文档库 最新最全的文档下载
当前位置:文档库 › 非线性阻尼扭摆振动模型及在转动惯量测量中应用 (1)

非线性阻尼扭摆振动模型及在转动惯量测量中应用 (1)

非线性阻尼扭摆振动模型及在转动惯量测量中应用 (1)
非线性阻尼扭摆振动模型及在转动惯量测量中应用 (1)

非线性振动汇总讲解

目录 1.两端铰支偏置转子的瞬态涡动分析 (1) 1.1转子动力学模型三维立体示意图:(UG) (3) 1.2转子动力学模型二维平面示意图:(CAD) (4) 1.3导出两端弹性支承刚性薄单盘偏置转子的瞬态涡动微分方程: (5) 1.3.1偏置转子在平动坐标系中的动量矩 (5) 1.3.2在平动坐标系中外力矩的表达 (7) 1.3.3在平动坐标系中定点转动微分方程 (7) 1.4形心稳态自由涡动时的频率方程,画出涡动角速度与自转角速度的关系曲线图: . 8 1.4.1同步涡动的临界转速: (9) 1.4.2稳态自由涡动角速度与自转角速度的关系: (9) 1.4.3涡动角速度与自转角速度的关系曲线如下: (10) 1.5mathematic源代码 (11) 2. 威尔逊-- 法求解等加速时的瞬态涡动幅频特性 (12) 2.1 分析 (12) 2.2 MATLAB编程求解 (16)

两端铰支偏置转子的瞬态涡动分析 已知:设有两端铰支偏置单盘转子,两端的滚动轴承简化为铰支座,弹性轴跨长57,l cm =直径 1.5,d cm =弹性模量62622.110/20.5810/E Kg cm N cm =?=?,材料密度337.810/Kg cm ρ-=?。固定在离支承1/4处的圆盘厚2cm =,直径16D cm =,若不计重力影响与系统阻尼,圆盘的转动惯量近似按薄圆盘计算。?为自转角位移,取222 5.7/35.814/rad s rad s ?π=?=。假设无质量偏心,不计重力影响,外力矩的作用是保证转子作等加速转动。 求: ①画出转子动力学模型三维立体示意图,导出两端铰支承刚性薄单盘偏置转子的瞬态涡动微分方程; ②应用Mathematic 软件求解该转子形心稳态自由涡动时的频率方程,画出涡动角速度与自转角速度的关系曲线图; ③应用Wilson θ-数值方法求解等加速度时的瞬态涡动的幅频特性,并画出涡动振幅与自转角速度的幅频关系曲线图和瞬态涡动响应时间历程曲线。

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告 一、实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、实验原理 1. 有粘滞阻尼的阻尼振动 弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++= 记ω0为无阻尼时自由振动的固有角频率,其值为ω0=k/J ,定义阻尼系数β =γ/(2J ),则上式可以化为: 2220d d k dt dt θθ βθ++= 小阻尼即22 00βω-<时,阻尼振动运动方程的解为 ( )) exp()cos i i t t θθβφ=-+ (*) 由上式可知, 阻尼振动角频率为d ω=阻尼振动周期为2d d T π ω= 2. 周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++= ()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。 一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ=

22 02arctan βω φωω =- 其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中α m 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转 角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 ()22cos 0m d d J k t dt dt θθγθαω++-= 也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θ m 的极大值条件0m θω? ?=可知,当外激励角频率ω=系统发生共振, θ m 有极大值 α 引入参数(0ζβωγ==,称为阻尼比。 于是,我们得到 m θ= ()() 02 02arctan 1ζωωφωω=- 三、实验任务和步骤 1. 调整仪器使波耳共振仪处于工作状态。 2. 测量最小阻尼时的阻尼比δ和固有角频率ω0。 3. 测量阻尼为3和5时的振幅,并求δ。 4. 测定受迫振动的幅频特性和相频特性曲线。 四、实验步骤。

非线性振动

非线性振动的研究包括理论分析方法和数值分析方法。其中理论分析方法有是沿着两个方向发展,第一是定性方法,第二是定量方法,也称为解析法。 定性方法是对方程解的存在性、唯一性、周期性和稳定性等的研究;定量方法是对方程解的具体表达形式、数量大小和解的数目等的研究。数值方法目前已广泛用于计算非线性振动系统,是一种求解非线性方程的有效方法。 本文在查询相关文献的基础上,对非线性振动理论的分析方法最新研究成果做简要概括和分析比较。 1、平均法 平均法是求解非线性振动最常见和最实用的近似方法之一。其基本思想是设待解微分方程与派生方程具有相同形式的解,只是振幅和相位随时间缓慢变化。将振幅和相位的导数用一个周期的平均值替代,得到平均化方程,求解平均化方程,得到振幅和相位的表达式,从而求解出原方程的近似解析解。 1.1利用平均法分析多自由度非线性振动 平均法主要是用在单自由度非线性振动的分析中,是一种求近似解的方法,虽然精度较低,但可避免繁琐的中间运算,具有便于应用的突出优点。将其推广的到多自由度系统,导出了平均化方程,由此能够得到多自由度非线性振动的幅频特性。 1.2用改进平均法求解自由衰减振动 用平均法求解自由衰减振动方程时,无论是线性阻尼还是平方阻尼,

