文档库 最新最全的文档下载
当前位置:文档库 › CRC检验原理及程序实现

CRC检验原理及程序实现

CRC检验原理及程序实现
CRC检验原理及程序实现

CRC检验原理及程序实现

引言:

循环冗余检验CRC(Cyclic Redundancy Check)的检错技术应用较为广泛,由于实际的通信线路并非是理想的,它不可能将误码率(在一段时间内,传输错误的比特占所传输比特总数的比率称为误码率BER)下降到零。因此,为了保证数据传输的可靠性,在计算机网络传输数据时,必须采用检错措施。目前在数据链路中广泛采用循环冗余检验CRC检测技术。

1、循环冗余检验CRC的原理

利用CRC进行检错的过程可简单描述为:在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的n位监督码(CRC码),附在原始信息后边,构成一个新的二进制码序列数共k+n位,然后发送出去。在接收端,根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。这个规则,在差错控制理论中称为“生成多项式”。

代数学的一般性算法:

在代数编码理论中,将一个码组表示为一个多项式,码组中各码元当作多项式的系数。例如1100101 表示为

1·x6+1·x5+0·x4+0·x3+1·x2+0·x+1,即x6+x5+x2+1。

设编码前的原始信息多项式为G(x),G(x)的最高幂次加1等于k;生成多项式为P(x),P(x)的最高幂次等于r;CRC多项式为R(x);编码后的带CRC的信息多项式为T(x)。

发送方编码方法:将G(x)乘以xr(即对应的二进制码序列左移r位),再除以P(x),所得余式即为R(x)。用公式表示为T(x)=xrG(x)+R(x)

接收方解码方法:将T(x)除以G(x),如果余数为0,则说明传输中无错误发生,否则说明传输有误。

2、循环冗余码的产生及正确性检验的例子

举例来说,设信息码为101001,生成多项式为1101,即P(x)=x3+x2+1,G(x)=x5+x3+1,计算CRC的过程为

xrP(x) 即左移三位101001000

P(x) =x3+x2+1 即R(x)=1。

注意到G(x)最高幂次r=3,得出CRC为001。

如果用竖式除法,计算过程为(用异或计算)以P(x)为准,G(x)左移P(x)的最高次位(r)再除以P(x)本身求余可得一个的位的CRC码:

1 1 0 1 0 1 (商)

_____________________________

P(除数) 1 1 0 1 ) 1 0 1 0 0 1 0 0 0

1 1 0 1

1 1 1 0

1 1 0 1

0 1 1 1

0 0 0 0

1 1 1 0

1 1 0 1

0 1 1 0

0 0 0 0

1 1 0 0

1 1 0 1

0 0 1 R(余数)即检验码

因此,T(x)=XrG(x)+R(x), 即1100000+010=1100010

如果传输无误,T(x)除以P(x) 无余式。回头看一下上面的竖式除法,如果被除数

是101001001,除数是P=1101,显然就能除尽。

总之,在接收端对收到的每一帧经过CRC检验后,

(1)若得出的余数R=0,则判断这个帧没有差错,就接受。

(2)若余数R不等于0,则判断这个帧有差错(但无法确定究竟是哪一位或那几位出现了差错),就丢弃。

3、用C语言程序实现

下面以最常见的CRC-16为例说明生成过程,假设发送信息用信息多项式K(x)表示,将K(x)左移R位,则可以表示成K(x)*2R,这样K(x)的右边就会生成R位,这就是检验码的位置,通过K(x)*2R除以生成多项式G(x)得到的余数就是检验码。实现方法:

1)最高幂次为R的生成多项式G(x)转换成对应的R+1位二进制数;

2)码左移R位,相当于对应的信息多项式K(x)*2R;

3)多项式(二进制)对信息码做模2除,得到R位的余数;

4)拼到信息码左移后空出的位置,得到完整的CRC码。

C语言源程序代码:

#include

void main()

{

unsigned int g,k,r,l,n,b,c,d,e,p,i,s,j,cont;

register s1;

printf("以下数据一十六进制计数方式输入\n");

printf("请输入生成码的值:\n");

scanf("%d",&g);

printf("请输入信息码的值:\n");

scanf("%d",&k);

{

unsigned int m,w=0; /* 测量生成码的长度r*/

m=g;

do {m>>=1;w++;}

while (m!=0);

r=w;

}

{

unsigned int m,w=0; /* 测量信息码的长度n*/

m=k;

do {m>>=1;w++;}

while (m!=0);

n=w;

}

k<<=r-1; /* 信息码左移r-1 位,相当于K(x)*Xr*/

l=n+r-1; /* 信息总长度*/

cont=r; /*cont 作为已被除信息位数的计数器*/

i=k;

i>>=(n-1); /* 取被除数信息码的高r+1 位,即和生成码的位数相同*/

do

{

s=i^g; /* 被除数信息码与生成码异或运算*/

p=r;c=0; /* 统计余数s 高位零的个数,保存到c */

for(j=0;j

{s1=s;

s1>>=(p-1);

if((s1&01)==0)

{p--;c++;}

else

break;

}

if (c>l-cont)

break; /* 余数s 高位零的个数高于信息码没有被除的位数,跳出循环,不再做异或运算*/

s<<=c;

i=k;

b=i>>(n-1-c); /* 取信息码K 的从右端开始的(n+r-1)-r-c=n-1-c的C 位*/

d=~(~0<

e=b&d;

s=s|e; /* 取s 的高位与信息码没被除的高位合成被除数*/

i=s;

cont+=c;

}

while (cont==l);

s=s|k; /* 将最后余数和信息码合在一起,形成CRC 的值*/ printf("运行结果为:\n");

printf("生成多项式的值g=%x\n",g);

printf("信息多项式的值k=%x\n",k);

printf("CRC 的值s=%x\n",s);

