文档库 最新最全的文档下载
当前位置:文档库 › 传质分离过程课后习题答案

传质分离过程课后习题答案

传质分离过程课后习题答案
传质分离过程课后习题答案

第一章 绪论

第二章习题

1. 计算在0.1013MPa 和378.47K 下苯(1)-甲苯(2)-对二甲苯(3)三元系,当x 1 = 0.3125、x 2 =0.2978、x 3 =0.3897时的K 值。汽相为理想气体,液相为非理想溶液。并与完全理想系的 K 值比较。已知三个二元系的wilson 方程参数(单位: J/mol ):

λ12-λ11=-1035.33; λ12-λ22=977.83 λ23-λ22=442.15; λ23-λ33=-460.05 λ13-λ11=1510.14; λ13-λ33=-1642.81 在T =378.4 K 时液相摩尔体积(m 3/kmol )为:

=100.91×10 -3 ;

=177.55×10 -3 ;

=136.69×10 -3

安托尼公式为(p s :Pa ; T :K ): 苯:1n =20.7936-2788.51/(T -52.36);

甲苯:1n

=20.9065-3096.52/(T -53.67);

对 -二甲苯:1n =20.989 1-3346.65/(T -57.84);

解:

由Wilson 方程得:

Λ12=l l

V V 12exp[-(λ

12

-λ11)/RT]

=3

3

1091.1001055.177??×exp[-(1035.33)/(8.314×378.47)]=2.4450

Λ21=0.4165 Λ13=0.8382 Λ31=1.2443 Λ23=0.6689 Λ32=1.5034

ln

γ

1

=1-ln(Λ

12

X 2+Λ

13X 3)-[

3

32231131323322112

2131321211X X X X X X X X X X X X +Λ+ΛΛ+

Λ++ΛA +Λ+Λ+] =0.054488 γ1=1.056

同理,γ2=1.029; γ3=1.007

lnP 1S =20.7936-2788.51/(378.47-52.36)=12.2428, P 1S =0.2075Mpa lnP 2S =20.9062-3096.52/(378.47-53.67)=11.3729, P 2S =0.0869Mpa lnP 3S =20.9891-3346.65/(378.47-57.84)=10.5514, P 3S =0.0382Mpa 作为理想气体实际溶液,

K 1=P P S

11γ=2.16, K 2=0.88, K 3=0.38003 若完全为理想系,

K 1=P P S

1=2.0484 K 2=0.8578 K 3=0.3771

2. 在361K 和4136.8kPa 下,甲烷和正丁烷二元系呈汽液平衡,汽相含甲烷

0.60387%( mol ),与其平衡的液相含甲烷0.1304%。用R -K 方程计算

Ki 值。

解:a 11=1

1

5

.2

242748.0c c p T R ?=3.222MPa ? dm 6 ? k 0.5 ? mol -2 a 22=2

2

5

.2

242748.0c c p T R ?=28.9926 MPa ?dm 6?k 0.5?mol -2 b 1=

1

1

208664.0c c p T R ?=0.0298 dm 3mol -1

b 2=

2

2

5

.2

242748.0c c p T R ?=0.0806 dm 3mol -1

其中T c1=190.6K, P c1=4.60Mpa T c2=425.5K, P c2=3.80Mpa 均为查表所得。

a 12=√a 11?a 22=9.6651MPa ?dm 6?k 0.5?mol -2 液相:

a =a 11x 12+2a 12x 1x 2+a 22x 22

=3.22×0.13042+2×9.6651×0.1304×0.8696+28.9926×0.86962 =24.1711 b=b 1x 1+b 2x 2=0.0298×0.1304+0.0806×0.8696=0.0740 由R -K 方程: P=RT/(V-b)-a/[T 0.5V(V+b)]

4.1368=0740.0361008314

5.0-?l m V -

)0740.0(3611711

.245.0+l m l m V V 解得 V m l =0.1349 ln

l 1

?φ=ln[V/(V-b)]+[b i /(V-b)]-2Σ

y i a ij /bmRT 1.5*ln[(V+b)/V]+ab i /b 2RT 1.5{ [ln[(V+b)/V]-[b/(V+b)] }-ln(PV/RT)

ln l 1

?

φ=ln )0740.01349.01349.0(

-+0740.01349.00298

.0--

5.136********.00740.0)

6651.98696.0222.31304.0(2???+??×ln(1340.00740.01349.0+)+ 5.123610083145.00740.00298.01711.24???×[ln(1349.00740

.01347.0+) -0740.01347.00740.0+]-ln 3610083145.01349

.01368.4??

=1.3297

l 1?φ=3.7780

同理ln l 2?φ=-1.16696, l

2?φ=0.3113

汽相:a = 3.222×0.603872+2×9.6651×0.60387×0.39613+28.9926×0.396132 = 10.3484

b=0.0298×0.60387+0.0806×0.39613=0.0499

由4.1368=0499.03610083145.0-?v m V -

)0499.0(3613484

.105.0+v m v m V V 得v

m V =0.5861

ln Φ

v

1

=ln(0499.05861.05861.0-)+0499.05861.00298

.0--

5.125.136********.00499.00298

.03484.10)5861.00499.05861.0ln(3610083145.00499.06651.939613.0222.360387.0(2???+

-????+??

×[ln

0499.05861.00499.0)5861.00499.05861.0(+-

+]-ln(3610083145.05861.01368.4??) =0.0334942 故Φv

1

=1.0341

同理,ln l 2?φ=-0.522819, l 2?φ=0.5928

故K 1=y 1/x 1=0.60387/0.1304=4.631 ( K 1=l 1?φ/Φv

1)

K 2=y 2/x 2=1304.0160387

.01--=0.4555

3. 乙酸甲酯(1)-丙酮(2)-甲醇(3)三组分蒸汽混合物的组成为y 1=0.33,

y 2=0.34,y 3=0.33(摩尔分率)。汽相假定为理想气体,液相活度系数用Wilson

方程表示,试求50℃时该蒸汽混合物之露点压力。

解:由有关文献查得和回归的所需数据为: 【P24例2-5,2-6】 50℃时各纯组分的饱和蒸气压,kPa

P 1S =78.049 P 2S =81.848 P 3S =55.581

50℃时各组分的气体摩尔体积,cm3/mol

V 1l =83.77 V 2l =76.81 V 3l =42.05

由50℃时各组分溶液的无限稀释活度系数回归得到的Wilson 常数: Λ11=1.0 Λ21=0.71891 Λ31=0.57939 Λ12=1.18160 Λ22=1.0 Λ32=0.97513 Λ13=0.52297 Λ23=0.50878 Λ33=1.0

(1) 假定x 值, 取x 1=0.33,x 2=0.34,x 3=0.33。按理想溶液确定初值 p =78.049×0.33+81.8418×0.34+55.581×0.33=71.916kPa (2) 由x 和Λij 求γi 从多组分Wilson 方程

ln γi =1-ln ∑

∑=Λ

c

j ij

j

x 1

)

(-

∑==Λ

Λc

k c

j kj

j kj

k x x 1

1

得ln γ1=1-ln(x 1+Λ12x 2+Λ13x 3)-[31321211x x x x Λ+Λ++ 32322212

21x x x x Λ++ΛΛ+ 32321313

31x x x x +Λ+ΛΛ =0.1834

故γ1=1.2013

同理,γ2=1.0298 γ3=1.4181 (3) 求K i

K i =

??????-RT p p V p p s i L i s

i i )(exp γ K 1=916.71049.782013.1?exp 16.323314.810)049.7896.71(77.833??--=1.3035

同理K 2=1.1913 K 3=1.0963 (4) 求∑x i

∑x i =3035.133.0+1713.134.0+0963.133

.0=0.8445

整理得 x 1=0.2998 x 2=0.3437 x 3=0.3565 在

p =71.916kPa

内层经

7

次迭代得到:x 1=

0.28964, x 2=0.33891, x 3=0.37145 (5) 调整p

p =

?

??