在阻尼常量很小的情况下,平均法解均有较高的精度。但随阻尼常量的增加,阻尼对振动周期的影响已不能忽略,此时平均法解的结果与实际振动情况有了明显的偏离,需要改进。改进平均法是将待解微分方程的圆频率与派生方程圆频率的差异函数表示为阻尼系数的多项式。 2、FFT多谐波平衡法分析非线性系统 非线性动力系统的响应可能含有几个主导频率,且有可能与激振频率不成倍数关系。现有的单一谐波法和多谐波法仅限于系统响应主导频率为激振频率的非线性系统,因此在某些情况下使用单一谐波法或多谐波法研究非线性系统动力学特性是不可靠的,而基于快速傅立叶变换(FFT)和主导频率的 FFT 多谐波平衡法能够依据所有的主导频率构筑多谐波平衡方程,因此其解析解精确度高,并能广泛适用于单倍周期、多倍周期、与初始条件有关的多解性及拟周期响应等典型的非线性特征响应。 3、等效小参数法求解强非线性系统 等效小参量法是将谐波平衡法和扰动法相结合用于求高阶非线性系 统近似解的一种比较有效的方法,这种方法不仅适用于弱非线性系统,而且适用于强非线性系统,其近似解能较好地反映系统特性。在求解弱非线性系统时,扰动法和等效小参量法均具有较高的精确度,但对于强非线性系统,等效小参量法表现出较明显的优势。 参考文献: 【1】王海期.非线性振动.高等教育出版社.1992

阻尼 阻尼系数 阻尼比

阻尼阻尼系数阻尼比 阻尼(英语:damping)是指任何振动系统在振动中,由于外界作用和/或系统本身固有的原因引起的振动幅度逐渐下降的特性,以及此一特性的量化表征。 概述 在物理学和工程学上,阻尼的力学模型一般是一个与振动速度大小成正比,与振动速度方向相反的力,该模型称为粘性(或粘性)阻尼模型,是工程中应用最广泛的阻尼模型。粘性阻尼模型能较好地模拟空气、水等流体对振动的阻碍作用。本条目以下也主要讨论粘性阻尼模型。然而必须指出的是,自然界中还存在很多完全不满足上述模型的阻尼机制,譬如在具有恒定摩擦系数的桌面上振动的弹簧振子,其受到的阻尼力就仅与自身重量和摩擦系数有关,而与速度无关。 除简单的力学振动阻尼外,阻尼的具体形式还包括电磁阻尼、介质阻尼、结构阻尼,等等。尽管科学界目前已经提出了许多种阻尼的数学模型,但实际系统中阻尼的物理本质仍极难确定。下面仅以力学上的粘性阻尼模型为例,作一简单的说明。 粘性阻尼可表示为以下式子: 其中F表示阻尼力,v表示振子的运动速度(矢量),c是表征阻尼大小的常数,称为阻尼系数,国际单位制单位为牛顿·秒/米。 上述关系类比于电学中定义电阻的欧姆定律。

在日常生活中阻尼的例子随处可见,一阵大风过后摇晃的树会慢慢停下,用手拨一下吉他的弦后声音会越来越小,等等。阻尼现象是自然界中最为普遍的现象之一。 理想的弹簧阻尼器振子系统如右图所示。分析其受力分别有: 弹性力(k为弹簧的劲度系数,x为振子偏离平衡位置的位移): F = ? kx s 阻尼力(c为阻尼系数,v为振子速度): 假设振子不再受到其他外力的作用,于是可利用牛顿第二定律写出系统的振动方程: 其中a为加速度。 [编辑] 运动微分方程 上面得到的系统振动方程可写成如下形式,问题归结为求解位移x关于时间t函数的二阶常微分方程: 将方程改写成下面的形式:

阻尼振动与受迫振动 实验报告

《阻尼振动与受迫振动》实验报告一、实验目的1.观测阻尼振动,学习测量振动系统基本参数的方法;2.研究受迫振动的幅频特性和相频特性,观察共振现象;3.观测不同阻尼对受迫振动的影响。 二、实验原理1.有粘滞阻尼的阻尼振动弹簧和摆轮组成一振动系统,设摆轮转动惯量为J ,粘滞阻尼的阻尼力矩大小定义为角速度d θ/dt 与阻尼力矩系数γ的乘积,弹簧劲度系数为k ,弹簧的反抗力矩为-k θ。忽略弹簧的等效转动惯量,可得转角θ的运动方程为 220d d J k dt dt θθγθ++=记ω0为无阻尼时自由振动的固有角频率,其值为ω0=,定义阻尼系数k/J β=γ/(2J ),则上式可以化为: 2220d d k dt dt θθβθ++=小阻尼即时,阻尼振动运动方程的解为2200βω-< (*)( )) exp()cos i i t t θθβφ=-+由上式可知,阻尼振动角频率为 ,阻尼振动周期为d ω=2d d T π=2.周期外力矩作用下受迫振动的解 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为22cos d d J k M t dt dt θθγθω++=()( ))()exp cos cos i i m t t t θθβφθωφ=-++-这可以看作是状态(*)式的阻尼振动和频率同激励源频率的简谐振动的叠加。一般t >>τ后,就有稳态解 ()()cos m t t θθωφ=-稳态解的振幅和相位差分别为路须同时切断习题电源,备制造厂家出具高中资料需要进行外部电源高中资料