}

运行程序得到如下结果:

CRC校验码原理

CRC校验码 CRC即循环冗余校验码(Cyclic Redundancy Check):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 目录 详细介绍 代数学的一般性运算 详细介绍 循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x4+x3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x3+x2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。

CRC校验实验报告

实验三CRC校验 一、CRC校验码的基本原理 编码过程: CRC校验码的编码方法是用待发送的二进制数据t(x)除以生成 多项式g(x),将最后的余数作为CRC校验码。 其实现步骤如下: 1 设待发送的数据块是m位的二进制多项式t(x),生成多项式 为r阶的g(x)。在数据块的末尾添加r个0,数据块的长度增 加到m+r位。 2 用生成多项式g(x)去除,求得余数为阶数为r-1

的二进制 多项式y(x)。此二进制多项式y(x)就是t(x)经过生成多项式 g(x)编码的CRC校验码。 3 将y(x)的尾部加上校验码,得到二进制多项式。就是包含 了CRC校验码的待发送字符串。 解码过程: 从CRC的编码规则可以看出,CRC编码实际上是将代发送的m位 二进制多项式t(x)转换成了可以被g(x)除尽的m+r位二进制多项式 所以解码时可以用接收到的数据去除g(x),如果余数位零,则

表示传输过程没有错误;如果余数不为零,则在传输过程中肯定 存在错误。许多CRC的硬件解码电路就是按这种方式进行检错的。 同时,可以看做是由t(x)和CRC校验码的组合,所以解码时将接 收到的二进制数据去掉尾部的r位数据,得到的就是原始数据。 解码过程示例:

运行结果: 附录(实现代码):using System; using ; namespace CRC

{ public abstract class Change { oString("x2").ToUpper(); } } return returnStr; } um; } (databuff);eight < max1) && (data[j].Parent == -1)) { max2 = max1; tmp2 = tmp1; tmp1 = j; max1 =

CRC校验解读

三种常用的CRC16校验算法的C51程序的优化2009-10-10 09:34:17| 分类:技术知识| 标签:|字号大 CRC校验又称为循环冗余校验,是数据通讯中常用的一种校验算法。它可以有效的判别出数据在传输过程中是否发生了错误,从而保障了传输的数据可靠性。 CRC校验有多种方式,如:CRC8、CRC16、CRC32等等。在实际使用中,我们经常使用CRC16校验。CRC16校验也有多种,如:1005多项式、1021多项式(CRC-ITU)等。在这里我们不讨论CRC算法是怎样产生的,而是重点落在几种算法的C51程序的优化上。 计算CRC校验时,最常用的计算方式有三种:查表、计算、查表+计算。一般来说,查表法最快,但是需要较大的空间存放表格;计算法最慢,但是代码最简洁、占用空间最小;而在既要求速度,空间又比较紧张时常用查表+计算法。 下面我们分别就这三种方法进行讨论和比较。这里以使用广泛的51单片机为例,分别用查表、计算、查表+计算三种方法计算1021多项式(CRC-ITU)校验。原始程序都是在网上或杂志上经常能见到的,相信大家也比较熟悉了,甚至就是正在使用或已经使用过的程序。 编译平台采用Keil C51 7.0,使用小内存模式,编译器默认的优化方式。 常用的查表法程序如下,这是网上经常能够看到的程序范例。因为篇幅关系,省略了大部分表格的内容。 code unsigned int Crc1021Table[256] = { 0x0000, 0x1021, 0x2042, 0x3063,... 0x1ef0 }; unsigned int crc0(unsigned char *pData, unsigned char nLength) { unsigned int CRC16 = 0;

CRC校验原理及步骤

C R C校验原理及步骤 This model paper was revised by the Standardization Office on December 10, 2020

CRC校验原理及步骤 什么是CRC校验 CRC即循环冗余校验码:是数据通信领域中最常用的一种查错校验码,其特征是信息字段和校验字段的长度可以任意选定。循环冗余检查(CRC)是一种数据传输检错功能,对数据进行多项式计算,并将得到的结果附在帧的后面,接收设备也执行类似的算法,以保证数据传输的正确性和完整性。 CRC校验原理: 其根本思想就是先在要发送的帧后面附加一个数(这个就是用来校验的校验码,但要注意,这里的数也是二进制序列的,下同),生成一个新帧发送给接收端。当然,这个附加的数不是随意的,它要使所生成的新帧能与发送端和接收端共同选定的某个特定数整除(注意,这里不是直接采用二进制除法,而是采用一种称之为“模2除法”)。到达接收端后,再把接收到的新帧除以(同样采用“模2除法”)这个选定的除数。因为在发送端发送数据帧之前就已通过附加一个数,做了“去余”处理(也就已经能整除了),所以结果应该是没有余数。如果有余数,则表明该帧在传输过程中出现了差错。 模2除法: 模2除法与算术除法类似,但每一位除的结果不影响其它位,即不向上一位借位,所以实际上就是异或。在循环冗余校验码(CRC)的计算中有应用到模2除法。 例: CRC校验步骤:

