文档库 最新最全的文档下载
当前位置:文档库 › 食用棉籽蛋白中总棉酚与游离棉酚含量测定

食用棉籽蛋白中总棉酚与游离棉酚含量测定

食用棉籽蛋白中总棉酚与游离棉酚含量测定
食用棉籽蛋白中总棉酚与游离棉酚含量测定

 万方数据

 万方数据

 万方数据

(整理)6种方法测定蛋白质含量.

6种方法测定蛋白质含量 一、微量凯氏(kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4――2CO2+3SO2+4H2O+NH3(1) 2NH3+H2SO4――(NH4)2 SO4(2) (NH4)2 SO4+2NaOH――2H2O+Na2SO4+2NH3(3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。

紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材 1.试剂: (1)标准蛋白质溶液:用标准的结晶牛血清清蛋白(bsa)或标准酪蛋白,配制成10mg/ml的标准蛋白溶液,可用bsa浓度1mg/ml的a280为0.66来校正其纯度。如有需要,标准蛋白质还可预先用微量凯氏定氮法测定蛋白氮含量,计算出其纯度,再根据其纯度,称量配制成标准蛋白质溶液。牛血清清蛋白用H2O 或0.9%NaCl配制,酪蛋白用0.05NaOH配制。 (2)双缩脲试剂:称以1.50克硫酸铜(CuSO4?5H2O)和6.0克酒石酸钾钠(KNaC4H4O6?4H2O),用500毫升水溶解,在搅拌下加入300毫升10% NaOH溶液,用水稀释到1升,贮存于塑料瓶中(或内壁涂以石蜡的瓶中)。此试剂可长期保存。若贮存瓶中有黑色沉淀出现,则需要重新配制。 2.器材: 可见光分光光度计、大试管15支、旋涡混合器等。 (三)操作方法 1.标准曲线的测定:取12支试管分两组,分别加入0,0.2,0.4,0.6,0.8,1.0毫升的标准蛋白质溶液,用水补足到1毫升,然后加入4毫升双缩脲试剂。充分摇匀后,在室温(20~25℃)下放置30分

食品中蛋白质的测定实验报告

1.目的 掌握凯氏定氮法测蛋白质的原理、操作、条件、注意事项。 2.原理 蛋白质是含氮有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解。分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用硼酸吸收后在以硫酸或盐酸标准溶液滴定,根据酸的消耗量计算含氮量再乘以换算系数,即为蛋白质含量。 3.试剂 3.1浓硫酸、硫酸铜、硫酸钾,所有试剂均用不含氮的蒸馏水配制 3.2混合指示液 1份(1g/L)甲基红乙醇溶液与5份1g/L溴甲酚氯乙醇溶液临用时混合。 也可用2份甲基红乙醇溶液与1份1g/L次甲基蓝乙醇溶液临用时混合。 3.3氢氧化钠溶液(400g/L) 3.4标准滴定溶液 硫酸标准溶液[c(1/2H2SO4)=0.0500mol/L]或盐酸标准溶液[c(HCl) 0.0500mol/L] 3.5硼酸溶液(20g/L) 4.仪器 定氮蒸馏装置 5.样品 全蛋(2.47g) 6.操作 6.1样品处理 准确称取2—5g半固体样品,小心移入干燥洁净的500mL凯氏烧瓶中,然后加入研细的硫酸铜0.5g,硫酸钾10g和浓硫酸20mL,轻轻摇匀后于瓶口放一小漏斗,将瓶以45°角斜放于加有石棉网的电炉上,小火加热,待内容物全部炭化后,泡沫完全消失后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色呈请透明后,再继续加热0.5h,取下放冷,慢慢加入20mL水。 放冷后,移入100mL容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白试验。 6.2连接装置 装好定氮装置,于水蒸气发生器内装水至2/3处,加甲基红指示剂数滴及少量硫酸,以保持水呈酸性,加入数滴玻璃珠以防暴沸,用调压器控制,