???-∑RT p p V x p s i L i i s

i

i )(exp γ =p ∑i i x K

=71.916(1.3479×0.28964+1.18675×0.33891+1.05085×0.37145) =85.072kPa

在新的p 下重复上述计算,迭代至p 达到所需精度。 最终结果:露点压力85.101kPa 平衡液相组成:

x 1=0.28958 x 2=0.33889 x 3=0.37153

4. 一液体混合物的组分为:苯0.50;甲苯0.25;对-二甲苯0.25(摩尔分数)。分别用平衡常数法和相对挥发度法计算该物系在100kPa 时的平衡温度和汽相组成。假设为完全理想物系。 解:(1) 平衡常数法

因为汽相、液相均为完全理想物系,故符合乌拉尔定律py i =p i sx i

而K i =i i x y =p p s

i

设T 为80℃时 ,由安托尼公式(见习题1)求出格组分的饱和蒸汽压。

s p 1=101.29kPa , s

p 2

=38.82kPa, s

p 3=15.63kPa

故321y y y ++=K 1x 1+K 2x 2+K 3x 3

=3322

11x p p x p p x p p s s

s ++

=25.010063

.1525.010082.385.010029.101?+?+?

=0.64<1

故所设温度偏低,重设T 为95℃时

s p 1=176.00kPa, s

p 2

=63.47kPa, s

p 3=27.01kPa

321y y y ++=1.11>1

故所设温度偏高,重设T 为91.19℃,

s p 1=160.02kPa, s

p 2

=56.34kPa, s

p 3=23.625kPa

321y y y ++=1.0000125≈1

故用平衡常数法计算该物系在100kPa 时的平衡温度为91.19℃

汽相组成:1y =11x K =11x p p s

=5

.010002.160?=0.8001

2y =22x K =22x p p s

=25

.010034.56?=0.1409 3y =33x K =33x p p s

=25

.0100

625.23?=0.059

(2)相对挥发度法

由于是理想混合物,所以

)/()(

111i i i x x y y =α, 得)/(111

i i i x x y y α=

对于理想混合物,得i 1α=S

S

P p 21

设T 为80℃时,

s p 1=101.29kPa, S

p 2

=38.82kPa, s

p 3=15.63kPa

故12α=2.61, 13α=6.48, 2y =1y /5.22, 3y =1y /12.96 因为321y y y ++=1,故1y =0.788

又因为1py =100×0.788=78.8kPa ,而11x p s =101.29×0.5=50.645kPa<1py

故所设温度偏低;

重设T =92℃时s p 1=163.31kPa, S

p 2=57.82kPa, s

p 3=24.31kPa

得故12α=2.824, 13α=6.718, 2y =1y /5.648, 3y =1y /13.436 因为321y y y ++=1,故1y =0.799,2y =0.141, 3y =0.0595

且1py =100×0.799=79.9kPa ,而11x p s

=163.31×0.5=81.655kPa ,基本相等

因此,由相对挥发度计算该物系平衡温度为92℃, 此时1y =0.799,2y =0.141, 3y =0.0595

5. 一烃类混合物含有甲烷5%、乙烷10 %、丙烷30 %及异丁烷55 %(mol ),试求混合物在25℃时的泡点压力和露点压力。 解:

设甲烷为1组分,乙烷为2组分,丙烷为3组分

因为各组分都是烷烃,汽液相均可视为理想溶液,故符合乌拉尔定律。

25℃时,s p 1=30768.14kPa, s

p 2=4118.81kPa, s

p 3=347.59kPa

(1)泡点压力

∑∑==i

i

s i i x p py p

=30768.14×5%+4118.81×10%+950.31×30%+347.59×55% =2426.56kPa

(2) 露点压力时由乌拉尔定律得

i s

i i x p py =,i s

i i y p p

x =

代入4321x x x x +++=1,并化简得s s s s

p y p y p y p y p 43

3322111

+++=

=519.77kPa

故露点压力为519.77kPa 。

6. 含有80%(mol )醋酸乙酯(A )和20%(mol)乙醇(E )的二元物系。液相活度系数用Van Laar 方程计算,A AE =0.144,A EA =0.170。试计算在101.3kPa 压力下的泡点温度和露点温度。

解:由Vanlaar 方程得:

2

2)2.017.08.0144.01(144

.0)1(ln ??+

=

+=

EA EA AE AE AE A A x A x A r ,得A r =1.0075 2

2)8.0144.02.0170.01(170.0)1(ln ??+

=

+=

AE

AE EA EA EA E A x A x A r , 得B r =1.1067 因为低压气体可视为理想气体,故

i s i i i x p r py =,得 p x p r y i

s i i i =

(1) 泡点温度时,设T =348.15K ,由安托尼方程得

S A p =94.377kPa, s E p =88.651kPa

故∑=+=p x p r y y y A s A A E

A i +p x p r E s

E E =3.1012

.0651.881067.13.1018.0377.940075.1??+??

=0.945<1, 可知所设温度偏低,重设T =349.82K :

此时S A p =99.685kPa, s

E p =94.819kPa

∑=+=p x p r y y y A s A A E

A i +p x p r E s

E E =3.1012

.0819.941067.13.1018.0685.990075.1??+??=1.00033≈

1

故泡点温度为349.82K

(2) 求露点温度,此体系可视为理想气体,由

i s

i i i x p r py =,得i s i i

i r p py x =

设T =349.8K

由安托尼方程得S A p =99.620kPa, s E p =94.743kPa ,

故∑+=B A i x x x =1067.1743.942

.03.1010075.1620.998.03.101??+

??=1.4>1,故所设温度偏低

重设T =350.1K 时∑+=B A i x x x =0.992≈1 故露点温度为350.1K

8. 组成为60 % 苯,25 %甲苯和15 % 对-二甲苯(均为mol 百分数)的液体混合物100kmol ,在101.3kPa 和100℃下闪蒸。试计算液体和气体产物的数量和组成。假设该物系为理想溶液。用安托尼方程计算蒸汽压。

解:设苯为组分1,甲苯为组分2, 对二甲苯为组分3。 100℃时, 【P33例2-7】

s p 1=198.929kPa , s

p 2

=74.165kPa, s

p 3=32.039kPa

对于低压气体,气相可视为理想气体,液相可视为理想溶液,

故i K =p p s i ,得1K =p p s 1=1.964, 2K =p p s

2

=0.732, 3K =p p s 3=0.316

(1) 核实闪蒸温度

假设100℃为进料的泡点温度,则

∑)(i

i z K =1.964×0.6+0.732×0.25+0.316×0.15=1.41>1

假设100℃为进料的露点温度,则

∑)

/(i i

K z

=1.21>1

说明实际的进料泡点温度和露点温度分别低于和高于规定的闪蒸温度,闪蒸问题成立。

(2) 求ψ,令ψ=0.1

)(ψf =)1964.1(16.0)1964.0(-?+?-ψ+)1316.0(115

.0)1316.0()1732.0(125.0)1732.0(-?+?-+

-?+?-ψψ )1.0(f =)1964.1(1.016.0)1964.0(-?+?-+)1316.0(1.0115

.0)1316.0()1732.0(1.0125.0)1732.0(-?+?-+

-?+?-

=0.366

)1.0(f >0,应增大ψ

值。

计算R-K 方程导数公式为:

)('ψf =-{21121)]1(1[)1(-+-K z K ψ+222

22)]1(1[)1(-+-K z K ψ+2

3323)]1(1[)1(-+-K z K ψ}

=-{2)964.01(558.0ψ++2)2684.01(018.0ψ-+2

)6844.01(07

.0ψ-}

而1+i ψ=

ψψψψd df f i i i )()