CRC校验中有两个关键点,一是预先确定一个发送送端和接收端都用来作为除数的二进制比特串(或多项式),可以随机选择,也可以使用国际标准,但是最高位和最低位必须为1;二是把原始帧与上面计算出的除数进行模2除法运算,计算出CRC码。 具体步骤: 1. 选择合适的除数 2. 看选定除数的二进制位数,然后再要发送的数据帧上面加上这个位数-1位的0,然后用新生成的帧以模2除法的方式除上面的除数,得到的余数就是该帧的CRC校验码。注意,余数的位数一定只比除数位数少一位,也就是CRC校验码位数比除数位数少一位,如果前面位是0也不能省略。 3. 将计算出来的CRC校验码附加在原数据帧后面,构建成一个新的数据帧进行发送;最后接收端在以模2除法方式除以前面选择的除数,如果没有余数,则说明数据帧在传输的过程中没有出错。 CRC校验码计算示例: 现假设选择的CRC生成多项式为G(X)= X4+ X3+ 1,要求出二进制序列的CRC校验码。下面是具体的计算过程: ①将多项式转化为二进制序列,由G(X)= X4+ X3+ 1可知二进制一种有五位,第4位、第三位和第零位分别为1,则序列为11001 ②多项式的位数位5,则在数据帧的后面加上5-1位0,数据帧变为,然后使用模2除法除以除数11001,得到余数。【补几位0与x的最高次幂相同,模除就是进行异或】

CRC 校验码编码实验

实验四CRC校验码编码实验 班级:姓名:学号: 一、实验目的 1.学习CRC编码基本流程,学会调试循环冗余校验码编码程序。 2.掌握CRC校验码的编码原理,重点掌握按字节(Byte)编码方法。 二、实验内容 1.根据实验原理掌握CRC校验码编码/解码基本流程。 2.在C++编译器下能够调试编码算法每一个步骤,重点掌握按字节编码的过程。 三、实验仪器、设备 1.计算机-系统最低配置256M内存、P4CPU。 2.C++编程软件-Visual C++7.0(Microsoft Visual Studio2003)、Visual C++ 8.0(Microsoft Visual Studio2005) 四、实验原理 1.CRC校验码介绍 CRC校验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的监督码(CRC码)r位,并附在信息后边,构成一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。 16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(乘以216)后,再除以一个多项式,最后所得到的余数既是CRC码。求CRC码所采用模2加减运算法则,既是不带进位和借位的按位加减,这种加减运算实际上就是逻辑上的异或运算,加法和减法等价,乘法和除法运算与普通代数式的乘除法运算是一样,符合同样的规律。接收方将接收到的二进制序列数(包括信息码和CRC码)除以多项式,如果余数为0,则说明传输中无错误发生,否则说明传输有误。 2.按位计算CRC 一个二进制序列数可以表示为 求此二进制序列数的CRC码时,先乘以216后(左移16位),再除以多项式G(X),所得的余数就是所要求的CRC码。 可以设: 其中Q n(X)为整数,R n(X)为16位二进制余数,将上式代入前式得: 再设:

crc校验码详细介绍看懂了就会了

循环冗余校验码( CRC)的基本原理是:在K 位信息码后再拼接R位的校验码,整个编码长度为N 位,因此,这种编码又叫( N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x) 。根据G(x) 可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x) 左移R位,则可表示成C(x)*2 的R次方,这样C(x) 的右边就会空出R位,这就是校验码的位置。通过C(x)*2 的R次方除以生成多项式G(x) 得到的余数就是校验码。编辑本段几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x 的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x 的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x) 。如生成多项式为 G(x)=x^4+x^3+x+1 ,可转换为二进制数码11011。而发送信息位1111 ,可转换为数据多项式为C(x)=x^3+x^2+x+1 。 2、生成多项式是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2 除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2 除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息( CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x 的最高次幂为R的生成多项式G(x) 转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2 的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R 位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 例】假设使用的生成多项式是G(x)=x^3+x+1 。4 位的原始报文为1010, 求编码后的报文。 解:

计算法简单实现crc校验

计算法简单实现crc校验 计算法简单实现crc校验 前一段时间做协议转换器的时间用到CRC-16校验,查了不少资料发现都不理想。查表法要建表太麻烦,而计算法觉得那些例子太罗嗦。最后只好自己写了,最后发现原来挺简单嘛:)两个子程序搞定。这里用的多项式为:CRC-16=X16+X12+X5+X0=2 +2 +2+2 =0x11021 因最高位一定为“1”,故略去计算只采用0x1021即可 CRC_Byte:计算单字节的CRC值 CRC_Data:计算一帧数据的CRC值 CRC_HighCRC_Low:存放单字节CRC值 CRC16_HighCRC16_Low:存放帧数据CRC值; ------------------------------------------------------------- ;Functi on:CRConebyte ;Input:CRCByte ;Output:CRC_HighCRC_Low ; ------------------------------------------------------------- CRC_Byte: clrfCRC_Low clrfCRC_High movlw09H movwfv_Loop1 movfCRCByte,w movwfCRC_High CRC: decfszv_Loop1;8次循环,每一位相应计算 gotoCRC10 gotoCRCend CRC10 bcfSTATUS,C rlfCRC_Low rlfCRC_High btfssSTATUS,C   ;gotoCRC;为0不需计算movlw10H;若多项式改变,这里作相应变化xorwfCRC_High,f movlw21H;若多项式改变,这里作相应变化 xorwfCRC_Low,f gotoCRC CRCend: nop nop return ; ------------------------------------------------------------- ;CRCone byteend ; ------------------------------------------------------------- ; ------------------------------------------------------------- ;Functi on:CRCdate ;Input:BufStart(A,B,C)(一帧数据的起始地址)v_Count(要做CRC的字节数);Output:CRC16_HighCRC16_Low(结果); ------------------------------------------------------------- CRC_Data: clrfCRC16_High clrfCRC16_Low CRC_Data10 movfINDF,w

