要导入它,如果导入,还要进行一些细化,大大降低了计算的效率。我一般做的是二维切削,模型相对比较简单,所以一般都是直接在ABAQUS中进行建模。由于此处为刚体,要在part里面建立刚体参考点,而且注意不要在装配模块建立参考点,因为有时候ABAQUS找不到装配模块相应的参考点。 1、工件

有限元实验指导书—ansys

有限元法基础及应用上机指导书 南京理工大学 2008年4月

1 引言 上机实验是“有限元法基础及应用”课程的一个教学实践环节。通过上机,同学们可以对理论课所学有限元法的基本原理和方法有一个更加直观、深入的理解,同时通过对本实验所用软件平台Ansys的初步涉及,为将来在设计和研究中利用该类大型通用CAD/CAE软件进行工程分析奠定初步基础。 2 Ansys软件及其应用简介 Ansys是一个集成化的机械工程软件工具包,它包含所谓的CAD/CAE/ CAM功能。该软件能实现对机械工程产品设计和分析的并行工程(Concurrent Engineering)方法,它允许协同工作的不同设计小组共享设计模型并在不同应用模块之间自由交换信息。 Ansys是一个主要基于有限元法的工程分析应用软件系统,其功能几乎涉及工程分析的所有方面。用Ansys软件对一个结构或机械零件进行有限元分析的过程由三个大步骤组成:前处理、求解、后处理。 前处理是指建立有限元模型的几何、输入模型的物理和材料特性、边界条件和载荷的描述、模型检查的整个过程。 求解阶段对前处理建立的有限元模型选择相应的求解器进行求解运算。 后处理涉及对计算结果进行考察和评估的各种操作,比如绘制应力、变形图,将结果与失效准则进行比较等。后处理阶段必须回答两个问题:模型是否准确?结构或零件是否满意? 模型中有许多可能产生误差的因素,比如有限元网格的疏密、所使用单元的类型、材料特性、边界条件等。因此后处理需要对这些环节可能产生的错误进行检查,而这些问题往往在前处理和求解阶段难以发现。在根据计算结果对所分析的结构或零件进行评估之前,应确保模型中没有错误。 3 上机实验 3.1 习题1 3.1.1 已知条件 简支梁如图3.1.1所示,截面为矩形,高度h=200mm,长度L=1000mm,厚度t=10mm。上边承受均布载荷,集度q=1N/mm2,材料的E=206GPa,μ=0.29。平面

对有限元方法的认识

我对有限元方法的认识 1有限元法概念 有限元方法(The Finite Element Method, FEM)是计算机问世以后迅速发展起来的一种分析方法。每一种自然现象的背后都有相应的物理规律,对物理规律的描述可以借助相关的定理或定律表现为各种形式的方程(代数、微分、或积分)。这些方程通常称为控制方程(Governing equation)。 针对实际的工程问题推导这些方程并不十分困难,然而,要获得问题的解析的数学解却很困难。人们多采用数值方法给出近似的满足工程精度要求的解答。 有限元方法就是一种应用十分广泛的数值分析方法。 有限元方法是处理连续介质问题的一种普遍方法,离散化是有限元方法的基础。 这种思想自古有之:古代人们在计算圆的周长或面积时就采用了离散化的逼近方法:即采用内接多边形和外切多边形从两个不同的方向近似描述圆的周长或面积,当多边形的边数逐步增加时近似值将从这两个方向逼近真解。 近年来随着计算机技术的普及和计算速度的不断提高,有限元分析在工程设计和分析中得到了越来越广泛的重视,已经成为解决复杂的工程分析计算问题的有效途径,现在从汽车到航天飞机几乎所有的设计制造都已离不开有限元分析计算,其在机械制造、材料加工、航空航天、汽车、土木建筑、电子电器、国防军工、船舶、铁道、石化、能源、科学研究等各个领域的广泛使用已使设计水平发生了质的飞跃。 国际上早在 60 年代初就开始投入大量的人力和物力开发有限元分析程序。“有限单元”是由Clough R W于1960年首次提出的。但真正的有限元分析软件是诞生于 70 年代初期,随着计算机运算速度的提高,内、外存容量的扩大和图形设备的发展,以及软件技术的进步,发展成为有限元分析与设计软件,但初期其前后处理的能力还是比较弱的,特别是后处理能力更弱。