考马斯亮蓝法测定可溶性蛋白

考马斯亮蓝法测定可溶性蛋白质含量 原理: 考马斯亮蓝G-250(Coomassie brilliant blue G-250)测定蛋白质含量属于染料结合法的一种。该染料在游离状态下呈红色,在稀酸溶液中当它与蛋白质的疏水区结合后变为青色,前者最大光吸收在465nm,后者在595nm在一定蛋白质浓度范围内(1-1000μg),蛋白质与色素结合物在595nm波长下的吸光度与蛋白质含量成正比,故可用于蛋白质的定量测定。 考马斯亮蓝G-250于蛋白质结合反应十分迅速,2min左右即达到平衡。其结合物在室温下1h内保持稳定。此法灵敏度高,易于操作,干扰物质少,是一种比较好的定量法。其缺点是在蛋白质含量很高时线性偏低,且不同来源蛋白质与色素结合状况有一定差异。 材料、仪器设备及试剂 1、材料 小麦叶片、马铃薯块茎、或其他植物材料 2、仪器设备 分光光度计、研钵、烧杯、移液管 3、试剂 (1)标准蛋白质溶液:100μg·Ml-1牛血清白蛋白:称取牛血清白蛋白25mg,加水溶解并定容至100ml,吸取上述溶液40ml,用蒸馏水稀释至100ml即可。(2)考马斯亮蓝G-250溶液:称取100mg考马斯亮蓝G-250,溶于50ml90%乙醇中,加入100ml85%(W/V)的磷酸,再用蒸馏水定容到1L,贮于棕色瓶中,常温下可保存一个月。 方法: 1、标准曲线的绘制 取6支具塞试管,按表加入试剂。混合均匀后,向各管中加入5ml考马斯亮蓝 G-250溶液,摇匀,并放置5min左右,在595nm下比色测定吸光度。以蛋白质浓度为横坐标,以吸光度为纵坐标绘制标准曲线。 管号 1 2 3 4 5 6 标准蛋白质(ml) 0 0.2 0.4 0.6 0.8 1.0 蒸馏水量(ml) 1.0 0.8 0.6 0.4 0.2 0 蛋白质含量(μg) 0 20 40 60 80 100 2、样品测定 (1)样品提取:取鲜样0.5g,加入2ml蒸馏水研磨,磨成匀浆后用6ml蒸馏水冲洗研钵,洗涤液收集在同一离心管中,在4000r/min下离心10min,弃去沉淀,上清液转入容量瓶,以蒸馏水定容至10ml,摇匀后待测。 (2)吸取样品提取液0.1ml,放入具塞试管中(每个样品重复2次),加入5ml 考马斯亮蓝G-250溶液,充分混合,放置2min后在595nm下比色,测定吸光度,并通过标准曲线查得蛋白质含量。 (3)结果计算(单位mg/g)样品中蛋白质含量=(C·VT)/(1000 VS·WF) 式中:C—查的标准曲线值(μg)

6种方法测定蛋白质含量

6种方法测定蛋白质含量 [ 文章来源: | 文章作者: | 发布时间:2006-12-25| 字体: [大 中 小] 一、微量凯氏(kjeldahl )定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: nh 2ch 2cooh+3h 2so 4——2co 2+3so 2+4h 2o+nh 3 (1) 2nh 3+h 2so 4——(nh 4)2so 4 (2) (nh 4)2so 4+2naoh ——2h 2o+na 2so 4+2nh 3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入cuso4作催化剂,k2so4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得 样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(biuret 法) (一)实验原理 双缩脲(nh3conhconh3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与cuso4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg 蛋白质。干扰这一测定的物质主要有:硫酸铵、tris 缓冲液和某些氨基酸等。 此法的优点是较快速 ,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