(-

以ψ=0.1为初值进行迭代,得下表 迭代次数 ψ

)(ψf

)(ψdf /ψd

1 0.1 0.366 0.564

2 0.75 0.0436 0.511 3

0.84 0.0092

可知)(3ψf 数值已达到P -T -K 图的精确度 (3)计算i x ,i y

)1(1111-+=

K z x ψ=)1964.0(84.016

.0-?+=0.332

)1(11111-+=

K z K y ψ=)1964.0(84.016

.0964.1-?+?=0.651

同理,2x =0.323, 2y =0.236

3x =0.353, 3y =0.112

(4)计算V ,L

V

=F ψ=0.84×100=84kmol

L =V

F -=100-84=16kmol

(5)核实∑i y ,∑i x

∑=3

1

i i

x

=0.999,

∑=3

1

i i

y

=1.008,结果以满意

9. 在101.3 kPa 下,对组成为45 %(摩尔百分数,下同)正已烷,25 %正庚烷及30 %正辛烷的混合物计算。 (1)泡点和露点温度

(2)将此混合物在101.3kPa 下进行闪蒸,使进料的50 % 汽化。求闪蒸温度,两相的组成。

解:因为各组分都是烷烃,所得的汽、液相均可看成理想溶液,i K 只取决于温度和压力,若计算精度不要求非常高可使用烃类的P -T -K 图,见图2-1 假设T =82℃,由P =101.3kPa 得下表: 组分 i x

i K

i i i x K y =

正己烷 45% 1.5 0.675 正庚烷 25% 0.63 0.158 正辛烷

30%

0.28

0.084

∑i

i

x

K =0.917<1,说明所设温度偏低,重设T =85.8℃,得

组分 i x i K i i i x K y =

正己烷 45% 1.6 0.72 正庚烷 25% 0.7 0.175 正辛烷

30%

0.31

0.093

∑i

i

x

K =1.008≈1,故泡点温度为85.8℃。

同理,可迭代求出露点温度设T =95℃,此时 组分 i y

i K

i x =i y /i K

正己烷 45% 2.0 0.225 正庚烷 25% 0.9 0.278 正辛烷

30%

0.425

0.705 ∑

i y /i K =1.2068>1,所设温度偏低,重设

T =102.4℃,得

组分 i y i K

i x =i y /i K

正己烷 45% 2.35 0.1915 正庚烷 25% 1.08 0.2315 正辛烷

30%

0.520

0.5769

i y /i K =0.9999≈1,满足精度要求,故露点温度为

102.4℃。

(1) 进料50%气化,则由公式B D B

T T T T --=

ψ得T =94.1℃为闪蒸温度,查表2-1

得: 组分 i x

i y

正己烷 31.0% 58.90% 正庚烷

27.0%

22.45%

正辛烷 42.85% 17.14%

结果

(1)泡点:85.8oC ,露点:102.4oC ; (2)闪蒸温度94.1oC ;

气相组成:正已烷—0.31,正庚烷—0.27,正辛烷—0.43;

液相组成:正已烷—0.59,正庚烷—0.23,正辛烷—0.17。(均为摩尔分数) 10. 以甲基异丁基酮为溶剂(C ),从含醋酸(B )8%(质量)的水(A )溶液中萃取醋酸。萃取温度 25℃,进料量13500kg/h 。若萃余液仅含1%(质量)的醋酸,假设水和溶剂是不互溶的,KD =0.657(质量分数之比)。计算单级操作时溶剂的需要量?

解:假设水和溶剂是互不相容得,从Perry 手册中查得D K =0.657(质量分数)。

由于此体系中醋酸得含量相当低,可认为'D K =D K

A F =0.92×13500=12420kg/h

)

(F B

X =(13500-12420)/12420=0.087

因萃余液含1%的B ,故

)(R B

X =0.01/(1-0.01)=0.0101

从式(2-106)解B E B E =)

()

(R B

F B

X X -1=(0.087/0.0101)-1=8.61

从式(2-105)S ='D A

B K F E =8.61×(12420/0.657)=163000kg /h

11.萃取原料为乙二醇水溶液,其中乙二醇质量含量为45%。用相同质量的糠醛作为溶剂。操作条件:25℃、101kPa 。在该条件下乙二醇(B )-糠醛(C )-水

(A )的三元相图如附图所示,图中组成为质量百分数。计算萃取相和萃余相的平衡组成。

解:计算基准:进料100g 质量分数为45%的乙二醇水溶液,从图2-13可

知,进料(F )含A55g 、B45g 。溶剂(S )是纯C100g 。令I L =E (萃取液),

L =R (萃余液)。

计算步骤如下:

(1) 在相图上标注进料组成点F 和溶剂点S 。 (2) 确定混合点M ,使M =F +S =E +R 。 (3) 在相图上应用杠杆规则。设 i w 为组分i 在萃余液中的质量分数,)

(M i w 为

组分i 在进料和溶剂混合相中总的质量分数。

对溶剂C 作物料衡算:

)

()()()(S C F C M C Sw Fw w S F +=+,得 )

()

()()(F C M C M C

S C w w w w S F --=

S 、M 和F 三点应在一条直线上,由杠杆规则==MF SM S F //1确定了M 点的

位置,相应组成A :27.5%、B :22.5%、C :50%。

(4) 由于M 点处于两相区,该混合物必然沿结线分为互成平衡的两液相。E 点为萃取相,其组成为B :27.9%、A :6.5%、C :65.6%;R 为萃余相,其组成为B :8%、A :84%、C :8%。

(5) 对E 、M 和R 三点应用杠杆规则,)/(ER RM M E =。

因M =100+100=200g ,通过测量线段长度得到E =200×(49/67)=146g ,于是R =M -E =54g 。

(6) 脱溶剂萃取相组成由延长过S 点和E 点的直线交AB 边与H 点,其组成为B :83%、A :17%。

12. 计算正庚烷(1)-苯(2)-二甲基亚砜(3)的液液平衡组成。已知总组成(摩尔分数) z1=0.364,z2=0.223,z3 =0.413;系统温度0℃,活度系数方程可选择NRTL模型。a12=0.2, a13=0.3,a23=0.2

NRTL参数,J/mol

解:

使用附录中LLEC程序计算N个组分(N≤10)的部分互溶物系的液液平衡组成。计算方法为New-Raphson法。调用LILIK子程序计算分配系数,活度系数方程可选择NRTL或UNIQUAC模型。计算结果:

平衡温度 0℃,E/R=0.49

组分进料摩尔分数 R相摩尔分数 E相摩尔分数KD

1 0.3640 0.6933 0.0196 0.0283

2 0.2230 0.2880 0.1550 0.5383

3 0.413 0.0187 0.8253 44.0809

13. 含甲苯30%、乙苯40%、水30%(均为摩尔%)的液体在总压为50.6kPa 下进行连续闪蒸。假设甲苯和乙苯的混合物服从拉乌尔定律,烃与水完全不互溶。计算泡点温度和相应的汽相组成。

解:

设甲苯为1组分,乙苯为2组分。 因为烃相符合乌拉尔定律,故有:

∑-I

+=H

C i s

i s

O

H x p

p p 2

设泡点温度为70℃,由安托尼方程得

s p 1=27.1644,s

p 2

=11.3006

查表得

s O

H

p 2=31.176

此时p =31.176+27.1644×(3/7)+11.3006×(4/7)=49.275kPa<50.6kPa, 故所设温度略低,重设泡点温度为70.5℃

依上方法求得p =50.9≈50.6kPa ,故泡点温度为70.5℃,此时

1y =23.31%,2y =13.01%,O H y 2=63.68%

计算结果: 泡点70.73oC ;汽相组成:甲苯23.31%、乙苯13.01%、水63.68%(均为摩尔百分数)

14.水(W)和正丁醇(B)在101kPa下形成汽 -液-液三相系统。若混合物总组成为含W 70%(摩尔),估计:

(1)混合物的露点温度和相应的液相组成。

(2)混合物的泡点温度和相应的汽相组成。

(3)汽化50 % 时三相的相对量及组成

解:

(1)设水为组分1,正丁醇为组分2,由题意得:

p1=101×0.7=70.7,

p2=101×0.3=30.3,

此体系的露点温度应为此两组分发生第一次相变时的温度,分别为90.25℃和87.09℃,因此体系的露点温度为90.25℃。此时只有一液相为水。

(2)用试差法求泡点温度:

由式(2-109)得:p=p1+p2=101kPa

T/℃P1, kPa P2, kPa P, kPa

85 57.815 27.616 85.431

88 64.958 31.535 96.493

88.5 66.227 32.232 98.458

89 67.496 32.941 100.436

89.15 67.889 33.156 101.045 89.2

68.020

33.228

101.248

故泡点温度为89.15℃,此时:

p 1=67.889kPa ,p 2=33.156kPa ,故y 1=67.19%,y 2=32.81%

(3) 进料50%气化,则由公式

B D B

T T T T --=

ψ得T =89.7℃为闪蒸温度,

使用三相等温闪蒸程序进行进算,其组分的液相活度系数用UNIQUAU 方法计算,其中A 12=727.3861,A 21=-36.2651,计算结果约为:

原料

汽相

液相1 液相2

总量,mol

100

50

42.16

7.84

水,mol % 70 76.56 57.00 98.08 正丁醇,mol %

30

23.44

43.00

1.92

采用NRTL 模型方程,计算结果如下:

(1)露点温度:95.25℃;液相组成:只有一液相,摩尔组成为:W:0.3754;B :0.6246

(2)泡点温度:92.56℃;汽相摩尔组成:W:0.7654;B :0.2346 (3)汽化50 % 时三相的相对量及组成

15. 某1、2两组分构成二元系,活度系数方程为Ln γ1 = A ; Ln γ2 = A

端值常数与温度的关系A =1.7884–4.25×T ( T 的单位为K) 蒸汽压方程 Ln

=16.0826–4050/T Ln

=16.3526–4050/T

(蒸汽压方程中符号单位pS:kPa;T:K )

假设气相是理想气体,系统压力为 99.75kPa ,已知该系统形成共沸物,问共沸温度是多少度?

解:

设T =344.3K (即71℃) A =0.325

s p 1=75.16kPa; s

p 2=98.45kPa

325.0)

16.7545.98ln()ln()21(211=

=-A p p x s

s

得到:x1=0.0846; x2=0.9154

2

1)9145.0(325.0ln =r , 313.11=r

22)0846.0(325.0ln =r , 002.12=r

p=1.313′0.0846′75.16+1.002′0.9154′98.45

材料科学基础课后作业及答案(分章节)

第一章 8.计算下列晶体的离于键与共价键的相对比例 (1)NaF (2)CaO (3)ZnS 解:1、查表得:X Na =0.93,X F =3.98 根据鲍林公式可得NaF 中离子键比例为:21 (0.93 3.98)4 [1]100%90.2%e ---?= 共价键比例为:1-90.2%=9.8% 2、同理,CaO 中离子键比例为:21 (1.00 3.44)4 [1]100%77.4%e ---?= 共价键比例为:1-77.4%=22.6% 3、ZnS 中离子键比例为:2 1/4(2.581.65)[1]100%19.44%ZnS e --=-?=中离子键含量 共价键比例为:1-19.44%=80.56% 10说明结构转变的热力学条件与动力学条件的意义.说明稳态结构与亚稳态结构之间的关系。 答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。 稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。但在一定条件下,亚稳态结构向稳态结构转变。 第二章 1.回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: (001)与[210],(111)与[112],(110)与 [111],(132)与[123],(322)与[236] (2)在立方晶系的一个晶胞中画出(111)和 (112)晶面,并写出两晶面交线的晶向指数。 (3)在立方晶系的一个晶胞中画出同时位于(101). (011)和(112)晶面上的[111]晶向。 解:1、 2.有一正交点阵的 a=b, c=a/2。某晶面在三个晶轴上的截距分别为 6个、2个和4个原子间距,求该晶面的密勒指数。 3.立方晶系的 {111}, 1110}, {123)晶面族各包括多少晶面?写出它们的密勒指数。 4.写出六方晶系的{1012}晶面族中所有晶面的密勒指数,在六方晶胞中画出[1120]、 [1101]晶向和(1012)晶面,并确定(1012)晶面与六方晶胞交线的晶向指数。 5.根据刚性球模型回答下列问题:

现代分离科学与技术复习题完整版

现代分离科学与技术复 习题 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

1、名词解释1)分配系数,指一定温度下,处于平衡状态时,组分在流动相中的浓度和在固定 相中的浓度之比,以K表示。分配系数与组分、流动相和固定相的热力学性质有关,也与温度、压力有关。在不同的色谱分离机制中,K有不同的概念:吸附色谱法为吸附系数,为选择性系数(或称交换系数),凝胶色谱法为渗透参数 2)絮凝,使水或液体中悬浮微粒集聚变大,或形成絮团,从而加快的,达到固-液 分离的目的,这一现象或操作称作 3)层析分离,是利用各组分(、、分子的形状与大小、分子的电荷性与)的不 同,将多组分混合物进行分离的方法。主要是利用不同物质在固定和流动相上的亲和性差异,利用移动速度的不同进行分离。 4)吸附分离,吸附是利用吸附剂对液体或气体中某一组分具有选择性吸附的能 力,使其富集在吸附剂表面,再用适当的洗脱剂将其解吸达到分离纯化的过程5)分子印迹技术分子印迹技术是指为获得在空间结构和结合位点上与某一分子 (印迹分子) 完全匹配的聚合物的实验制备技术。 6)反渗析,利用反渗透膜选择性的只能通过溶剂(通常是水)的性质,对溶液施 加压力,克服溶液的渗透压,使溶剂通过反渗透膜而从溶液中分离出来的过程。 7)共沉淀分离,共分离法是富集痕量组分的有效方法之一,是利用溶液中主沉淀 物(称为)析出时将共存的某些微量组分载带下来而得到分离的方法 8)离子交换分离,通过分子中的活性离子将溶液中带相反电荷的物质吸附在离子 交换剂上,然后用适当的洗脱溶剂将吸附物质再从离子交换剂上洗脱下来,达到分离的目的。 9)沉降分离,在外力场作用下,利用分散相和连续相之间密度差,使之发生相对 运动而实现非均相混合物分离。 10)液膜分离,液膜萃取,也称液膜分离,是将第三种液体展成膜状以隔开两个液 相,使料液中的某些组分透过液膜进入接收液,从而实现料液组分的分离。 11)临界胶团浓度,分子在溶剂中缔合形成的最低浓度 12)液膜分离, 13)反相色谱,根据流动相和相对不同,液相色谱分为和反相色谱。流动相大于固 定相极性的情况,称为反相色谱。合相色谱可作反相色谱。 14),是用一定的介质在离心管内形成一连续或不连续的密度梯度,分离是借助于 混合样品穿过密度梯度层的沉降或上浮来达到的

分离过程习题答案

第一章绪论 1.列出5种使用ESA和5种使用MSA的分离操作。 答:属于ESA分离操作的有精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏。 属于MSA分离操作的有萃取精馏、液-液萃取、液-液萃取(双溶剂)、吸收、 吸附。 2.比较使用ESA与MSA分离方法的优缺点。 答:当被分离组分间相对挥发度很小,必须采用具有大量塔板数的精馏塔才能分 离时,就要考虑采用萃取精馏(MSA),但萃取精馏需要加入大量萃取剂, 萃取剂的分离比较困难,需要消耗较多能量,因此,分离混合物优先选择能 量媒介(ESA)方法。 3.气体分离与渗透蒸发这两种膜分离过程有何区别? 答:气体分离与渗透蒸发式两种正在开发应用中的膜技术。气体分离更成熟些, 渗透蒸发是有相变的膜分离过程,利用混合液体中不同组分在膜中溶解与扩 散性能的差别而实现分离。 5.海水的渗透压由下式近似计算: π=RTC/M, 式中C为溶解盐的浓度,g/cm3;M为离子状态的各种溶剂的平均分子量。若从含盐0.035 g/cm3的海水中制取纯水,M=31.5,操作温度为298K。问反渗透膜两侧的最小压差应为多少kPa? 答:渗透压π=RTC/M=8.314×298×0.035/31.5=2.753kPa。 所以反渗透膜两侧的最小压差应为2.753kPa。 9. 假定有一绝热平衡闪蒸过程,所有变量表示在所附简图中。求: (1)总变更量数Nv; (2)有关变更量的独立方程数Nc; (3)设计变量数Ni; (4)固定和可调设计变量数Nx , Na; (5)对典型的绝热闪蒸过程,你 将推荐规定哪些变量? 思路1: 3股物流均视为单相物流, 总变量数Nv=3(C+2)=3c+6 独立方程数Nc F zi T F P F V , yi ,Tv , Pv L , x i , T L , P L 习题5附图