m θ=2202arctan βωφωω=-其中,φ的取值范围为(0,π),反映摆轮振动总是滞后于激励源支座的振动。3.电机运动时的受迫振动运动方程和解弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω=式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为。于是在固定坐标系中摆轮转角θ的运动方程为()cos m t t θαθαω-=-()22cos 0m d d J k t dt dt θθγθαω++-=也可以写成 22cos m d d J k k t dt dt θθγθαω++= 于是得到m θ=由θm 的极大值条件可知,当外激励角频率时, 0m θω ??=ω=系统发生共振,θm 有极大值。α 引入参数,称为阻尼比。(0ζβ ωγ==于是,我们得到 m θ=()()0202arctan 1ζωωφωω=-三、实验任务和步骤 1.调整仪器使波耳共振仪处于工作状态。 2.测量最小阻尼时的阻尼比ζ和固有角频率ω0。进行隔开处理;同一线槽内人员,需要在事前掌握图纸电机一变压器组在发生内部

阻尼综述——阻尼模型、阻尼机理、阻尼分类和结构阻尼建模方法

阻尼 1 引言 静止的结构,一旦从外界获得足够的能量(主要是动能),就要产生振动。在振动过程中,若再无外界能量输入,结构的能量将不断消失,形成振动衰减现象。振动时,使结构的能量散失的因素的因素称为结构的阻尼因素。 索罗金在其论著中将结构振动时的阻尼因素概括为几种类型,即界介质的阻尼力;材料介质变形而产生的内摩擦力;各构件连接处的摩擦及通过地基散失的能量。百多年来,不同领域的专家,均根据自身研究的需要,着重研究某种阻尼因素,如外阻尼、摩擦阻尼、材料阻尼及辐射阻尼等。 对于材料阻尼的物理机制,文献[82]、[126]、[127]等分别做了简要描述。 材料阻尼是一个机制比较复杂的物理量,由多种基本的物理机制组合而成。如金属材料中的热弹性、晶体的粘弹性、松弛效应、旋转流效应、电子效应等对阻尼均有贡献。对一般的非金属材料(如玻璃、各种聚合物等),电子效应对能量的损失影响较小。温度、绝热系数等也是影响阻尼的重要因素。一般来说,非金属材料的能量损失比金属大。此外地质岩石由不同种固体微粒组成,且有空隙体积,因此,其阻尼特性与一般材料不同。岩石中能量损失主要由三个物理机制构成:岩石内部微粒间的粘性=岩石的内摩擦及较大的塑性变形,而岩石的内摩擦与岩石内部微粒间接触处的位错及塑性变形有关。 如献[82]所述, 为了计算、分析结构在外界载荷作用下产生的反应,人们建立了描述固体材料应力应变关系的物理模型。最简单的物理模型是单参数模型,即材料只产生弹性应力或只产生粘滞应力,但这两种模型不能代表材料中真实存在的粘弹性。人们又建立了双参数线性模型,即Maxwell及Kelvin模型。其中Maxwell模型由线性粘滞体和线弹性体串联而成,Kelvin模型是此二者并联而成的。若设线粘滞体的应变为

对无阻尼两自由度自由振动的振动系统

对无阻尼两自由度自由振动的振动系统,质量块1和质量块2有初始位移x1=2,x2=2,初速度x3=0.8,x4=1.3。弹簧刚度k1=9,k2=12,k3=9。质量均为3kg。求位移与时间之间的关系。 syms k1k2k3m1m2abcdX1X2C1C2wehpsi1psi2r1r2tx1x2x3x4; X1=C1*cos(w_1*t-psi1)+C2*cos(w_2*t-psi2); X2=C1*r1*cos(w_1*t-psi1)+C2*r2*cos(w_2*t-psi2); x1=2; x2=2; x3=0.8; x4=1.3; k=[9,12,9]; m=[3,3]; a=(k(1)+k(2))/m(1); b=k(2)/m(1); c=k(2)/m(2); d=(k(2)+k(3))/m(2); y1=w^2-(a+d)*w+(a*d-b*c); y=solve('w^2 - 14*w + 33=0',w); e=y(1); h=y(2); w=[e,h]; A=[(a-e^2)/b,(a-h^2)/b]; r1=simplify(A(1)); r2=simplify(A(2)); C1=(abs(r2-r1))^(-1)*sqrt((r2*x1-x2)^2+(r2*x3-x4)^2/e^2); C2=(abs(r2-r1))^(-1)*sqrt((x2-r1*x1)+(x4-r1*x3)^2/h^2); psi1=atan((r2*x3-x4)/(e*(r2*x1-x2))); psi2=atan((r1*x3-x4)/(h*(r1*x1-x2))); ts=0:0.01:10; X1=C1*cos(e*ts-psi1)+C2*cos(h*ts-psi2); X2=C1*r1*cos(e*ts-psi1)+C2*r2*cos(h*ts-psi2); plot(ts,X1,'b',ts,X2,'r')