几种测蛋白含量方法的比较

蛋白质含量测定方法的比较及肽含量的测定 (一)蛋白质测定方法的比较(原理、优缺点)蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫 外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。蛋白质含量测定法,目前包括定氮法、双缩脲法、福林酚法(Lowry 法)和紫外吸收法、考马斯亮蓝法。其中考马斯亮蓝和福林酚法灵敏度最高,比紫外吸收法灵敏10~20 倍,比双缩脲法灵敏100倍以上。定氮法较复杂,但准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。在选择方法时应该考虑:(1)实验测定要求的灵敏度和精确度;(2)蛋白质的性质;(3)溶液中存在的干扰物质;(4)测定花费时间。 1 微量凯氏定氮法(GB 5009.5-2010) 1.1原理样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。 1.2操作方法样品经前处理、炭化、消化、蒸馏、滴定等主要步骤 1.3特点准确度较高,适用于0.2~ I.Omg氮,误差为土2%;操作复杂费时,整个过程需要耗时8~10h,试剂消耗量大。,测得结果为总氮含量,包括蛋白氮和非蛋白氮含 量;适用范围广,几乎所有样品均可用此方法。 2双缩脲比色法

食品中蛋白质含量的测定

食品中蛋白质含量的测定 院系:机械工程学院;专业:食品科学与工程;年级10级;班级:一班;姓名:姜海洋;学号:201044035 摘要 随着食品工业的快速发展,人们对食品中营养元素的要求越来越严格。蛋白质是人体生命的物质基础,是人体重要的营养元素,测定蛋白质的含量有利评价食品的营养价值,合理开发利用食品资源。同时对提高产品质量,优化食品配方有重要意义。 关键字:食品蛋白质含量测定 前言 化学分析是一门以实验动手为基础的理论课程。其主要以化学分析为基础,根据物质分子的一些理化特征:酸碱特性,氧化还原特性等用一些化学试剂、仪器设备等对一些物质成分进行定性定量的分析。当代的化学分析其主要应用于食品行业。通过一些理化特性对食品中的营养素、添加剂、有害物质进行测定,对现在食品的检测、研发等具有重要意义。 蛋白质的组成: 蛋白质是复杂的含氮有机化合物,分子质量很大,主要化学元素为C、H、O、N,在莫些蛋白质中还含有P、S、C u、F e、Ⅰ等元素。这些元素在蛋白质中的含量如下表:

从表中可以看出,蛋白质的平均含氮量为16%,这也是蛋白质元素组成的一个特点,也是凯氏(kjedahl)定氮法测定蛋白质含量的一个计算基础: 蛋白质含量(%)=蛋白质含氮量(%)*6.25 式中6.25即16%的倒数为1g氮含量。由于食物中另外两种重要的营养元素——碳水化合物、脂肪中含有C、H、O,不含N,所以含氮是区别于其他有机物的主要标志。 蛋白质在人体中的重要性及其测定意义: 蛋白质是生命存在的物质基础,是构成生物体细胞组织的重要成分,一切有生命的活体均含有不同类型的蛋白质。蛋白质又是食品的重要组成成分之一,也是食品中重要营养元素指标。蛋白质主要为人体提供必需的氨基酸,在构成蛋白质的20中主要氨基酸中亮氨酸、异亮氨酸、赖氨酸、苯丙氨酸、蛋氨酸、苏氨酸、色氨酸和缬氨酸8中氨基酸在人体中不能合成,必须依靠食品提供,在正常情况下,视频提供的总热量中蛋白质提供11%--13%。部分蛋白质是生物催化剂如:酶和激素,以控制机体的生长、消化、代谢、分泌和能量转意等变化,蛋白质还是人体免疫作用所必需的物质,可以形成抗体以预防疾病的感染。因此,蛋白质是人体重要的营养物质也是食品中重要的营养成分,此外,在食品加工过程中,蛋白质及其分解产物对食品色、香、味和产品质量都有一定的影响,。测定食品中蛋白质的含量,对于评价食品的营养价值,合理开发利用食品资源,提高食品加工质量,优化食品配方,核算经济成本和控制生产过程均具有重要意义。