分离科学思考题答案 2范文

分离科学思考题答案 一、名词解释 截留率:指溶液经超滤处理后被膜截留的溶质量占溶液中该溶质总量的百分率。 水通量:纯水在一定压力温度0.35MPa25℃下试验透过水的速度。 浓差极化:电极上有电流通过时电极表面附近的反应物或产物浓度变化引起的极化。 分配系数:物质在两种不相混的溶剂中平衡时的浓度比HLB值:表面活性剂亲水-亲油性平衡的定量反映。 萃取因素:影响双水相萃取的因素包括聚合物体系无机盐离子体系PH体系温度及细胞温度的影响。 带溶剂:易溶于溶剂中并能够和溶质形成复合物且此复合物在一定条件下又容易分解的物质也称为化学萃取剂。 结晶:.物质从液态溶液或溶融状态或气态形成晶体。 晶核:过饱和溶液中形成微小晶体粒子是晶体生长必不可少的核心。 重结晶:利用杂质和洁净物质在不同溶剂和温度下的溶解度不同将晶体用合适的溶剂再次结晶以获得高纯度的晶体操作。 双水相萃取:利用物质在互不相溶的两水相间分配系数的差异进行的分离操作。 超临界流体萃取:利用超临界流体作为萃取剂对物质进行溶解和分离。 离子交换技术:通过带电的溶质分子与离子交换剂中可交换的离子进行交换而达到分离纯化的方法。 膜污染:指处理物料中的微粒胶体或溶质大分子与膜存在物理化学作用或机械作用而引起的在膜表面或膜孔内吸附沉积造成膜孔径变小或堵塞使膜产生透过流量与分离特性的不可逆变化现象。 凝聚值:胶粒发生凝聚作用的最小电解质浓度。 精馏:利用液体混合物中各组分挥发度的差异及回流手段来实现分离液体混合物的单元操作。 最小回流比:当回流比减小到某一数值后使两操作线的交点d落在平衡曲线上时图解时不论绘多少梯级都不能跨过点d表示所需的理论板数为无穷多相应的回流比即为最小回流比萃取精馏:向原料液中加入第三组分称为萃取剂或溶剂以改变原有组分间的相对挥发度而得到分离。 共沸精馏:体系中加入一个新的组分称为共沸剂共沸剂与待分离的组分形成新的共沸物用精馏的方法使原体系中的组分得到分离。 凝聚:指在投加的化学物质铝、铁的盐类作用下胶体脱稳并使粒子相互聚集成1mm大小块状凝聚体的过程。 絮凝:指使用絮凝剂天然的和合成的大分子量聚电解质将胶体粒子交联成网形成10mm大小絮凝团的过程。其中絮凝剂主要起架桥作用错流过滤称切向流过滤:在压力推动下悬浮液以高速在管状滤膜的内壁作切向流动利用流动的剪切作用将过滤介质表面的固体滤饼移走而附着在滤膜上的滤饼很薄因而能在长时间内保持稳定不变的过滤速度。 比移值:在薄层色谱中被测物质移动的相对距离。 二、简答题 1.简述进行料液予处理的目的并说明常用的料液预处理方法目的:促进从悬浮液中分离固形物的速度提高固液分离的效率方法:凝聚和絮凝加热法调节悬浮液的PH值杂蛋白的去

化工分离工程试题答卷及参考答案

MESH方程。 一、填空(每空2分,共20分) 1. 如果设计中给定数值的物理量的数目等于 设计变量,设计才有结果。 2. 在最小回流比条件下,若只有重组分是非分 配组分,轻组分为分配组分,存在着两个 恒浓区,出现在精镏段和进料板 位置。 3. 在萃取精镏中,当原溶液非理想性不大时, 加入溶剂后,溶剂与组分1形成具有较强正 偏差的非理想溶液,与组分2形成 负偏差或理想溶液,可提高组分1对2的 相对挥发度。 4. 化学吸收中用增强因子表示化学反应对传质 速率的增强程度,增强因子E的定义是化学吸 收的液相分传质系数(k L)/无化学吸收的液相 分传质系数(k0L)。 5. 对普通的N级逆流装置进行变量分析,若组 分数为C个,建立的MESH方程在全塔有 NC+NC+2N+N=N(2C+3) 个。 η; 6. 热力学效率定义为= 实际的分离过程是不可逆的,所以热力学效 率必定于1。 7. 反渗透是利用反渗透膜选择性的只透过 溶剂的性质,对溶液施加压力,克服溶 剂的渗透压,是一种用来浓缩溶液的膜 分离过程。 二、推导(20分) 1. 由物料衡算,相平衡关系式推导图1单 级分离基本关系式。 ——相平衡常数; 式中: K i ψ——气相分 率(气体量/进料量)。 2. 精馏塔第j级进出物料如图1,建立

三、简答(每题5分,共25分) 1.什么叫相平衡相平衡常数的定义是什么 由混合物或溶液形成若干相,这些相保持物理平衡而共存状态。热力学上看物系的自由焓最小;动力学上看相间表观传递速率为零。 K i =y i /x i 。 2.关键组分的定义是什么;在精馏操作中, 一般关键组分与非关键组分在顶、釜的 分配情况如何 由设计者指定浓度或提出回收率的组分。 LK绝大多数在塔顶出现,在釜中量严格控制; HK绝大多数在塔釜出现,在顶中量严格控制; LNK全部或接近全部在塔顶出现; HNK全部或接近全部在塔釜出现。 3.在吸收过程中,塔中每级汽、液流量为 什么不能视为恒摩尔流 吸收为单相传质过程,吸收剂吸收了气体中的溶质而流量在下降过程中不断增加,气体的流量相应的减少,因此气液相流量在塔内都不能视为恒定。 4.在精馏塔中设中间换热器为什么会提高 热力学效率 在中间再沸器所加入的热量其温度低于塔 底加入热量的温度,在中间冷凝器所引出的 热量其温度高于塔顶引出热量的温度,相对 于无中间换热器的精馏塔传热温差小,热力 学效率高。 5.反应精馏的主要优点有那些 (1)产物一旦生成立即移出反应区;(2)反应区反应物浓度高,生产能力大;(3)反应热可由精馏过程利用;(4)节省设备投资费用;(5)对于难分离物系通过反应分离成较纯产品。 四、计算(1、2题10分,3题15分,共35分) 1. 将含苯(mol分数)的苯(1)—甲苯(2)混合物在下绝热闪蒸,若闪蒸温度为94℃,用计算结果说明该温度能否满足闪蒸要求 已知:94℃时P 1 0= P 2 0= 2. 已知甲醇(1)和醋酸甲酯(2)在常压、54℃ 下形成共沸物,共沸组成X 2 =(mol分率), 在此条件下:kPa P kPa p98 . 65 , 24 . 9002 1 = =求 该系统的活度系数。 3. 气体混合物含乙烷、丙烷、丁烷(均为摩尔分数),用不挥发的烃类进行吸收,已知吸收后丙烷的吸收率为81%,取丙烷在全塔的平均吸收因子A=,求所需理论板数;若其它条件不变,提高平均液汽比到原来的2倍,此时丙烷的吸 收率可达到多少。

分离课后习题及答案.