CRC检验码实验报告

CRC 检验码实验报告 一 实验题目 (1) 实现CRC 的校验过程,生成多项式为CRC12,要求设计简单的图形界面。 (2) 完成内容包括:输入发送数据序列,根据生成多项式完成余数计算,输出带有校验码的发送数据序列。模拟正确发送、出现离散的一位错、离散的两位错以及长度小于12的突发错,给出相应的输出。 二 实验工具及环境 实验语言:JAVA 实验工具:eclipese 三 实验思路 (1) 实验原理 CRC 校验码的编码方法是用待发送的二进制数据t(x)移位生成多项式位数,其结果r(x)除以生成 多项式g(x),将最后的余数与上r(x)作为CRC 校验码。 (2) 实验思路 1.实现过程分 实验类图 2.计算CRC 检验码: 1)用户输入发送数据比特序列A; 2)默认为12位CRC 生成多项式,用户可根据需要自行修改CRC 生成多项式B; 3)根据B 的位数,对A 进行左移位相应的位数(相当于做2^n 的乘积运算),形成C; 实现计算CRC 校验码与实现模拟出错的算法类 选择应用主界面类,包括模拟CRC 出错与计算CRC 校验 计算CRC 校验码界面 模拟CRC 出错

4)对生成多项式和发送数据流进行异或运算,计算余数D; 5)余数D+C就形成了带有CRC检验码的数据比特序列。 3.CRC检验码出错模拟: 用户输入原CRC检验码的数据比特序列A,选择待模拟的错误类型;程序给出相应模拟出错结果。

四实验结论 1.优点 1)实现了多种生成多项式CRC检验码的生成与检验 2)检验与计算分开,功能明确 3)可对用户输入数据进行检查,动态交互 2.缺点 1)在检验CRC校验码时,只能有用户手动输入数据,不能粘贴复制,比较麻烦 2)页面布局与外观有待提高

crc校验码 详细介绍看懂了就会了

循环冗余校验码(CRC)的基本原理是:在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。校验码的具体生成过程为:假设发送信息用信息多项式C(X)表示,将C(x)左移R位,则可表示成C(x)*2的R次方,这样C(x)的右边就会空出R位,这就是校验码的位置。通过C(x)*2的R次方除以生成多项式G(x)得到的余数就是校验码。 编辑本段 几个基本概念 1、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x^4+x^3+x+1,可转换为二进制数码11011。 而发送信息位1111,可转换为数据多项式为C(x)=x^3+x^2+x+1。 2、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做除,应使余数循环。 3 CRC码的生成步骤 1、将x的最高次幂为R的生成多项式G(x)转换成对应的R+1位二进制数。 2、将信息码左移R位,相当与对应的信息多项式C(x)*2的R次方。 3、用生成多项式(二进制数)对信息码做除,得到R位的余数。 4、将余数拼到信息码左移后空出的位置,得到完整的CRC码。 【例】假设使用的生成多项式是G(x)=x^3+x+1。4位的原始报文为1010,求编码后的报文。 解: 1、将生成多项式G(x)=x^3+x+1转换成对应的二进制除数1011。 2、此题生成多项式有4位(R+1),要把原始报文C(x)左移3(R)位变成1010000 3、用生成多项式对应的二进制数对左移3位后的原始报文进行模2除,相当于按位异或: 1010000

crc校验码计算例题

crc校验码计算例题 1、若信息码字为11100011,生成多项式G(X)=X5+X4+X+1,则计算出的CRC 校验码为?x的最高次幂5则信息码(被除数)补五个0为:1110001100000 除数为110011 ------------10110110 --------------------- 110011/1110001100000 -------110011 ------------------ ---------101111 ---------110011 ------------------ ----------111000 ----------110011 ------------------ ------------101100 ------------110011 ------------------------ -------------111110 -------------110011 ------------------------- ---------------11010 2、信息码为101110101,生成多项式X4+X2+1,求冗余位??? 算法同上被除数补四个0 为:1011101010000 除数为:10101 答案:1100 7E 00 05 60 31 32 33 计算CRC16结果应该是:5B3E 方法如下: CRC-16码由两个字节构成,在开始时CRC寄存器的每一位都预置为1,然后把CRC寄存器与8-bit的数据进行异或(异或:二进制运算相同为0,不同为1;0^0=0;0^1=1;1^0=1;1^1=0),之后对CRC寄存器从

CRC16算法原理

CRC算法及C实现 学习体会2008-09-20 15:21:13 阅读161 评论0 字号:大中小订 阅 一、CRC算法原理 CRC校验的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的监督码(既CRC码)r位,并附在信息后边,构成一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。 16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(既乘以)后,再除以一个多项式,最后所得到的余数既是 CRC码。 假设数据传输过程中需要发送15位的二进制信息 g=101001110100001,这串二进制码可表示为代数多项式g(x) = x^14 + x^12 + x^9 + x^8 + x^7 + x^5 + 1,其中g中第k位的值,对应g(x)中x^k的系数。将g(x)乘以x^m,既将g后加m个0,然后除以m阶多项式h(x),得到的(m-1)阶余项 r(x)对应的二进制码r就是 CRC编码。 h(x)可以自由选择或者使用国际通行标准,一般按照h(x)的阶数m,将CRC算法称为CRC-m,比如CRC-32、CRC-64等。国际通行标准可

以参看 https://www.wendangku.net/doc/b83698411.html,/wiki/Cyclic_redundancy_check g(x)和h(x)的除运算,可以通过g和h做xor(异或)运算。比如将 11001与10101做xor运算: 明白了xor运算法则后,举一个例子使用CRC-8算法求101001110100001的效验码。CRC-8标准的h(x) = x^8 + x^7 + x^6 + x^4 + x^2 + 1,既h是9位的二进制串111010101。