(有限元)上机实验指导书

实验一ANSYS软件环境及典型实例分析 一、实验目的: 熟悉ANSYS软件菜单、窗口等环境、软件分析功能及解题步骤。 二、实验设备: 微机,ANSYS软件。 三、实验内容: ANSYS软件功能、菜单、窗口及解题步骤介绍。 四、实验步骤: 1、ANSYS界面介绍: ANSYS软件功能非常强大,应用范围很广,并具有友好的图形用户界面(GUI)和优秀和程序架构。基于Motif标注的GUI主要由主窗口和输出窗口组成。随着版本的不断升级,ANSYS界面不断改进,不同版本间的界面存在着较大差别。下面介绍ANSYS的用户界面。 (1)主窗口 * 。 ANSYS的主窗口主要由以下5个部分组成。 ①Utility菜单 这些菜单主要通过ANSYS的相关功能组件起作用,比如文件控制、参数选择、图像参数控制及参数输入等。 ②Input Line(Input Window命令输入窗口)

命令输入窗口(也称为命令栏)用于显示程序的提示信息并允许用户直接输入命令,简化分析过程。 ③工具栏(Toolbar) { 工具栏主要由按钮组成,这些按钮都是ANSYS中的常用命令。用户可以根据工作类型定义自己的工具栏以提高分析效率。 ④主菜单(Main Menu) 主菜单包括了ANSYS最主要的功能,分为前处理器(Preprocessor)、求解器(Solution)、通用后处理器(General Postprocessor)、设计优化器(Design Optimizer)。展开主菜单可以看到非常多的树状建模命令,这也是版本和以前版本的一个显著差别。虽然菜单的外观改变了,但是菜单结构没有变化,这对ANSYS 用户平滑升级非常有利。 ⑤图形窗口(Graphic Windows) 图形窗口用于显示分析过程的图形,实现图形的选取。在这里可以看到实体建模各个过程的图形并可查看随后分析的结果。 (2)输出窗口(Output Windows) 输出窗口用于显示程序的文本信息,即以简单表格形式显示过程数据等信息。通常,输出窗口被主窗口遮盖,当然,如果需要随时可以将输出窗口拖到前面。 注意: 应该在ANSYS分析的各个步骤中随时查看输出窗口中的信息,检验分析过程是否正确,以便及时调整。 通过GUI可以方便地交互式访问程序的各种功能、命令、用户手册和参考材料,一步步地完成整个分析,很好地体现出ANSYS的易用性。同时,ANSYS软件也提供了完整的在线说明和帮助文件,以协助有经验的用户进行高级应用。 在用户界面中,ANSYS软件提供了4种通用的命令输入方式:菜单、对话框、工具栏和直接输入命令。 ~ 2、ANSYS分析过程: 一个典型的ANSYS分析过程包含3个主要步骤,每个主要步骤及其子步骤如下: (1)建立有限元模型 在ANSYS中建立有限元模型的过程大致可分为以下3个主要步骤: ①建立或导入几何模型 ②定义材料属性 ③划分网格建立有限元模型 (2)施加载荷并求解 在ANSYS中施加载荷及求解的过程大致可以分为以下3个主要步骤: ①定义约束 ②\ ③施加载荷 ④设置分析选项并求解 (3)查看分析结果