【注意事项】 1.因时间关系,详细复习总结的电子版没时间做了,大家抽空多看看课本,考试以课本基础知识为主,书上找不到答案的不会考。 2.这里主要总结了老师上课讲的课后题 参考 答案,以及部分往届复习的名词解释整合,大家参考记忆。 3.考试题型:6-7个名词解释,6-7个选择题(考察细节掌握,一个两分),填空,简答论述(接近50分)。 4.不考计算题,但依然会考公式的其他应用,复习时自己注意。 5.【P22】【P24】【P44-45】【P216-217】这几页的图和表必须会解读,【P191-192】这两页表必须背过,必考重点!考试没有画图题,但可能有读图题,常见的重点图示必须熟悉。 6.抓紧时间好好复习,今年监考比历届都要严,不要因小失大!!! 7.最后,祝都过。 ***感谢冯晓博、马阿敏、张雪琴三位热心的好学霸肯抽出时间为大家整理资料*** 第一章 绪论 1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。 (3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法 被分离组分的摩尔分数)富集 <0.1;浓缩 0.1-0.9;纯化 >0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系? 答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分;B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ Q oA ,SA,B ≈ Q oB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。

材料科学基础习题与答案

- 第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子键或共价键固体高的原因 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体何谓单晶、多晶、晶粒及亚晶为什么单晶体成各向异性而多晶体一般情况下不显示各向异性何谓空间点阵、晶体结构及晶胞晶胞有哪些重要的特征参数 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构描述它们的晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数何谓致密度金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体它与间隙相、间隙化合物之间有何区别(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么 6. 已知Cu 的原子直径为A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 ( 7. 已知Al 相对原子质量Ar (Al )=,原子半径γ=,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是;fcc 铁在相同温度时其单位晶胞体积是。当铁由 bcc 转变为fcc 时,其密度改变的百分比为多少 9. 何谓金属化合物常见金属化合物有几类影响它们形成和结构的主要因素是什么其性能如何 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。 12.在一个立方晶胞中确定6个表面面心位置的坐标,6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数,各个棱边和对角线的晶向指数。 13. 写出立方晶系的{110}、{100}、{111}、{112}晶面族包括的等价晶面,请分别画出。

分离课后习题及标准答案

第一章 绪论 1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。 (3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法 被分离组分的摩尔分数)富集 <0.1;浓缩 0.1-0.9;纯化 >0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系? 答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A的回收率,用RA 表示,Q A°---为富集前待测物的量;QA ---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分; B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ QoA,SA,B ≈ QoB/QB = 1/RB,常量组分测定:SA ,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;Q M为富集后基体的量。 第二章 分离过程中的热力学 2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。试分析吸附物质的吸附平衡常数K 与该气体物质在气相的分压p 需满足什么条件才能使朗格缪尔吸附等温线近似为直线。 答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。在低压时,p K q q p K A A max 1=,《。

分离工程课后习题答案刘家祺

分离工程习题 第一章 1.列出5种使用ESA和5种使用MSA的分离操作。 答:属于ESA分离操作的有精馏、萃取精馏、吸收蒸出、再沸蒸出、共沸精馏。 属于MSA分离操作的有萃取精馏、液-液萃取、液-液萃取(双溶剂)、吸收、吸附。 5.海水的渗透压由下式近似计算:π=RTC/M,式中C为溶解盐的浓度,g/cm3;M为离子状态的各种溶剂的平均分子量。若从含盐0.035 g/cm3的海水中制取纯水,M=31.5,操作温度为298K。问反渗透膜两侧的最小压差应为多少kPa? 答:渗透压π=RTC/M=8.314×298×0.035/31.5=2.753kPa。 所以反渗透膜两侧的最小压差应为2.753kPa。 9.假定有一绝热平衡闪蒸过程,所有变量表示在所附简图中。求: (1)总变更量数Nv; (2)有关变更量的独立方程数Nc; (3)设计变量数Ni; (4)固定和可调设计变量数Nx , Na; (5)对典型的绝热闪蒸过程,你将推荐规定哪些变量? 思路1: 3股物流均视为单相物流, 总变量数Nv=3(C+2)=3c+6 独立方程数Nc 物料衡算式C个 热量衡算式1个 相平衡组成关系式C个 1个平衡温度等式 1个平衡压力等式共2C+3个 故设计变量Ni =Nv-Ni=3C+6-(2C+3)=C+3 固定设计变量Nx=C+2,加上节流后的压力,共C+3个 可调设计变量Na=0 解: (1)Nv = 3 ( c+2 ) (2)Nc 物 c

能 1 相 c 内在(P,T) 2 Nc = 2c+3 (3)Ni = Nv – Nc = c+3 (4)Nxu = ( c+2 )+1 = c+3 (5)Nau = c+3 –( c+3 ) = 0 思路2: 输出的两股物流看成是相平衡物流,所以总变量数Nv=2(C+2) 独立方程数Nc:物料衡算式C个,热量衡算式1个,共C+1个 设计变量数Ni=Nv-Ni=2C+4-(C+1)=C+3 固定设计变量Nx:有C+2个加上节流后的压力共C+3个 可调设计变量Na:有0 11.满足下列要求而设计再沸汽提塔见附图,求: (1)设计变更量数是多少? (2)如果有,请指出哪些附加变量需要规定? 解:N x u 进料c+2 压力9 c+11=7+11=18 N a u 串级单元 1 传热 1 合计 2 N V U = N x u+N a u = 20 附加变量:总理论板数。 16.采用单个精馏塔分离一个三组分混合物为三个产品(见附图),试问图中所注设计变量能否使问题有唯一解?如果不,你认为还应规定哪个(些)设计变量? 解: N X U进料c+2 压力40+1+1 c+44 = 47 N a u3+1+1+2 = 7 N v u = 54 设计变量:回流比,馏出液流率。 第二章 4.一液体混合物的组成为:苯0.50;甲苯0.25;对二甲苯0.25(摩尔分率)。分别

分离课后习题及答案

第一章绪论1.分离技术的三种分类方法各有什么特点? 答:(1)按被分离物质的性质分类分为物理分离法、化学分离法、物理化学分离法。 (2)按分离过程的本质分类分为平衡分离过程、速度差分离过程、反应分离过程。(3)场流分类法 2.分离富集的目的? 答:①定量分析的试样通常是复杂物质,试样中其他组分的存在常常影响某些组分的定量测定,干扰严重时甚至使分析工作无法进行。这时必须根据试样的具体情况,采用适当的分离方法,把干扰组分分离除去,然后才能进行定量测定。②如果要进行试样的全分析,往往需要把各种组分适当的分离,而后分别加以鉴定或测定。③而对于试样中的某些痕量组分,进行分离的同时往往也就进行了必要的浓缩和富集,于是就便于测定。因此物质的化学分离和测定具有同样重要意义。 3.什么是直接分离和间接分离? 答:直接分离是将待测组分从复杂的干扰组分分离出来;间接分离是将干扰组分转入新相,而将待测组分留在原水相中。 4.阐述浓缩、富集和纯化三个概念的差异与联系? 答:富集:通过分离,使目标组分在某空间区域的浓度增大。浓缩:将溶剂部分分离,使溶质浓度提高的过程。纯化:通过分离使某种物质的纯度提高的过程。 根据目标组分在原始溶液中的相对含量(摩尔分数)的不同进行区分: (方法被分离组分的摩尔分数)富集<0.1;浓缩0.1-0.9;纯化>0.9。 5.回收因子、分离因子和富集倍数有什么区别和联系?

答:(1)被分离物质在分离过程中损失量的多少,某组分的回收程度,用回收率来表示。 待测组分A 的回收率,用RA 表示,QA °---为富集前待测物的量;QA---富集后待测物的量。%100?= A A A Q Q R (2)分离因子:两组分的分离程度。用SA , B 表示。B A B A B A B ,//R R Q Q Q Q S A =??= A —待测组分;B —干扰组分。如果待测组分A 符合定量要求,即可认为QA ≈ QoA ,SA,B ≈ QoB/QB = 1/RB ,常量组分测定:SA,B ≈103;分离因子越大,分离效果越好。 (3)富集倍数:目标组分和基体组分的回收率之比,用F 表示, M M T T M T Q Q Q Q R R F //== RT 为组分的回收率;RM 为基体的回收率; QT °为富集前待测物的量; QT 为富集后待测物的量;QM °为富集前基体的量;QM 为富集后基体的量。 第二章 分离过程中的热力学 2.气体分子吸附在固体吸附剂表面时,某吸附等温线可以由朗格缪尔吸附方程得到。试分析吸附物质的吸附平衡常数K 与该气体物质在气相的分压p 需满足什么条件才能使朗格缪尔吸附等温线近似为直线。 答:溶质吸附量q 与溶质气体分压p 的关系可以用朗格缪尔吸附方程表示:p K p K q q A A +=1max ,式中qmax 为溶质在固相表面以单分子层覆盖的最大容量;KA 为溶质的吸附平衡常数。在低压时,p K q q p K A A max 1=,《。 第三章 分离过程中的动力学 1.简单讨论分子运动与宏观物体机械运动的差别和共同点。