CRC校验码的原理

CRC 校验码的原理 在通信与数字信号处理等领域中循环冗余校验码(Cyclic Redundancy Check,CRC )是一种很常用的设计。一般来说数据通信中的编码可以分为信源编码和信道编码两大类,其中,为了提高数据通信的可靠性而采取的编码称为信道编码,即抗干扰编码。在通信系统中,要求数据传输过程中的误码率足够低,而为了降低数据传输过程中的误码率,经常采用的一种方法是差错检测控制。 在实际的通信系统中,差错检测控制的主要方法又3种:前向纠错(FEC ),自动重发(ARQ )和反馈检验法。FEC 指接收端不仅能够在收到的信码中发现错码,而且还能够纠正错码。一般来说,这种方法不需要反向信道,实时性很好,不过设备较复杂。ARQ 是指接收端在收到的信码中检测出错码时,即设法通知发送端重新发送信号,直到能够正确接收为止。通常,这种方法只用来检测误码,而且只能在双向信道中使用。反馈检验法是指接收端将收到的信码一字不差地转发回发送端,同时与原发送信码进行比较,如果有错,则发端重发。这种方法的原理和设备都比较简单,但需要双向信道的支持,而且传输效率低下; 通过实践检验,在这三中方法中,如果传输过程中的误码率较低,那么采用前向纠错法比较理想,但如果误码率较高时,这种方法又会出现“乱纠”的现象;在网络通信中,广泛的采用差错检测方法时自动请求重发,这种方法只要检错功能即可;反馈检验法时前向纠错法和自动请求重发的结合。 在实现差错检测控制的众多方法中,循环冗余校验就是一类重要的线性分组码。它时一种高效的差错控制方法,它广泛应用于测控及数据通信领域,同时具有编码和解码方法简单,检错能力强,误判概率很低和具有纠错能力等优点。 循环冗余校验码实现的方法 CRC 的基本原理就是在一个P 位二进制数据序列之后附加一个R 位二进制检验码序列,从而构成一个总长位N=P+R 位的二进制序列。例如,P 位二进制数据序列D=[d 1-p d 2-p …d 1d 0],R 位二进制检验码R = [r 1-r r 2-r …r 1r 0],那么所得到的这个N 位二进制序列就是M=[d 1-p d 2-p …d 1d 0 r 1-r r 2-r …r 1r 0],这里附加在数据序列之后的CRC 码与数据序列的内容之间存在着某种特定的关系。如果在数据传输过程中,由于噪声或传输特性不理想而使数据序列中的某一位或某些位发生错误,这种特定关系就会被破坏。可见在数据的接收端通过检查这种特定关系,可以很容易地实现对数据传输正确性的检验。 在CRC 中,检验码R 使通过对数据序列D 进行二进制除法取余式运算得到的,他被一个称为生成多项式的(r+1)位二进制序列G=[g r g 1-r …g 1g 0]来除,具体的多项式除法形式如下: ) ()(x G x D x r =Q(x)+ ) ()(x G x R 其中,)(x D x r 表示将数据序列D 左移r 位,即在D 的末尾再增加r 个0位;Q (x )代表这一除法所得的商,R (x )就是所需的余式。此外,这一运算关系还可以表示为 ?? ? ???=)()(Re )(x G x D x x R r ?? ? ? ??=)()(Re )(x G x M x R 通过上面CRC 基本原理的介绍,可以发现生成多项式使一个非常重要的概念,它决定了CRC 的具体算法。目前,生成多项式具有一下一些通用标准,其中CRC -12,CRC -16,

CRC编码实验实验报告

实验三 CRC编码实验实验报告 班级:通信162班 姓名:李浩坤学号:163977 实验名称:CRC编码实验实验日期:6.7 一. 实验目的 1、复习matlab的基本编写方法。 2、学习CRC编码基本流程, 学会调试循环冗余校验码编码程序。 3、根据给出的资料,掌握CRC校验码的编码原理。 二. 实验原理及内容 原理: 1.CRC码简介: 循环冗余码校验英文名称为Cyclical Redundancy Check,简称CRC,它是利用除法及余数的原理来作错误侦测(Error Detecting)的。实际应用时,发送装置计算出CRC值并随数据一同发送给接收装置,接收装置对收到的数据重新计算CRC并与收到的CRC相比较,若两个CRC值不同,则说明数据通讯出现错误。 2.循环冗余校验码(CRC)的基本原理: 在K位信息码后再拼接R位的校验码,整个编码长度为N位,因此,这种编码又叫(N,K)码。对于一个给定的(N,K)码,可以证明存在一个最高次幂为N-K=R的多项式 G(x)。根据G(x)可以生成K位信息的校验码,而G(x)叫做这个CRC码的生成多项式。 几个需要提前了解的基本概念: 1)、多项式与二进制数码 多项式和二进制数有直接对应关系:x的最高幂次对应二进制数的最高位,以下各位对应多项式的各幂次,有此幂次项对应1,无此幂次项对应0。可以看出:x的最高幂次为R,转换成对应的二进制数有R+1位。 多项式包括生成多项式G(x)和信息多项式C(x)。 如生成多项式为G(x)=x^4+x^3+x+1,可转换为二进制数码11011。 而发送信息位 1111,可转换为数据多项式为C(x)=x^3+x^2+x+1。 2)、生成多项式 是接受方和发送方的一个约定,也就是一个二进制数,在整个传输过程中,这个数始终保持不变。 在发送方,利用生成多项式对信息多项式做模2除生成校验码。在接受方利用生成多项式对收到的编码多项式做模2除检测和确定错误位置。 应满足以下条件: a、生成多项式的最高位和最低位必须为1。 b、当被传送信息(CRC码)任何一位发生错误时,被生成多项式做模2除后应该使余数不为0。 c、不同位发生错误时,应该使余数不同。 d、对余数继续做模2除,应使余数循环。 3)、模2除(按位除) 模2除做法与算术除法类似,但每一位除(减)的结果不影响其它位,即不向上一位借位。所以实际上就是异或。然后再移位移位做下一位的模2减。步骤如下: a、用除数对被除数最高几位做模2减,没有借位。 b、除数右移一位,若余数最高位为1,商为1,并对余数做模2减。若余数最高位为0,商为0,除数继续右移一位。 c、一直做到余数的位数小于除数时,该余数就是最终余数。 三. 实验步骤 1.了解crc编码原理,分析理解检验crc程序的含义。 2.运行mycrc编码程序,观察结果,计算验证程序是否正确。 3.完成练习题。