蛋白质的测定方法

蛋白质的测定方法 测定食物中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。 5.2按图装好定氮装置,于水蒸气发生瓶内装水至约2/3处,加甲基红指示液数滴及数毫升硫酸,以保持水呈酸性,加入数粒玻璃珠以防暴沸,加热煮沸水蒸气发生瓶内的水。 5.3向接收瓶内加入10ml ,1~2%硼酸溶液及混合指示液1滴,并使冷凝管的下端插入液面下,吸取10ml样品消化稀释液由小玻璃杯流入反应室,并以10ml水洗涤小烧杯使之流入反应室内,塞紧小玻璃杯的棒状玻璃塞。将3~10ml饱和氢氧化钠溶液倒入小玻璃杯中,提起玻璃塞使其缓缓流入反应室,立即将玻璃塞盖紧,并加水于小玻璃杯中以防漏气。加紧螺旋夹,开始蒸馏。蒸气通入反应室使氨通过冷凝管而进入接收瓶内,蒸馏2min,移动接收瓶,使冷凝管下端离开液面,然后用少量中性水冲洗冷凝管下端外部,再蒸馏1min取下接收瓶,以0.01或0.05mol/L盐酸标准溶液滴定至灰色或蓝紫色为终点。 同时吸取10ml试剂空白消化液按5.3操作。 6. 计算

可溶性蛋白的测定——李合生

植物组织中可溶性蛋白质含量的测定 考马斯亮蓝G-250染色法 一、原理 考马斯亮蓝G-250(Coomassie brilliant blue G-250)测定蛋白质含量属于染料结合法的一种。该染料在游离状态下呈红色,在稀酸溶液中当它与蛋白质的疏水区结合后变为青色,前者最大光吸收在465nm,后者在595nm。在一定蛋白质浓度范围内(1-1000ug),蛋白质与色素结合物在595nm波长下的吸光度与蛋白质含量成正比,故可用于蛋白质的定量测定。 考马斯亮蓝G-250与蛋白质结合反应十分迅速,2min左右即达到平衡。其结合物在室温下1h内保持稳定。此法灵敏度高(比斐林-酚法还高4倍),易于操作,干扰物质少,是一种比较好的定量法。其缺点是在蛋白质含量很高时线性偏低,且不同来源蛋白质与色素结合状况有一定差异。 二、材料、仪器设备及试剂 (一)材料 小麦叶片及其他植物材料 (二)仪器设备 722分光光度计,研钵,烧杯,两瓶,移液管,具塞刻度试管等。 (三)试剂 (1)标准蛋白质溶液:100ug/mL牛血清蛋白:称取牛血清蛋白25mg,加水溶解并定容至100mL,吸取上述溶液40mL,用蒸馏水稀释至100mL即可。 (2)考马斯亮蓝G-250溶液:称取100mg考马斯亮蓝G-250,溶于50mL 90%乙醇中,加入100mL 85%(W/V)磷酸,再用蒸馏水定容到1L,贮于棕色瓶中。常温下课保存一个月。 三、实验步骤 (一)标准曲线的绘制 取6支具塞试管,按表加入试剂(0—100ug/mL的标准蛋白)。 混合均匀后,向各管中加入5mL考马斯亮蓝G-250溶液,摇匀,并放置5min左右,用1cm 光径比色皿在595nm下比色测定吸光度。以蛋白质浓度为横坐标,以吸光度为纵坐标绘制标准曲线。 绘制标准曲线的各试剂加入量 (二)样品测定 (1)样品提取:称取鲜样0.5g,用5mL蒸馏水或缓冲液研磨成匀浆后,10000r/min离心10min,取上清液1.0mL(视蛋白质含量适当稀释)于试管中。 (2)吸取样品提取液1.0mL,放入具塞试管中(每个样品重复2次),加入5ml考马斯亮蓝G-250溶液,充分混合,放置2min后再595nm下比色,测定吸光度,并通过标准曲线查得