分离工程习题解答模板

[例2-3] 求含正丁烷( 1) 0.15、 正戊烷( 2) 0.4、 和正已烷( 3) 0.45( 摩尔分数) 之烃类混合物在0.2MPa 压力下的泡点温度。B. 露点温度 a. 解: 因各组分都是烷烃, 因此汽、 液相均可看成理想溶液, K i 只取决于温度和压力。如计算要求不高, 可使用烃类的 p -T -K 图( 见图 2-1) 。 假设 T = 50℃, p =0.2MPa, 查图求 K i , 组分 xi Ki yi=Kixi 正丁烷 0.15 2.5 0.375 正戊烷 0.40 0.76 0.304 正已烷 0.45 0.28 0.126 说明所设温度偏低,选正丁烷为K G ,95.0805 .076 .03==∑=i G y K K 。查p-t-k 图t 为58.7, 再设 T = 58.7℃, 重复上述计算得 故泡点温度为 58.7℃。 解: B. 露点温度, 假设 T = 80℃, p =0.2MPa, 查图求 K i ,

组分 xi Ki yi/Ki=xi 正丁烷 0.15 4.2 0.036 正戊烷 0.40 1.6 0.25 正已烷 0.45 0.65 0.692 1978.0≠=∑ =∑∴i i i K y x 选正戊烷为参考组分, 则 56.1978.06.14=?=∑?=i G x K K 由56.14=K ,查图2-1a 得t=78℃ K 1=4, K 2=1.56, K 3=0.6, 1053.175.0267.00375.0≈=++=∑ =∑∴i i i K y x 故混合物在78℃。 [例2-7] 进料流率为 1000kmol/ h 的轻烃混合物, 其组成为: 丙烷 (1)30% ; 正丁烷 (2)10% ; 正戊烷 (3)15% ; 正已烷 (4)45%( 摩尔 ) 。求在 50 ℃和 200kPa 条件下闪蒸的汽、 液相组成及流率。

材料科学基础课后习题答案第二章

第2章习题 2-1 a )试证明均匀形核时,形成临界晶粒的△ G K 与其临界晶核体积 V K 之间的关系式为 2 G V ; b )当非均匀形核形成球冠形晶核时,其△ 所以 所以 2-2如果临界晶核是边长为 a 的正方体,试求出其厶G K 与a 的关系。为什么形成立方体晶核 的厶G K 比球形晶核要大? 解:形核时的吉布斯自由能变化为 a )证明因为临界晶核半径 r K 临界晶核形成功 G K 16 故临界晶核的体积 V K 4 r ; G V )2 2 G K G V b )当非均匀形核形成球冠形晶核时, 非 r K 2 SL G V 临界晶核形成功 3 3( G ;7(2 3cos 3 cos 故临界晶核的体积 V K 3(r 非)3(2 3 3cos 3 cos V K G V 1 ( 3 卸2 3 3cos cos )G V 3 3(書 (2 3cos cos 3 ) G K % G K 与V K 之间的关系如何? G K

G V G v A a3G v 6a2 3 得临界晶核边长a K G V

临界形核功 将两式相比较 可见形成球形晶核得临界形核功仅为形成立方形晶核的 1/2。 2-3为什么金属结晶时一定要有过冷度?影响过冷度的因素是什么?固态金属熔化时是否 会出现过热?为什么? 答:金属结晶时要有过冷度是相变热力学条件所需求的, 只有△ T>0时,才能造成固相的自 由能低于液相的自由能的条件,液固相间的自由能差便是结晶的驱动力。 金属结晶需在一定的过冷度下进行,是因为结晶时表面能增加造成阻力。固态金属熔 化时是否会出现过热现象,需要看熔化时表面能的变化。如果熔化前后表面能是降低的, 则 不需要过热;反之,则可能出现过热。 如果熔化时,液相与气相接触,当有少量液体金属在固体表面形成时,就会很快覆盖 在整个固体表面(因为液态金属总是润湿其同种固体金属 )。熔化时表面自由能的变化为: G 表面 G 终态 G 始态 A( GL SL SG ) 式中G 始态表示金属熔化前的表面自由能; G 终态表示当在少量液体金属在固体金属表面形成 时的表面自由能;A 表示液态金属润湿固态金属表面的面积;b GL 、CSL 、CSG 分别表示气液相 比表面能、固液相比表面能、固气相比表面能。因为液态金属总是润湿其同种固体金属,根 据润湿时表面张力之间的关系式可写出:b SG 》6GL + (SL 。这说明在熔化时,表面自由能的变 化厶G 表w o ,即不存在表面能障碍,也就不必过热。实际金属多属于这种情况。如果固体 16 3 3( G v )2 1 32 3 6 2 (G v )2 b K t K 4 G V )3 G V 6( 4 G v )2 64 3 96 3 32 r K 2 ~G ?, 球形核胚的临界形核功 (G v )2 (G v )2 (G v )2 G b K 2 G v )3 16 3( G v )2

化工分离过程-课后标准答案刘家祺

化工分离过程-课后答案刘家祺

————————————————————————————————作者:————————————————————————————————日期:

化学工程与工艺教学改革系列参考书 分离过程例题与习题集 叶庆国钟立梅主编 化工学院化学工程教研室

前言 化学工程与工艺专业所在的化学工程与技术一级学科属于山东省“重中之重”学科,一直处于山东省领先地位,而分离工程是该专业二门重要的必修专业课程之一。该课程利用物理化学、化工原理、化工热力学、传递过程原理等基础基础知识中有关相平衡热力学、动力学、分子及共聚集状态的微观机理,传热、传质和动量传递理论来研究化工生产实际中复杂物系分离和提纯技术。传统的教学方法的突出的弊端就是手工计算工程量大,而且结果不准确。同时由于现代化化学工业日趋集成化、自动化、连续化,学生能学到的东西越来越少。所以,传统的教学模式不能满足现代化工业生产对高水平工业工程师的需求,开展分离工程课程教学方法与教学手段课题的研究与实践,对我们的学生能否承担起现代化学工业的重任,与该课程的教学质量关系重大,因此对该门课程进行教学改革具有深远意义。 分离工程课程的改革主要包括多媒体辅助教学课件的开发、分离工程例题与习题集、分离工程试题库的编写等工作。目前全国各高校化学工程与工艺专业使用的教材一般均为由化学工程与工艺专业委员会组织编写的化工分离过程(陈洪钫主编,化学工业出版社),其他类似的教材已出版了十余部。这些教材有些还未配习题,即便有习题,也无参考答案,而至今没有一本与该课程相关的例题与 习题集的出版。因此编写这样一本学习参考书,既能发挥我校优势,又符合形势需要,填补参考书空白,具有良好的应用前景。 分离工程学习指导和习题集与课程内容紧密结合,习题贯穿目前已出版的相关教材,有解题过程和答案,部分题目提供多种解题思路及解题过程,为学生的课堂以及课后学习提供了有力指导。 编者 2006 年3月