循环冗余校验码原理

1、循环冗余校验码原理 CRC 校验采用多项式编码方法,如一个8 位二进制数(B7B6B5B4B3B2B1B0)可以用7 阶二进制码多项式B7X7+B6X6+B5X5+B4X4+B3X3+B2X2+B1X1+B0X0表示。 例如11000001 可表示为 1X7+1X6+0X5+0X4+0X3+0X2+0X1+0X0 一般说,n 位二进制数可用(n-1)阶多项式表示。它把要发送的数据位串看成是系数只能为“1”或“0”的多项式。一个n 位的数据块可以看成是从Xn-1到X0的n 项多项式的系数 序列,位于数据块左边的最高位是X n-1项的系数,次高位是X n-2项的系数,依此类推,位 于数据块右边的最低位是X0项的系数,这个多项式的阶数为n-1。 多项式乘除法运算过程与普通代数多项式的乘除法相同。多项式的加减法运算以2 为模,加减时不进、错位,如同逻辑异或运算。 采用CRC 校验时,发送方和接收方事先约定一个生成多项式G(X),并且G(X)的最高项和最低项的系数必须为1。设m 位数据块的多项式为M(X),生成多项式G(X)的阶数必需 比M(X)的阶数低。CRC 校验码的检错原理是:发送方先为数据块生成CRC 校验码,使这 个CRC 校验码的多项式能被G(X)除尽,实际发送此CRC 校验码;接收方用收到的CRC 校 验码除以G(X),如果能除尽,表明传输正确,否则,表示有传输错误,请求重发。 生成数据块的CRC 校验码的方法是: (1) 设G(X)为r 阶,在数据块末尾添加r 个0,使数据块为m+r 位,则相应的多项式 为XrM(X); (2) 以2 为模,用对应于G(X)的位串去除对应于XrM(X)的位串,求得余数位串; (3) 以2 为模,从对应于XrM(X)的位串中减去余数位串,结果就是为数据块生成的带足够校验信息的CRC 校验码位串。 例如,设要发送的数据为1101011011,G(X)=X4+X+1,则首先在发送数据块的末尾加4 个0,得到11010110110000,然后用G(X)的位串10011 去除,再用11010110110000 减去余 数位串1110,得到的即为CRC 位串11010110111110,将对应多项式称为T(X),显然,T(X) 能被G(X)除尽。这样,一旦接收到的CRC 位串不能被同样的G(X)的位串除尽,那么一定 有传输错误。 当使用CRC校验码进行差错控制时,除了为G(X)的整数倍的差错多项式不能被检测外,其它差错均能被查出。CRC 校验码的差错控制效果取决于G(X)的阶数,阶数越高,效果越 好。目前,常用的有两种生成多项式G(X)的方法,分别是: CRC-16 X16+X15+X2+1 CCITT X16+X12+X5+1

crc校验原理

校验原理 1、循环校验码(CRC码):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 2、生成CRC码的基本原理:任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111。 3、CRC码集选择的原则:若设码字长度为N,信息字段为K位,校验字段为R 位(N=K+R),则对于CRC码集中的任一码字,存在且仅存在一个R次多项式g(x),使得 V(x)=A(x)g(x)=x R m(x)+r(x); 其中: m(x)为K次信息多项式, r(x)为R-1次校验多项式, g(x)称为生成多项式: g(x)=g0+g1x+g2x2+...+g(R-1)x(R-1)+g R x R 发送方通过指定的g(x)产生CRC码字,接收方则通过该g(x)来验证收到的CRC 码字。 4、CRC校验码软件生成方法: 借助于多项式除法,其余数为校验字段。 例如:信息字段代码为: 1011001;对应m(x)=x6+x4+x3+1 假设生成多项式为:g(x)=x4+x3+1;则对应g(x)的代码为: 11001 x4m(x)=x10+x8+x7+x4对应的代码记为:10110010000; 采用多项式除法: 得余数为: 1010 (即校验字段为:1010) 发送方:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10

信息字段校验字段 接收方:使用相同的生成码进行校验:接收到的字段/生成码(二进制除法)如果能够除尽,则正确,

基于FPGA的CRC校验设计

《数字电路课程设计》实验报告 题目:基于FPGA的CRC校验设计 班级: 学号: 姓名: 完成时间: 实验地点:

摘要 在通信的过程中,由于外界干扰或者电路本身不稳定因素的影响,通信系统中不可避免的会产生噪声(如热噪声等),噪声有时候会严重影响信息的发送,造成信息发送失败。因此在接收方确定自己是否接收到了正确的信息尤为重要。本文就CRC校验这一校验方法利用FPGA进行模拟仿真,完成整个CRC校验的过程。

目录第一章实验任务与原理 1.1实验任务 1.2 实验原理 第二章设计思路、方法及方案 2.1设计思路 2.2设计方法及方案 第三章FPGA模块设计 第四章系统调试及硬件检查 第五章结束语 附录程序源代码