数学建模案例-大学物理-阻尼振动

数学模型案例-阻尼振动的数学模型 问题背景与描述: 简谐振动是一种无阻尼振动,而实际上,任何振动物体都要受到阻力的作用,这种振动叫阻尼振动。阻尼振动有摩擦阻尼和辐射阻尼两种。 根据实验证实,当物体以不太大的速率在粘性介质中运动时,介质对物体的阻力与物体的运动速率成正比,方向与运动方向相反。 数学模型 阻力与速率的关系: -------阻尼系数,它与物体的形状、大小及介质有关。 对弹簧振子,在弹性力及阻力的作用下,物体的运动方程为 (此处自行思考:得到该模型的基本原理是什么?) 令 , 无阻尼时振子的固有角频率, 为阻尼因子, 代入上式后可得等价形式: 数学模型的解 在阻尼作用较小时,即,此微分方程的解为 )cos(00?ωβ+=-t e A x t 其中 此时阻尼振动的周期为 当 时,这种阻尼振动称为欠阻尼; 当时,称为过阻尼; 当时,称为临界阻尼。 *****进一步的学习资料*******:

解上述二阶微分方程,Matlab只要用一个函数ode23就能解决问题。那我们现在就开始学吧!ode23函数可以用来解微分方程组,但只能是一阶的。所以对于二阶的微分方程,我们可以将其分解成两个一阶的方程来解。而且使用此函数,必须提前编写一个ode文件(ode文件)。 ode文件是一种函数M文件,即:在m-file编辑器中,文件必须以function开头,后面跟的函数名必须与将来保存的M文件名一致。函数文件第一句的具体形式为:function y=name(x) 其中为y输出变量名,x为变量,name为函数名,保存时文件名必须是name.m。当函数有一个以上的输出函数时,输出参数包含在方括号里,变参包含在圆括号里,即函数文件的第一行的具体形式为: function [out1,out2,…]=name(in1,in2,…) 例:计算数组元素的平均值 解:functiony=average(x) y=sum(x)/length(x) 解微分方程的函数ode23调用格式为: ode23('FUN',TSPAN,YO) 其中, FUN为字符串,表示微分方程的ode文件名, TSPAN=[TO,TFINAL]表示积分区间, YO为初始条件。此函数表示在初始条件下Y0从T0到TFINAL对微分方程y'=F(t,y)进行积分。 函数在图形窗口返回具体的数值解,则可以采用以下的格式: [T,Y]=ode23('FUN',TSPAN,Y0) 这样在T向量返回积分点,Y返回对应积分点的积分函数值。 例:编写m-file描述物体作阻尼振动的振动曲线,分欠阻尼、过阻尼和临界阻尼三种情况。解:首先将阻尼振动的微分方程 分解为一阶微分方程:令 则原方程化为 打开m-file编辑器,

阻尼振动与受迫振动实验报告

阻尼振动与受迫振动 一、 实验目的 1. 观测阻尼振动,学习测量振动系统基本参数的方法; 2. 研究受迫振动的幅频特性和相频特性,观察共振现象; 3. 观测不同阻尼对受迫振动的影响。 二、 实验原理 1. 有粘滞阻尼的阻尼振动 在弹簧和摆轮组成的振动系统中,摆轮转动惯量为J ,γ为阻尼力矩系数,ω0=√ k /J 为无阻尼时自由振动的固有角频率,定义阻尼系数β=γ/(2J ),则振动方程为 2220d d k dt dt θθ β θ++= 在小阻尼时,方程的解为 ()) exp()cos i i t t θθβφ=-+ 在取对数时,振幅的对数和β有有线性关系,通过实验测出多组振 幅和周期,即可通过拟合直线得出阻尼系数进而得出其他振动参数。 2. 周期外力矩作用下受迫振动 在周期外力矩Mcos ωt 激励下的运动方程和方程的通解分别为 22cos d d J k M t dt dt θθγθω++=

()( )) ()exp cos cos i i m t t t θθβφθωφ=-++- 其中包含稳定项和衰减项,当t >>τ后,就有稳态解 ()()cos m t t θθωφ=- 稳态解的振幅和相位差分别为 m θ= 22 02arctan βω φωω=- 上式中反映当ω与固有频率相等时相位差达到90度。 3. 电机运动时的受迫振动运动方程和解 弹簧支座的偏转角的一阶近似式可以写成 ()cos m t t ααω= 式中αm 是摇杆摆幅。由于弹簧的支座在运动,运动支座是激励源。弹簧总转角为()cos m t t θαθαω-=-。于是在固定坐标系中摆轮转角θ的运动方程为 22cos m d d J k k t dt dt θθγθαω++= 于是得到 2 m θ= 由θm 的极大值条件0m θω? ?=可知,当外激励角频率ω=时,系统发生共振, θm 有极大值α 引入参数(0ζβωγ ==,称为阻尼比,于是有