蛋白质测定实验报告

蛋白质测定方法——化学报告

蛋白质的检测 酚试剂法灵敏度较高 20~250mg 费时蛋白质在碱性溶 液中其肽键与 Cu2+螯合,形成 蛋白质一铜复合 物,此复合物使 酚试剂的磷钼酸 还原,产生蓝色 化合物 酚类、柠檬 酸、硫酸铵、 tris缓冲液、 甘氨酸、糖 类、甘油等均 有干扰作用 由上表可大致了解五种检测蛋白质的方法,下面以实验的形式进行详细阐述:

1 材料与方法 1.1 仪器材料 (1)仪器:凯氏定氮仪、紫外分光光度计、可见光分光光度计、工作离心机、布氏漏斗、抽滤泵。 (2)试剂及原材料:牛奶、酸奶、豆浆、0.12mol/LpH=4. 7醋酸- 醋酸钠缓冲液、乙醇-乙醚等体积混合液、浓H2SO4 、40%氢氧化钠、30%过氧化氢、2%硼酸溶液、0. 050molPL标准盐酸溶液、硫酸钾- 硫酸铜接触剂、混合指示剂、标准蛋白溶液、双缩脲试剂、考马斯亮蓝G- 250试剂。 1.2 实验方法 (1)凯氏定氮法测定蛋白质含量 将待测样品与浓硫酸共热,含氮有机物即分解产生氨(消化) ,氨又与硫酸作用,变成硫酸铵。为了加速消化,可以加入CuSO4 作催化剂和加入K2SO4 以提高溶液的沸点,而加入30%过氧化氢有利于消化溶液的澄清。消化好的样品在凯氏定氮仪内经强碱碱化使之分解放出氨,借蒸汽将氨蒸至定量硼酸溶液中,然后用标准盐酸溶液进行滴定,记录,计算出样品含氮量。每个样品做三次重复测定,取平均值。 (2)紫外吸收法测定蛋白质含量 蛋白质分子中,酪氨酸、苯丙氨酸和色氨酸残基的苯环含有共轭双键,使蛋白质具有吸收紫外光的性质,吸收峰在280nm处,其吸光度(即光密度值)与蛋白质含量成正比。此外,蛋白质溶液在238nm的光吸收值与肽键含量成正比。利用一定波长下,蛋白质溶液的光吸收值与蛋白质浓度的正比关系,可以进行蛋白质含量的测定。 紫外吸收法简便、灵敏、快速,不消耗样品,测定后仍能回收使用。低浓度的盐,例如, 生化制备中常用的(NH4)2SO4 等和大多数缓冲液不干扰测定,特别适用于柱层析洗脱液的快速连续检测,因为此时只需测定蛋白质浓度的变化,而不需知道其绝对值。 此法的特点是测定蛋白质含量的准确度较差,干扰物质较多,在用标准曲线法测定蛋白质含量时,对那些与标准蛋白质中酪氨酸和色氨酸含量差异大的蛋白质有一定的误差,故该法适于用测定与标准蛋白质氨基酸组成相似的蛋白质。若样品中含有嘌呤、嘧啶及核酸等吸收紫外光的物质,会出现较大的干扰。核酸的干扰可以通过查校正表,再进行计算的方法加以适当的校正。但是因为不同的蛋白质和核酸的紫外吸收是不相同的,虽然经过校正,测定的结果还是存在一定的误差。 此外,进行紫外吸收法测定时,由于蛋白质吸收高峰常因pH的改变而有变化,因此要注意溶液的pH值,测定样品时的pH要与测定标准曲线的pH相一致。取待测样品制成蛋白浓度大约在0. 1~1. 0mgPmL的蛋白质溶液,用紫外分光光度计进行比色,对照标准曲线得出样品含氮量。每个样品做3次重复测定,取平均值。 (3)双缩脲法测定蛋白质含量