ansys实验报告

有限元上机实验报告 姓名柏小娜 学号0901510401

实验一 一 已知条件 简支梁如图所示,截面为矩形,高度h=200mm ,长度L=1000mm ,厚度t=10mm 。上边承受均布载荷,集度q=1N/mm 2,材料的E=206GPa ,μ=0.29。平面应力模型。 X 方向正应力的弹性力学理论解如下: )534()4 (6222 23-+-=h y h y q y x L h q x σ 二 实验目的和要求 (1)在Ansys 软件中用有限元法探索整个梁上x σ,y σ的分布规律。 (2)计算下边中点正应力x σ的最大值;对单元网格逐步加密,把x σ的计算值与理论解对比,考察有限元解的收敛性。 (3)针对上述力学模型,对比三节点三角形平面单元和4节点四边形平面等参元的求解精度。 三 实验过程概述 (1) 定义文件名 (2) 根据要求建立模型:建立长度为1m ,外径为0.2m ,平行四边行区域 (3) 设置单元类型、属性及厚度,选择材料属性: (4) 离散几何模型,进行网格划分 (5) 施加位移约束 (6) 施加载荷 (7) 提交计算求解及后处理 (8) 分析结果 四 实验内容分析 (1)根据计算得到应力云图,分析本简支梁模型应力分布情况和规律。主要考察x σ和y σ,并分析有限元解与理论解的差异。 由图1看出沿X 方向的应力呈带状分布,大小由中间向上下底面递增,上下底面应力方向相反。由图2看出应力大小是由两侧向中间递增的,得到X 方向

上最大应力就在下部中点,为0.1868 MPa 。根据理论公式求的的最大应力值为0.1895MPa 。由结果可知,有限元解与理论值非常接近。由图3看出Y 的方向应力基本相等,应力主要分布在两侧节点处。 图 1 以矩形单元为有限元模型时计算得出的X 方向应力云图 图 2 以矩形单元为有限元模型时计算得出的底线上各点x 方向应力图 (2)对照理论解,对最大应力点的x σ应力收敛过程进行分析。列出各次计算 应力及其误差的表格,绘制误差-计算次数曲线,并进行分析说明。 答:在下边中点位置最大应力理论值为: MPa h y h y q y x L h q x 1895.0)5 34()4(622223=-+-=σ

有限元试卷(1)答案

静、动态有限元试卷(一)答案 一、(1)答:圣维南原理第一种叙述:如果把物体的一小部分边界上的面力,变换为 分布不同但静力等效的面力(即主矢量相同、对同一点的主矩也相同),那么,近处的应力分布将有显著的改变,但远处所受的影响可以不计。 圣维南原理第二种叙述:如果物体一小部分边界上的面力是一个平衡力系(主矢量及主矩都等于零),那么,这个面力就只会使得近处产生显著的应力,远处的应力可以不计。 (2)答:所谓等效节点力,就是把分布载荷按照虚功相等的原则移至到节点上的力。 (3)答:首先导出关于局部坐标系的规整形状的单元(母单元)的高阶位移模式的形函数,然后利用形函数进行坐标变换,得到关于整体坐标系的复杂形状的单元(子单元),如果子单元的位移函数插值结点数与其位移坐标变换节点数相等,其位移函数插值公式与位移坐标变换式都有相同的形函数与结点参数进行插值,则称其为等参元。 (4)答:单元节点I发生单位位移时,函数Ni表示单元内部的位移分布形状,故Ni,,Nj,Nm都称为位移的形状函数,简称形函数。 (5)答:系统随时间变化时的响应。 (6)答:系统随频率变化时的响应。 (7)答:在静力分析时,一个结构在不同时刻可能承受不同的载荷。结构同时承受的一组载荷,它是各种实际作用的集中载荷和分布载荷的组合。称为一组结构载荷工况。 (8)答:单元的位移模式就是把单元内任一点的位移近似地表达为其坐标的函数二、答:(1)A:有限元的基本思想是: 将连续结构分割成数目有限的小单元体(成为单元),这些小单元体彼此间只在数目有限的指定点(成为节点)上互相连接,用这些小单元体组成的集合体来代替原来的连续结构。当然,每个小单元体的力学特性都与原结构对应与该小单元的力学特性相同,再把每个小单元体上实际作用的外载荷按虚功等效原理分配到单元的节点上,构成等效节点力,并按结构实际约束情况决定受约束节点的约束。这一过程通常称为结构离散化。其次,对每个小单元根据分块近似的思想,选择一个简单的函数来近似地表示其位移分量的分布规律,并按弹性力学中变分原理建立起单元节点力与节点位移之间的关系。最后,把全部单元的节点力与节点位移之间的关系组集起来,就得到了一组以结构节点位移为位置量的代数方程组,并考虑结构约束情况,消去节点位移分量。 B:有限元方法的解题步骤: 1)根据工程的实际情况和原始条件选定适当的力学模型,并按一定比例尺绘制结构图 形,注明尺寸、载荷和约束情况; 2)选定单元类型,对力学模型进行离散化,编制单元和节点号码,选定坐标,并求出各 节点坐标值; 3)根据载荷类型,将各单元所受的载荷移置到有关节点上, 4)并求出各节点的等效节点载荷; 5)根据节点坐标值和材料参数(E,μ等),按公式求出各单元刚度矩阵; 6)按刚度集成法,由各单元刚度矩阵组集成结构的整体刚度矩阵,由各节点位移组集成 整体结构位移列阵,再由各单元节点的载荷列阵组集成整体结构的载荷列阵,并建立整体刚度方程; 7)引入约束条件,修改整体刚都举镇和载荷列阵,并求解此方程组得出各节点位移; 8)根据以求得的各单元节点的位移分量,求解各单元的应力分量和各单元的主应力以及 住平面方向角; 9)将计算结果输出,并绘制结构的变形图和各应力分量的分布图等。