深度理解阻尼振动微分方程

深度理解阻尼振动微分方程 牛顿第二定律:ma F = 物体受力为: 弹性力:kx F -= 阻力:Cv F r -= 022=++kx dt dx C dt x d m 令20ω=m k ,δ2=m C ,则有: 022022=++x dt dx dt x d ωδ 该等式为二阶常系数齐次线性微分方程 特征方程02202=++ωδr r 解为2022022 442ωδδωδδ-±-=-±-=r (1)小阻尼情况 0ωδ<,则有: i r 220δωδ-±-=,一对共轭复根,令220δωω-=。 微分方程通解为: )sin cos (21t c t c e x t ωωδ+=- 初始条件01x c =,ω δ0 02x v c += 特解为t x v t x x ωω δωsin cos 00 0++= ]sin cos [20020020020020020t x v x v t x v x x x v x x ωωδωωωδωδ??? ??+++??? ??++?? ? ??++=

若令200200cos ??? ??++=ωδ?x v x x ,200200sin ??? ??++-=ωδω?x v x v ,2 0020??? ??++=ωδx v x A 则有 ]sin sin cos [cos t t Ae x t ω?ω?δ?-?=- ()?ωδ+=-t Ae x t cos (2)大阻尼情况 0ωδ>,则有: 202ωδδ-±-=r ,两个不相等的实根。 微分方程通解为: t t e c e c x )(2)(1202202ωδδωδδ-+----+= (3)临界阻尼情况 0ωδ=,则有: δ-=r ,两个相等的实根。 微分方程通解为: )(21t c c e x t +=-δ 可见,阻尼振动其实就是解一个二阶常系数齐次线性微分方程!!

非线性振动

非线性振动 期 末 作 业 任课老师: 姓名: 学号: 专业: 课程:非线性振动

非线性振动的理论研究方法 非线性振动是指恢复力与位移不成正比或阻尼力不与速度一次方成正比的系统的振动。尽管线性振动理论早已相当完善,在工程上也已取得广泛和卓有成效的应用,但在实际问题中,总有一些用线性理论无法解释的现象。一般说,线性模型只适用于小运动范围,超出这一范围,按线性问题处理就不仅在量上会引起较大误差,而且有时还会出现质上的差异,这就促使人们研究非线性振动。 通过理论分析对非线性振动进行研究是目前最有效最基本最直接的方式。理论研究分析最主要的任务是通过理论的研究分析来揭示各类非线性系统振动的基本理论和主要特点。非线性振动理论研究分析的最重要的数学工具就是微分方程。学者们在微分方程发展过程中发现用初等函数表达方程解的可能性极为有限之后,出现了三个比较重要的方向。其一是引入新的函数作为解的表达,并研究这些函数的性质和数值解。非线性振动中有个别的问题就可以用这种方法来求解方程,例如摆的大幅振动解用椭圆函数表达。然而这方面的例子是极为有限的。这就说明只有极少数非线性微分方程能够求出方程的解,所以通常必须用近似的求解方法求出非线性微分方程的近似解,这就需要用到求解非线性微分方程的两个最基本的方法,这就是定性方法和定量方法。定性理论不通过解的表达式来研究分析解的性质,比如利用几何法作出微分方程所定义的积分曲线,运用稳定性理论引入另外的函数中,通过它们去研究解的性质。把常微分方程定性理论与非线性振动联系起来主要应归功于前苏联的Andronov等建立起来的学派。这些学者们把定性理论用来解决电学和力学中出现的大量非线性振动问题。定性理论在发展的过程中,一方面在理论上形成了许多讨论奇点、周期解、极限环的定理、判据等,一方面形成了一些实用的作图方法,例如等倾线法、Lienard法、点映射等。 求解非线性微分方程近似解的方法中定量分析的方法包括数值解法以及解析法。定量分析方法中的解析法是最基本的分析研究方法,使用解析法来进行研究分析最主要的任务是通过理论的研究分析来揭示各类非线性系统振动的基本理论和主要特点。使用解析方法法求解非线性微分方程近似解的方法有:频闪法、平均法、小参数法、多尺度法、渐近法、谐波平衡法等研究分析方法。下面简单叙述一下几种分析非线性振动的方法:

MATLAB系统仿真报告——有阻尼受迫振动系统

一、 问题描述 有阻尼受迫振动的结构及基本原理 图一 有阻尼的受迫振动系统 图1为有阻尼的受迫振动系统,质量为M ,摩擦系数为B , 弹簧倔强系数为K 。拉力、摩擦力和弹簧力三都影响质量为M 的物体的加速度。如果系统的能量守恒,且振动一旦发生,它就会持久的、等幅的一直进行下去。但是,实际上所遇到的自由振动都是逐渐衰减直至最终停止,即系统存在阻尼。阻尼有相对运动表面的摩擦力、液体与气体的介质阻力、电磁阻力以及材料变形时的内阻力等作用。物体在驱动力作用下的振动是受迫振动。 二、 模型分析与建立 利用牛顿运动定律,建立系统的力平衡微分方程如下: ) (M 22t f Kx dt dx B dt x d =++ (1) 式中的f (t)是一个外加的激励力,如果 f (t) =F0 sin ωt ,则称为谐激励力,其中ω为外施激励频率,t 是持续时间。故(1)式又可写成: wt F Kx dt dx B dt x d sin M 022=++ (2) (2)式是一个线性非齐次方程。令B/M = 2n (n 为阻尼系数)),K/M= 2 n w ( n w 为固有振动频率),ξ = n w n 为相对阻尼系数或阻尼比,则(2)式可写为: )sin(22 2 2wt h x w dt dx n dt dx n =++ (3) 根据阻尼对系统振动的影响,振动响应分为弱阻尼(ξ<1)、(强阻尼ξ>1)和 临界阻尼(ξ=1)三种情况。这里仅讨论弱阻尼的情况。在弱阻尼情况下的振动为响应:x=Ae-ξwnt sin ( 1-ξ2wn t +φ ) +A1 sin (wt+θ) (4) 谐迫振动的主要特性有: (1)式(4)包括瞬态与稳态响应两部分,其中瞬态响应是一个有阻尼的谐振。振动频率为系统固有频率n w ,振幅A 与初相位角ψ决定初始条件,振幅的衰减按

基于非线性振动特性的预应力混凝土梁损伤识别

第31卷第2期 Vol.31 No.2 工 程 力 学 2014年 2 月 Feb. 2014 ENGINEERING MECHANICS 190 ——————————————— 收稿日期:2012-08-24;修改日期:2013-01-29 通讯作者:曹 晖(1969―),男,四川内江市人,教授,博士,博导,从事结构抗震及结构健康监测研究(E-mail: caohui@https://www.wendangku.net/doc/b63717830.html,). 作者简介:郑 星(1986―),男,湖北荆州市人,硕士生,从事结构健康监测研究(E-mail: zhengx_cqu@https://www.wendangku.net/doc/b63717830.html,); 华建民(1974―),男,河南商丘市人,副教授,博士,从事结构工程及施工技术研究(E-mail: hjm191@https://www.wendangku.net/doc/b63717830.html,); 文章编号:1000-4750(2014)02-0190-05 基于非线性振动特性的预应力混凝土梁损伤识别 曹 晖1,2,郑 星1,华建民1,2,胡芝茂1 (1. 重庆大学土木工程学院,重庆 400045;2. 山地城镇建设与新技术教育部重点实验室(重庆大学),重庆 400045) 摘 要:对2根后张有粘结预应力混凝土简支梁分别进行单调加载和二级等幅值疲劳加载试验,在各级加载后对试验梁进行动测得到自由振动加速度信号,对加速度信号进行盲源分离并进行Hilbert 变换,得到各损伤状态下梁的频率-振幅曲线簇,分析其非线性振动特性随损伤状态的变化规律。结合裂缝开展情况和钢绞线的应力变化,探讨梁的非线性振动特性的变化与其损伤之间的关系。结果表明非线性振动特性适合于预应力混凝土梁的损伤 检测。 关键词:预应力混凝土梁;损伤检测;非线性动力特性;盲源分离;Hilbert 变换 中图分类号:TU311 文献标志码:A doi: 10.6052/j.issn.1000-4750.2012.08.0611 DAMAGE DETECTION OF PRESTRESSED CONCRETE BEAMS BASED ON NONLINEAR DYNAMIC CHARACTERISTICS CAO Hui 1,2 , ZHENG Xing 1 , HUA Jian-min 1,2 , HU Zhi-mao 1 (1. College of Civil Engineering, Chongqing University, Chongqing 400045, China; 2. Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China) Abstract: Two post-tensioning tests for bond prestressed concrete beams were used to carry out a static test and a two-stage fatigue test respectively. Under each damage level, the beams were excited by a hammer and their acceleration signals of free vibration were recorded. Then the signals were processed by the blind source separation algorithm and Hilbert transform to obtain frequency-amplitude curves, from which the change of nonlinear dynamic characteristics of the beams with the damage level was analyzed. The strain of the prestressing strand and cracking of the beams under each damage level were utilized to investigate the relation between the change of the nonlinear dynamic characteristics and the damage of the beams. The results prove that the nonlinear dynamic characteristics can be used to detect the damage of prestressed concrete beams. Key words: prestressed concrete beam; damage detection; nonlinear dynamic characteristics; blind source separation; Hilbert transform 预应力混凝土结构在使用期间,由于荷载、疲劳、腐蚀、老化及其它环境条件等众多不利因素的影响,将不可避免地产生损伤积累,导致混凝土开裂、预应力损失,甚至破坏等事故。因此,在役预应力混凝土构件的工作性能评价,是当前结构健康 监测的一个重要方面。 当混凝土构件出现裂缝后,会产生呼吸裂缝效应[1]。所谓呼吸裂缝,即裂缝在振动中时张时合。振幅小的时候,裂缝闭合,此时结构刚度较大;振幅大的时候,裂缝张开,此时结构刚度变小。随着