材料科学基础课后习题答案

《材料科学基础》课后习题答案 第一章材料结构的基本知识 4. 简述一次键和二次键区别 答:根据结合力的强弱可把结合键分成一次键和二次键两大类。其中一次键的结合力较强,包括离子键、共价键和金属键。一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。二次键的结合力较弱,包括范德瓦耳斯键和氢键。二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。 6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高? 答:材料的密度与结合键类型有关。一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。相反,对于离子键或共价键结合的材料,原子排列不可能很致密。共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。 9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。 答:单相组织,顾名思义是具有单一相的组织。即所有晶粒的化学组成相同,晶体结构也相同。两相组织是指具有两相的组织。单相组织特征的主要有晶粒尺寸及形状。晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。 10. 说明结构转变的热力学条件与动力学条件的意义,说明稳态结构和亚稳态结构之间的关系。 答:同一种材料在不同条件下可以得到不同的结构,其中能量最低的结构称为稳态结构或平衡太结构,而能量相对较高的结构则称为亚稳态结构。所谓的热力学条件是指结构形成时必须沿着能量降低的方向进行,或者说结构转变必须存在一个推动力,过程才能自发进行。热力学条件只预言了过程的可能性,至于过程是否真正实现,还需要考虑动力学条件,即反应速度。动力学条件的实质是考虑阻力。材料最终得到什么结构取决于何者起支配作用。如果热力学推动力起支配作用,则阻力并不大,材料最终得到稳态结构。从原则上讲,亚稳态结构有可能向稳态结构转变,以达到能量的最低状态,但这一转变必须在原子有足够活动能力的前提下才能够实现,而常温下的这种转变很难进行,因此亚稳态结构仍可以保持相对稳定。 第二章材料中的晶体结构 1. 回答下列问题: (1)在立方晶系的晶胞内画出具有下列密勒指数的晶面和晶向: 32)与[236] (001)与[210],(111)与[112],(110)与[111],(132)与[123],(2 (2)在立方晶系的一个晶胞中画出(111)和(112)晶面,并写出两晶面交线的晶向指数。 解:(1)

小学三年级科学课后练习题(附答案)

小学三年级科学课后练习题 第一节水到哪里去了? 1、想一想,用湿抹布擦黑板,过一会就干了,这是什么现象? 答:蒸发 2、水是我们常见的( A ) A、液体 B 气体C固体 3水的三种形态? 固体液体气体 4水和水蒸气的相同点和不同点? 相同点:无色无味透明 不同点:水是液体,水没有固定形状,但有一定体积。 水蒸气是气体,没有固定形状和体积。 5举例说出生活中蒸发现象? 下雨天地面有积水,通过阳光的照射水慢慢消失了。 洗的衣服,放在外面晾晒,慢慢就变干了。 6影响蒸发快慢的因素有哪些? 1 温度 2 风 3 空气接触面积 第二节水沸腾了 1、水沸腾的温度是(A ) A 100℃ B 98℃ C 0℃ 2、给水加热后,水的体积会(A) A 变大 B 没有变化 C 变小 3、水沸腾时大量气泡(A) A 上升 B 下降C不变 4、水加热后变成水蒸气,水的温度(A )蒸发(C ) A、越高 B 越低C越快 5、说一说烧开水的过程,说一说水中气泡会发生哪些变化? 烧开水时,气泡由少变多,由小变大,到水面破裂。 6水沸腾后继续加热,水的温度( B ) A 升高 B 不变C降低 第三节水结冰了 1、当环境温度(B )0℃,水的温度下降到(C )时,水开始结冰。 A 高于 B 低于 C 0℃D10℃ 2、(C )的变化会使水的形态发生变化, A颜色 B 容器 C 温度 3、冰是怎样的物体? 无色无味透明,坚硬有一定的体积,不会流动。 4、水结冰时,温度(A ),说明水向周围()热量。 A 降低,放出 B 降低吸收 C 升高吸收

第四节冰融化了 1、冰开始融化的温度是() A、﹣5℃ B 10℃ C 0℃ 2、冰融化成水的这个变化过程是()变成()。 A 液态固态 B 气态液态 C 固态液态 3、冰融化的过程中温度()但要向外界()大量的热量。 A不变B变化 C 吸收D放出 4、冰块周围的温度升高,会使()。 A冰融化的速度变慢B冰融化的速度变快 C 冰融化的速度没有变化 5、冰融化成水,他的体积增大了()。 6、冰融化成水后,他的状态发生了变化() 7、水和水蒸气、冰的相同点不同点? 第五课谁能溶解多少物质? 1、不能溶解在水中的物质有()? A食盐B沙子 C 碱D味精 2、因为牛奶能溶解在水中,所以它() A 有沉淀 B 能均匀分布在水中 C 能过滤出来 3、酒精能溶解在水中,水不能溶解在酒精中() A 对 B 错 4、不是所有的物质都能溶解在水中。() A 对 B 错 5在相同的水中,等量的食盐小苏打在水中的溶解能力是() A 相同的 B 不同的、 第六课加快溶解

材料科学基础(武汉理工大学,张联盟版)课后习题及答案 第二章

第二章答案 2-1略。 2-2(1)一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;(2)一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。 答:(1)h:k:l==3:2:1,∴该晶面的晶面指数为(321); (2)h:k:l=3:2:1,∴该晶面的晶面指数为(321)。 2-3在立方晶系晶胞中画出下列晶面指数和晶向指数:(001)与[],(111)与[],()与[111],()与[236],(257)与[],(123)与[],(102),(),(),[110],[],[] 答:

2-4定性描述晶体结构的参量有哪些?定量描述晶体结构的参量又有哪些? 答:定性:对称轴、对称中心、晶系、点阵。定量:晶胞参数。 2-5依据结合力的本质不同,晶体中的键合作用分为哪几类?其特点是什么? 答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。 离子键的特点是没有方向性和饱和性,结合力很大。共价键的特点是具有方向性和饱和性,结合力也很大。金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。范德华键是通过分子力而产生的键合,分子力很弱。氢键是两个电负性较大的原子相结合形成的键,具有饱和性。 2-6等径球最紧密堆积的空隙有哪两种?一个球的周围有多少个四面体空隙、多少个八面体空隙? 答:等径球最紧密堆积有六方和面心立方紧密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。 2-7n个等径球作最紧密堆积时可形成多少个四面体空隙、多少个八面体空隙?不等径球是如何进行堆积的? 答:n个等径球作最紧密堆积时可形成n个八面体空隙、2n个四面体空隙。 不等径球体进行紧密堆积时,可以看成由大球按等径球体紧密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体紧密堆积。 2-8写出面心立方格子的单位平行六面体上所有结点的坐标。 答:面心立方格子的单位平行六面体上所有结点为:(000)、(001)(100)(101)(110)(010)(011)(111)(0)(0)(0)(1)(1)(1)。

教科版小学三年级科学上册第一单元第7课《混合与分离》同步练习题及答案

教科版小学三年级科学上册第一单元第7课 《混合与分离》同步练习题及答案 一、填空题。 1.沙子溶解在水中,食盐溶解在水中。[填“能”或“不能”] 2.用小勺装少量盐水放在蜡烛上加热,最后勺子底部会出现 粉末,这是。 3.从前,有一头小毛驴驮着两袋盐过河,河水很深,把它背上的盐浸湿了,它过河后,觉得身上轻了许多,这是因为。 4.我们通常用法,分离水和沙子。 二、判断题。 1.用滤纸过滤时,漏斗里液体的液面要高于滤纸的边缘。() 2.在给食盐水加热的过程中,当杯子底部出现食盐颗粒时,说明剩下的盐水中已经没有食盐了。() 3.用非常细的筛子也能将食盐和沙子的混合物分离。() 4.加热食盐水时,分离后的水变成水蒸气跑到空气里了。() 三、选择题。 1.我们说沙子不能溶解在水中,是因为()。 A.用过滤的方法不能将沙子分离出来 B将沙子放入水中,搅拌后水变浑浊,容器底部有大量颗粒 C.将沙子放入水中,搅拌,看不到颗粒了

2.我们通常用()方法将食盐从水中分离出来。 A. B. C. 3.在利用酒精灯加热蒸发皿分离食盐和水的实验中,下列说法正确的是()。 A.在水完全蒸发之后熄灭酒精灯 B.加热后,立即用手拿蒸发皿移放在桌面上 C.用酒精灯的外焰加热 4.用酒精灯加热浓盐水,最后我们能见到()。 A.什么也没有 B.细小的白色颗粒 C.一颗颗很大的黑色颗粒 四、简答题。 给你一杯食盐水,你怎样将食盐和水分离开,请说出两种方法。五、综合分析。 乐乐不小心将沙子混进食盐中了,他想将食盐和沙子分开,得到干净的食盐,你能帮助他吗? 1.将食盐和沙子分开,我们可以用过滤的方法,我们观察到()。 A.在滤纸上留下了食盐颗粒 B.在滤纸上留下了沙子 C.过滤后的液体变浑浊了

相关文档