蛋白质含量测定方法及其比较资料2

蛋白质含量测定法(一) 蛋白质含量测定法,是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种古老的经典方法,即定氮法,双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有一种近十年才普遍使用起来的新的测定法,即考马斯亮蓝法(Bradford法)。其中Bradford法和Lowry法灵敏度最高,比紫外吸收法灵敏10~20倍,比Biuret法灵敏100倍以上。定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。 五种蛋白质测定方法比较

值得注意的是,这后四种方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这四种方法测定,有可能得出四种不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 考马斯亮蓝法(Bradford法),由于其突出的优点,正得到越来越广泛的应用。 一、微量凯氏(Kjeldahl)定氮法 样品与浓硫酸共热。含氮有机物即分解产生氨(消化),氨又与硫酸作用,变成硫酸氨。经强碱碱化使之分解放出氨,借蒸汽将氨蒸至酸液中,根据此酸液被中和的程度可计算得样品之氮含量。若以甘氨酸为例,其反应式如下: NH2CH2COOH+3H2SO4——2CO2+3SO2+4H2O+NH3 (1) 2NH3+H2SO4——(NH4)2SO4 (2) (NH4)2SO4+2NaOH——2H2O+Na2SO4+2NH3 (3) 反应(1)、(2)在凯氏瓶内完成,反应(3)在凯氏蒸馏装置中进行。 为了加速消化,可以加入CuSO4作催化剂,K2SO4以提高溶液的沸点。收集氨可用硼酸溶液,滴定则用强酸。实验和计算方法这里从略。 计算所得结果为样品总氮量,如欲求得样品中蛋白含量,应将总氮量减去非蛋白 氮即得。如欲进一步求得样品中蛋白质的含量,即用样品中蛋白氮乘以6.25即得。 二、双缩脲法(Biuret法) (一)实验原理 双缩脲(NH3CONHCONH3)是两个分子脲经180℃左右加热,放出一个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能过一个中间碳原子相连的肽键,这类化合物都有双缩脲反应。 紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。测定范围为1-10mg蛋白质。干扰这一测定的物质主要有:硫酸铵、Tris缓冲液和某些氨基酸等。 此法的优点是较快速,不同的蛋白质产生颜色的深浅相近,以及干扰物质少。主要的缺点是灵敏度差。因此双缩脲法常用于需要快速,但并不需要十分精确的蛋白质测定。 (二)试剂与器材