三自由度齿轮传动系统的非线性振动分析

收稿日期:20030710 基金项目:航空科学基金项目(02C53019)资助 作者简介:刘晓宁(1976-),男(汉),山东, 博士研究生 刘晓宁 文章编号:100328728(2004)1021191203 三自由度齿轮传动系统的非线性振动分析 刘晓宁,王三民,沈允文 (西北工业大学,西安 710072) 摘 要:在建立三自由度齿轮间隙非线性动力学模型的基础上,利用增量谐波平衡法获得了受到参数激励和外部谐波激励的三自由度齿轮传动系统模型的周期响应,包括稳定和不稳定的周期轨道,并利用Floquet 理论研究其稳定性、分岔类型,对系统的参数变化进行分析,研究了系统通向混沌的倍周期分岔道路和拟周期分岔道路,绘制了系统周期解分岔图。关 键 词:齿轮转子轴承传动系统;增量谐波平衡法;Floquet 理论中图分类号:TH13 文献标识码:A N onlinear Vibrations of 32DOF G eared R otor 2B earing System LI U X iao 2ning ,W ANG San 2min ,SHE N Y un 2wen (N orthwestern P olytechnical University ,X i ′an 710072) Abstract :The incremental harm onic balance (IH B )method is used to obtain periodic m otions of a 32DOF non 2linear m odel of a geared rotor system subjected to parametric and external harm onic excitations.The stability of the periodic m otions is investigated by the Floquet theory ,the bifurcation behavior is traced.Parametric studies are performed to understand the effect of system parameters such as excitation frequency on the nonlinear dy 2namic behaviors. K ey w ords :G eared rotor bearing system ;Incremental harm onic balance (IH B )method ;Floquet theory 齿轮传动是应用最为广泛的一种机械传动形式。在齿轮传动系统中,由于齿侧间隙、支承间隙、时变刚度等因素的存在,导致系统产生强非线性振动,这种振动往往表现为系统的分叉、混沌振动现象,会对机械传动系统的工作性能和可靠性产生很大影响。因此,齿轮传动非线性系统的非线性振动研究引起了广泛的关注[2~5]。 从齿轮传动系统间隙非线性动力学研究来说,大部分的研究都是借助数值方法探讨系统分叉、混沌等现象的存在。增量谐波平衡法(IH B )作为求解非线性微分方程周期解的解析方法,具有精度高,适用于求解周期激励问题的特点,尤为重要的是能够求解出混沌吸引子内部的不稳定周期轨道,这也恰恰是实现混沌控制的目标稳定轨道。 本文综合利用增量谐波平衡法和数值方法研究三自由度齿轮传动系统的动态特性,考察系统参数对动态性能的影响,并结合应用Floquet 理论探讨了通向混沌的倍周期和拟周期分叉道路。 1  三自由度齿轮转子轴承系统的间隙非线性模型及方程 图1 三自由度非线性齿轮传动系统模型 如图1所示的三自由度非线性齿轮传动系统模型,齿轮部分包括齿轮惯量I g 1和I g 2,齿轮质量m g 1和m g 2,基圆直径d g 1和d g 2。齿轮啮合由非线性位移函数f h 和时变刚度 k h (t - ),线性粘性阻尼c h 描述。轴承和支撑轴的模型则由 等效的阻尼元件和非线性刚度元件表述。阻尼元件具有线 第23卷 第10期 机械科学与技术 V ol.23 N o.10  2004年 10月 MECH ANIC A L SCIE NCE AND TECH NO LOGY October 2004

!!故障转子系统的非线性振动分析与诊断方法附录A matlab程序

A.1 传递距阵法分析程序 %main_critical.m %该程序使用Riccati传递距阵法计算转子系统的临界转速及振型 %本函数中均采用国际单位制 % 第一步:设置初始条件(调用函数shaft_parameters) %初始值设置包括:轴段数N,搜索次数M %输入轴段参数:内径d,外径D,轴段长度l,支撑刚度K,单元质量mm,极转动惯量Jpp[N,M,d,D,l,K,mm,Jpp]=shaft_parameters; % 第二步:计算单元的5个特征值(调用函数shaft_pra_cal) %单元的5个特征值: %m_k::质量 %Jp_k:极转动惯量 %Jd_k:直径转动惯量 %EI:弹性模量与截面对中性轴的惯性矩的乘积 %rr:剪切影响系数 [m_k,Jp_k,EI,rr]=shaft_pra_cal(N,D,d,l,Jpp,mm); % 第三步:计算剩余量(调用函数surplus_calculate),并绘制剩余量图 %剩余量:D1 for i=1:1:M ptx(i)=0; pty(i)=0; end for ii=1:1:M wi=ii/1*2+50; [D1,SS,Sn]=surplus_calculate(N,wi,K,m_k,Jp_k,JD_k,l,EI,rr); D1; pty(ii)=D1; ptx(ii)=w1 end ylabel(‘剩余量’); plot(ptx,pty) xlabel(‘角速度red/s’); grid on % 第四步:用二分法求固有频率及振型图 %固有频率:Critical_speed wi=50; for i=1:1:4 order=i [D1,SS,Sn]=surplus_calculate(N,wi,k,m_k,Jp_k,Jd_k,l,EI,rr); Step=1; D2=D1; kkk=1; while kkk<5000