第一章 实验任务与原理 1.1、 实验任务 本实验设计完成一个完整的CRC 校验过程,其中包括发送端对原始数据生成、编码、按照RS-232的传输协议组帧、接收端对RS-232传输帧格式解析和解码过程。 1.2、 实验原理 本次实验要完成整个CRC 校验过程,从产生数据到最后的校验完毕,因此实验原理共分为5个部分:数据源产生、CRC 编码、组帧、帧解析、CRC 校验。 图1 CRC 校验系统结构 1、 CRC 校验介绍 CRC (循环冗余校验码)是一种非常适于检错的信道编码。由于其检错能力 强,它对随机错误和突发错误都能以较低冗余度进行严格检验,且编码和译码检错电路的实现都相当简单,故在数据通信和移动通信中都得到了广泛的应用。 在数据通信与网络通信中,通常信息码元的数目k 相当大,由一千甚至数千 数据位构成一帧,而后采用循环码的生成多项式产生r 位的校验位。这时,信息码元和校验位构成的码字不一定是严格定义的循环码,而且主要是利用其误码检测特性进行错误检出,因此就可广泛采用CRC 码。它是从循环码中分出的一类检错码。循环码的已编码码字可被生成多项式g(x)整除。收端可以利用这一特点进行检错,若接收码字不能被g(x)整除,则有错。 2、实验原理介绍 任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’或‘1’的多项式一一对应,例如‘1010111’对应的多项式为6421x x x x ++++。 CRC 码集选择的原则:若设码字长度为N ,信息字段长度为K ,校验字段

CRC算法及Verilog实现

CRC算法原理及其Verilog实现 1CRC简介 CRC校验是一种在数据通信系统和其它串行传输系统中广泛使用的错误检测手段。通用的CRC标准有CRC-8、CRC-16、CRC-32、CRC-CCIT,其中在网络通信系统中应用最广泛的是CRC-32标准。本文将以CRC-32为例,说明CRC编码的实现方式以及如何用verilog语言对CRC编码进行描述。 2二.模2运算 在说明CRC编码方式之前,首先介绍一下模2运算法则,在CRC运算过程中会使用到模2除法运算。模2运算是一种二进制运算法则,与四则运算相同,模2运算也包括模2加、模2减、模2乘、模2除四种运算。模2运算用“+”表示加法运算,用“-”、“×”或“.”、“/”分别表示减法、乘法和除法运算。与普通四则运算法则不同的是,模2加法是不带进位的二进制加法运算,模2减法是不带借位的二进制减法运算。同时,模2乘法在累加中间结果时采用的是模2加法运算;模2除法求商过程中余数减除数采用的是模2减法运算。因此,两个二进制数进行模2加减法运算时,相当于两个二进制数进行按位异或运算,每一位的结果只与两个数的当前位有关。模2除法在确定商时,与普通二进制除法也略有区别。普通二进制除法中,当余数小于除数时,当前位的商为0,当余数大于等于除数时,当前位的商为1。模2除法在确定当前位的商时,只关心余数的首位,首位为1则商为1,首位为0则商为0。 1.模2加法的定义: 0+0=0,0+1=1,1+0=1,1+1=0。 举例如下: 1010+0110=1100。 2.模2减法的定义:

0-0=0,0-1=1,1-0=1,1-1=0。 举例如下: 1010-0110=1100。 3.模2乘法的定义: 0×0=0,0×1=0,1×0=0,1×1=1。 举例如下: 1011×101=100111 列竖式计算: 1011 × 101 —————— 1011 0000 1011 —————— 100111 其中横线之间的累加过程,采用的是2进制加法,不进位。 4.模2除法: 0/1=0,1/1=1。 举例如下: 1011/101=10,余数为100。 列竖式计算: 10 ———— 101 )1011 101 ———— 001 101

CRC校验原理分析

CRC校验 校验原理: 1、循环校验码(CRC码):是数据通信领域中最常用的一种差错校验码,其特征是信息字段和校验字段的长度可以任意选定。 2、生成CRC码的基本原理:任意一个由二进制位串组成的代码都可以和一个系数仅为‘0’和‘1’取值的多项式一一对应。例如:代码1010111对应的多项式为x6+x4+x2+x+1,而多项式为x5+x3+x2+x+1对应的代码101111。 3、CRC码集选择的原则:若设码字长度为N,信息字段为K位,校验字段为R 位(N=K+R),则对于CRC码集中的任一码字,存在且仅存在一个R次多项式g(x),使得 V(x)=A(x)g(x)=x R m(x)+r(x); 其中: m(x)为K次信息多项式, r(x)为R-1次校验多项式, g(x)称为生成多项式: g(x)=g 0+g 1 x+g 2 x2+...+g (R-1) x(R-1)+g R x R 发送方通过指定的g(x)产生CRC码字,接收方则通过该g(x)来验证收到的CRC 码字。 4、CRC校验码软件生成方法: 借助于多项式除法,其余数为校验字段。 例如:信息字段代码为: 1011001;对应m(x)=x6+x4+x3+1 假设生成多项式为:g(x)=x4+x3+1;则对应g(x)的代码为: 11001 x4m(x)=x10+x8+x7+x4对应的代码记为:10110010000; 采用多项式除法: 得余数为: 1010 (即校验字段为:1010)

发送方:发出的传输字段为: 1 0 1 1 0 0 1 1 0 10 信息字段校验字段 接收方:使用相同的生成码进行校验:接收到的字段/生成码(二进制除法)如果能够除尽,则正确,

CRC码生成与校验电路的设计

目录 第1章总体设计方案 (1) 1.1设计原理 (1) 1.2设计思路 (2) 1.3设计环境 (3) 第2章详细设计方案 (5) 2.1顶层方案图的设计与实现 (5) 2.1.1创建顶层图形设计文件 (6) 2.1.2器件的选择与引脚锁定 (6) 2.1.3编译、综合、适配 (8) 2.2功能模块的设计与实现 (8) 2.2.1模2除法器的设计与实现 (8) 2.2.2移位寄存器的设计与实现 (10) 2.3仿真调试 (11) 第3章编程下载与硬件测试 (14) 3.1编程下载 (14) 3.2硬件测试及结果分析 (14) 参考文献 (15) 附录(电路原理图) (16)