食品中蛋白质的测定方法

食品中蛋白质的测定方法 蛋白质的测定方法分为两大类:一类是利用蛋白质的共性,即含氮量,肽链和折射率测定蛋白质含量,另一类是利用蛋白质中特定氨基酸残基、酸、碱性基团和芳香基团测定蛋白质含量。但是食品种类很多,食品中蛋白质含量又不同,特别是其他成分,如碳水化合物,脂肪和维生素的干扰成分很多,因此蛋白质的测定通常利用经典的剀氏定氮法是由样品消化成铵盐蒸馏,用标准酸 液吸收,用标准酸或碱液滴定,由样品中含氮量计算出蛋白质的含量。由于食品中蛋白质含量不同又分为凯氏定氮常量法、半微量法和微量法,但它们的基本原理都是一样的。 一凯氏定氮法 我们在检验食品中蛋白质时,往往只限于测定总氮量,然后乘以蛋白质核算系数,得到蛋白质含量,实际上包括核酸、生物碱、含氮类脂、叶啉和含氮色素等非蛋白质氮化合物,故称为粗蛋白质。 (一) 、常量凯氏定氮法 衡量食品的营养成分时,要测定蛋白质含量,但由于蛋白质组成及其性质的复杂性,在食品分析中,通常用食品的总氮量表示,蛋白质是食品含氮物质的主要形式,每一蛋白质都有其恒定的含氮量,用实验方法求得某样品中的含氮量后,通过一定的换算系数。即可计算该样品的蛋白质含量。 一般食品蛋白质含氮量为l6 %,即1份氮素相当于6.25 分蛋白质,以此为换算系数6.25 ,不同类的食物其蛋白质的换算系数不同. 如玉米、高梁、荞麦, 肉与肉制品取6.25 ,大米取 5.95 、小麦粉取 5.7, 乳制品取 6.38 、大豆及其制品取5.17 ,动物胶 5.55 。 测定原理: 食品经加硫酸消化使蛋白质分解,其中氮素以氨的形式与硫酸化合成硫酸铵。然后加碱蒸馏使氨游离,用硼酸液吸收形成硼酸铵,再用盐酸标准溶液或硫酸标准溶液滴定,根据盐酸消耗量计算出总氮量,再乘以一定的数值即为蛋白质含量,其化学反应式如下。 ⑴消化反应:有机物(含C、N、H、0、P、S等元素)+H2S04 -T(NH4)2SO4+CO0 +S02f +S03+H3PO4+C02 (2) 蒸馏反应:(NH4)2SO4+2NAOH—2NH3T +2H2O+NA2SO4 2NH3+4H3B04 (NH4)2B4O7+5H2O (3) 滴定反应:(NH4)2B4O7+2HCH+5H2O T2NH4CH+4H3BC或(NH4)2B407+H2S04+5H20- (NH4)9SO4+4H2BO2 试剂与仪器: 1、硫酸钾; 2、硫酸铜;

植物体内可溶性糖和可溶性蛋白含量的测定

植物体内可溶性糖和可溶性蛋白含量的测定 摘要:目的通过标准曲线的绘制,测定白菜、芹菜、菠菜中可溶性蛋白和可溶性糖的含量,了解可溶性糖和可溶性蛋白的测定方法。方法分别用蒽酮法和考马斯亮蓝染色法来测定植物体内可溶性糖和可溶性蛋白的含量。结论 关键词:白菜;芹菜;菠菜;可溶性蛋白含量;可溶性糖含量;蒽酮法;考马斯亮蓝染色法 1 引言 植物体内的可溶性糖和可溶性蛋白含量是重要的生理生化指标。 在作物的碳素营养中,作为营养物质主要是指可溶性糖和淀粉。它们在营养中的作用主要有:合成纤维素组成细胞壁;转化并组成其他有机物如核苷酸、核酸等;分解产物是其他许多有机物合成的原料,如糖在呼吸过程中形成的有机酸,可作为NH 3 的受体而转化为氨基酸;糖类作为呼吸基质,为作物的各种合成过程和各种生命活动提供了所需的能量。由于碳水化合物具有这些重要的作用,所以是营养中最基本的物质,也是需要量最多的一类。 可溶性蛋白是植物体内氮素存在的主要形式,其含量的多少与植物的代谢和衰老有密切的关系,同时它与植物体维持渗透压抗脱水也有很大关系。 白菜是十字花科芸薹属叶用蔬菜,味道鲜美可口,营养丰富,素有“菜中之王”的美称,为广大群众所喜爱。芹菜属伞形科植物,富含蛋白质、碳水化合物、胡萝卜素、B族维生素、钙、磷、铁、钠等,同时,具有有平肝清热,祛风利湿,清肠利便、润肺止咳、降低血压、健脑镇静的功效。菠菜藜科一年生草本植物,菠菜含有丰富的维他命A、维他命C及矿物质,它对各种贫血症和糖尿病、肺结核、高血压、风火赤眼等诸多疾病可起辅助治疗作用。 2 材料与方法 2.1 植物体内可溶性糖含量的测定 2.1.1材料 新鲜的白菜、芹菜、菠菜叶片(剪碎后各取0.5—1.0g) 2.1.2试剂 葡萄糖标准溶液(200ug/ml)、蒽酮试剂 2.1.3仪器设备 分光光度计;分析天平;恒温水浴;试管;三角瓶;移液管;剪刀;玻璃棒;滤纸;研钵 2.1.4测定方法 样品中可溶性糖的提取:称取剪碎混匀的新鲜样品0.5 ~1.0 g (或干样粉5~100 mg ),放入大试管中,加入15 ml 蒸馏水,在沸水浴中煮沸20 min,取出冷却,过滤入100 ml 容量瓶中,用蒸馏水冲洗残渣数次,定容至刻度。 标准曲线制作:取6 支大试管,从0~5分别编号,按下表加入各试剂。 试剂管号 0 1 2 3 4 5 200ug/ml葡萄糖标准溶液(ml)0 0.2 0.4 0.6 0.8 1.0 蒸馏水(ml) 1.0 0.8 0.6 0.4 0.2 0 蒽酮试剂(ml) 5.0 5.0 5.0 5.0 5.0 5.0 葡萄糖量(ug)0 20 40 60 80 100