高中物理第一章机械振动第4节阻尼振动受迫振动教学案教科版4

第4节阻尼振动__受迫振动 1.系统的固有频率是指系统自由振动的频率,由系统 本身的特征决定。物体做阻尼振动时,振幅逐渐减小, 但振动频率不变。 2.物体做受迫振动的频率一定等于周期性驱动力的 频率,与系统的固有频率无关。 3.当驱动力的频率与系统的固有频率相等时,发生 共振,振幅最大。 4.物体做受迫振动时,驱动力的频率与固有频率越 接近,振幅越大,两频率差别越大,振幅越小。 对应学生用书 P11 阻尼振动 [自读教材·抓基础] 1.阻尼振动 系统在振动过程中受到阻力的作用,振动逐渐消逝(A减小),振动能量逐步转变为其他能量。 2.自由振动 系统不受外力作用,也不受任何阻力,只在自身回复力作用下,振幅不变的振动。 3.固有频率 自由振动的频率,由系统本身的特征决定。 [跟随名师·解疑难] 1.简谐运动是一种理想化的模型,物体运动过程中的一切阻力都不考虑。 2.阻尼振动考虑阻力的影响,是更实际的一种运动。 3.阻尼振动与简谐运动的对比。 阻尼振动简谐运动

产生条件受到阻力作用不受阻力作用 振幅越来越小不变 频率不变不变 能量减少不变 振动图像 实例用锤敲锣,锣面的振动弹簧振子的振动 [学后自检]┄┄┄┄┄┄┄┄┄┄┄┄┄┄(小试身手) 自由摆动的秋千,摆动的振幅越来越小,下列说法正确的是( ) A.机械能守恒 B.能量正在消失 C.总能量守恒,机械能减小 D.只有动能和势能的相互转化 解析:选C 自由摆动的秋千可以看做阻尼振动的模型,振动系统中的能量转化也不是系统内部动能和势能的相互转化,振动系统是一个开放系统,与外界时刻进行能量交换。系统由于受到阻力,消耗系统能量做功,而使振动的能量不断减小,但总能量守恒。 受迫振动 [自读教材·抓基础] 1.持续振动的获得 实际的振动由于阻尼作用最终要停下来,要维持系统的持续振动,办法是使周期性的外力作用于振动系统,外力对系统做功,补偿系统的能量损耗。 2.驱动力 作用于振动系统的周期性的外力。 3.受迫振动 振动系统在驱动力作用下的振动。 4.受迫振动的频率 做受迫振动的系统振动稳定后,其振动周期(频率)等于驱动力的周期(频率),与系统的

第二章单自由度无阻尼系统的振动

第二章 单自由度无阻尼系统的振动 单自由度系统是指用一个独立参量便可确定系统位置的振动系统。系统的自由度数是指确定系统位置所必须的独立参数的个数,这种独立参量称为广义坐标,广 义坐标可以是线位移、角位移等。 单自由度系统振动理论是振动理论的基础,尽管实际的机械都是弹性 体,属多自由度系统,然而要掌握多自由度系统振动的基本理论和规律, 就必须先掌握单自由度系统的振动理论。此外,许多工程实际问题在一定 条件下可以简化为单自由度振动系统来研究。单自由度系统的力学模型如 图2-1所示,图中,m 为质量元件(或惯性元件),k 为线性弹簧,C 为线 性阻尼器。图2-1所示系统称为单自由度有阻尼系统,若该系统不计阻尼, 则称之为单自由度无阻尼系统,若在质量元件上作用有持续外界激扰力, 则系统作强迫振动,如无持续的外界激扰力而只有初始的激扰作用,则系 统作自由振动。 下面先研究单自由度无阻尼系统的自由振动,再进一步研究其强迫振 动。 2—1 自由振动 图2-2左图所示为单自由度无阻尼的弹簧质量系统。现用牛顿第二定律来建立该系统的运动微分方程。取质量m 的静平衡位置为坐标原点,取x 轴铅直向下为正,当系统处于平衡 位置时有,δk mg =,故有静位移 δ=mg/k (a ) 当系统处在位置x 处时,作用在质量上的力系不再平衡, 有: mg x k x m ++-=)(δ (b) 式中:2 2/dt x d x = 是质量的加速度,将(a )式代入(b )式;则得 kx x m -= 即 0=+kx x m (2-1) 注意,上式中-kx 是重力与弹簧力的合力,它的大小与位移x 的大小成正比,但其方向却始终与位移的方向相反,即始终指向平衡位置,故称其为弹性恢复力。由式(2-1)可以看到,只要取物体的静平衡位置为坐标原点,则在列运动微分方程时,可以不再考虑物体的重力与弹簧的静变形。 将(2-1)式改写成 0=+x m k x ,令2p m k = 则得 02=+x p x (2-2) 这是一个二阶齐次线性常系数微分方程。其解为

相关文档
相关文档 最新文档