有限元上机实验报告

有限元法基础及应用 上机报告 南京理工大学 2015年12月 上机实验一

1 实验题目 设计一个采用减缩积分线性四边形等参元的有限元模型,通过数值试验来研究网格密度、位移约束条件与总刚度矩阵奇异性、沙漏扩展、求解精度的关系,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。总结出你的研究结论,撰写实验报告。 2 实验目的 通过实验来研究减缩积分方案中网格密度和位移约束条件对总体刚度矩阵奇异性和求解精度的影响,以此加深对有限元减缩积分的理解,和对减缩积分中保证总体刚度矩阵非奇异性的认识。 3建模概述 先保持位移约束条件不变,研究网格密度对总体刚度矩阵奇异性和求解精度的影响,并验证采用减缩积分时保证总刚度矩阵非奇异的必要条件。如下图1所示,建立一个简支和链杆的约束条件,然后不断增加网格密度,通过ABAQUS 来计算位移和应力的变化规律。 个独立关系式)节点(两个自由度)

4 计算结果分析讨论与结论 1)1*1单元四边形减缩积分实验 载荷布种/单元 应力云图 2)2*1单元四边形减缩积分实验 载荷单元

应力云图3)4*4单元四边形减缩积分实验 载荷布种单元 应力云图

结果分析 5 实验体会与小结 单元刚度矩阵的特征: (1)对称性 (2)奇异性 (3)主元恒正 K相同 (4)平面图形相似、弹性矩阵D、厚度t相同的单元,e K的分块子矩阵按结点号排列,每一子矩阵代表一个结点,占两行两 (5)e 列,其位置与结点位置对应。 整体刚度矩阵的特征: (1)对称性 (2)奇异性 (3)主元恒正 (4)稀疏性 (5)非零元素呈带状分布。 [K]的物理意义是任意给定结构的结点位移所得到的结构结点力总体上满足力和力矩的平衡。为消除[K]的奇异性,需要引入边界条件,至少需给出能限制刚体位移的约束条件。 对于一个给定形式的单元,如果采用精确积分,则插值函数中所有项次在|J|=常数的条件下能被精确积分,并能保证刚度矩阵的非奇异性。如果采用减缩积分,因为插值函数中只有完全多项式的项次能被精确积分,因此需要进行刚度矩阵非奇异必要条件的检查。

相关文档
相关文档 最新文档