第1章 总体设计方案 1.1 设计原理 循环冗余校验码(cyclic redundancy check,CRC)简称为循环码或CRC 码。二进制信息沿一条信号线逐位在设备之间传送称为串行传送,CRC 码常用于串行传送过程中的检错与纠错。 CRC 码的编码格式如图1.1所示,是在k 位有效数据之后添加r 位校验码,形成总长度为n 的CRC 码,简写作C(n,k)码。CRC 编码的关键技术在于如何从k 位信息简便的得到r 位校验码,并根据总长度为n 的CRC 码进行纠错。 图1.1 设被校验的数据0121...D D D D D k k --=是一个k 位的二进制代码,将它 表示为一个(k-1)阶的多项式 0112211......)(D x D x D x D x M k k k k +++++=---- (1-1) 多项式(1-1)中的系数D 的取值为0或1,与被校验的数据M 一一对应;式中的x 是一个伪变量,用i x 指明各位的位置。 设校验码P 长度为r ,将被校验数据D 左移r 位后的结果为 位 r k k D D D D 00...00...0121-- 将D 左移r 位的目的是给D 右边添加r 个0,形成(k+r)位长度二进制代码, 其多项式形式为M(x )×r x 。如图1.1所示,CRC 码由k 位数据D 和r 位校验码 P 组成,求校验码P 的多项式R(X)的方法如下: ) () ()()()(x G x R x Q x G x x M r + =? (1-2)

CRC校验算法学习

CRC校验算法学习(这个算法看了很多遍了,都是囫囵吞枣,这次将资料拷贝到这里,好好学习一下) (2008-2-23 23:18)CRC校验采用多项式编码方法。 被处理的数据块可以看作是一个二进制多项式,例如,10110101可以看作是2^7+2^5+2^4+2^2+2^0,多项式乘除法运算过程与普通代数多项式的乘除法相同。多项式的加减法运算以2为模,加减时不进,错位,和逻辑异或运算一致。 采用CRC校验时,发送方和接收方用同一个生成多项式g(x),并且g(x)的首位和最后一位的系数必须为1。CRC的处理方法是:发送方以g(x)去除t(x),得到余数作为CRC 校验码。校验时,以计算的校正结果是否为0为据,判断数据帧是否出错。 CRC校验可以100%地检测出所有奇数个随机错误和长度小于等于k(k为g(x)的阶数)的突发错误。所以CRC的生成多项式的阶数越高,那么误判的概率就越小。 CCITT建议:2048 kbit/s的PCM基群设备采用CRC-4方案,使用的CRC校验采用16位CRC校验。在IBM的同步数据链路控制规程SDLC的帧校验序列FCS中,使用CRC-16。g(x)的位数越高,检错能力就越强。由于CRC-32的可靠性,把CRC-32用于重要数据传输十分合适,所以在通信、计算机等领域运用十分广泛。在一些UART通信控制芯片(如MC6582、Intel8273和Z80-SIO)内,都采用了CRC校验码进行差错控制;以太网卡芯片、MPEG解码芯片中,也采用CRC-32进行差错控制。>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> >>> (转自https://www.wendangku.net/doc/b83698411.html,/forum/viewthread.php?tid=5470&sid=3rrqV omR) CRC校验码的基本思想是利用线性编码理论,在发送端根据要传送的k位二进制码序列,以一定的规则产生一个校验用的监督码(既CRC码)r位,并附在信息后边,构成一个新的二进制码序列数共(k+r)位,最后发送出去。在接收端,则根据信息码和CRC码之间所遵循的规则进行检验,以确定传送中是否出错。 在数据存储和数据通讯领域,CRC无处不在:著名的通讯协议X.25的FCS(帧检错序列)采用的是CRC. CCITT,ARJ、LHA等压缩工具软件采用的是CRC32,磁盘驱动器的读写采用了CRC16,通用的图像存储格式GIF、TIFF等也都用CRC作为检错手段。 CRC的本质是模-2除法的余数,采用的除数不同,CRC的类型也就不一样。通常,CRC 的除数用生成多项式来表示。最常用的CRC码的生成多项式有CRC16,CRC32. 以CRC16为例,16位的CRC码产生的规则是先将要发送的二进制序列数左移16位(既乘以2^16)后,再除以一个多项式,最后所得到的余数既是CRC码,如下式所示,其中K(X)表示n位的二进制序列数,G(X)为多项式,Q(X)为整数,R(X)是余数(既CRC码)。K(X)>>16=G(x)Q(x)+R(x) 求CRC码所采用模2加减运算法则,既是不带进位和借位的按位加减,这种加减运算实际上就是逻辑上的异或运算,加法和减法等价,乘法和除法运算与普通代数式的乘除法运算是一样,符合同样的规律。生成CRC码的多项式如下,其中CRC-16和CRC-CCITT产生16位的CRC码,而CRC-32则产生的是32位的CRC码 接收方将接收到的二进制序列数(包括信息码和CRC码)除以多项式,如果余数为0,则说明传输中无错误发生,否则说明传输有误,关于其原理这里不再多述。用软件计算CRC 码时,接收方可以将接收到的信息码求CRC码,比较结果和接收到的CRC码是否相同。 CCITT推荐的高级数据链路控制规程HDLC的帧校验序列FCS中,使用CCITT-16即CRC16,其生成多项式为G(x)=x16+x12+x5+1, CRC-32的生成多项式为G(x)=x32+x26+x23+x22+x16+x11+x10+x16+x8+x7+x5+x4+x2+x+1 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>

相关文档