蛋白质含量测定方法汇总

实验七蛋白质含量测定 测定蛋白质的定量方法有很多,目前常用的有染料法,双缩脲(Biuret)法,酚试剂法(Lowry)法及紫外吸收法。 [目的要求] 1.掌握测定蛋白质的含量基本方法。 2.了解染料法、双缩脲法、Lowry法和紫外吸收法测定原理。 一、染料法 [实验原理] 在酸性溶液中染料考马斯亮蓝G-250与蛋白质结合,此时考马斯亮蓝G-250颜色从红色变为蓝色,吸收高峰从460nm移至595nm。利用这个原理可以测定蛋白质含量。 该法近年在某些方面有取代经典的Lowry法趋势,因为它操作简单,反应时间短,染料-蛋白质颜色稳定,抗干扰性强。本法的缺点是:对于那些与标准蛋白氨基酸组成有较大差异的蛋白质,有一定误差,因为不同的蛋白质与染料的结合是不同的,故该法适合测定与标准蛋白质氨基酸组成相近的蛋白质。 [器材] 吸量管;试管;721型分光光度计 [试剂] 1.标准牛血清白蛋白溶液:配成0.1mg/ml的溶液。 2.待测蛋白质溶液。 3.染料溶液:称取考马斯亮蓝G-250 0.1g溶于95%的酒精50ml,再加入85%的浓磷酸100ml,用水稀释至1000ml,混匀备用。

[操作步骤] 1.标准曲线的绘制: 按上表分别向各支试管内加入各种试剂,充分混匀,5min后在595nm波长处以0号管调零,测定各管吸光度值(A)。以吸光度值为纵坐标,蛋白质浓度为横坐标绘制标准曲线。 2.样品测定: 取1ml样品溶液(约含25~250微克蛋白质),加入染料溶液5ml混匀,5min后测定其595nm吸光度值,对照标准曲线求得蛋白质浓度。 二、双缩脲(Biuret)法测定蛋白质含量 [实验原理] 在碱性溶液中,双缩脲(H2N-CO-NH-CO-NH2)与二价铜离子作用形成紫红色的络合物,这一反应称双缩脲反应。凡分子中含二个或二个以上酰胺基(—CO-NH2),或与此相似的基团[如—CH2-NH2,—CS-NH2,—C(NH)NH2]的任何化合物,无论这类基团直接相连还是通过一个碳或氮原子间接相连,均可发生上述反应。蛋白质分子含有众多肽键(—CO-NH—),可发生双缩脲反应,且呈色强度在一定浓度范围内与肽键数量即与蛋白质含量

食物中蛋白质含量的测定

一、实验摘要: 蛋白质是含一定量氮的有机化合物。其测定方法也有很多种。不同的方法都有其优点和缺点,以及它们的适用范围不同。 紫外吸收法(方便快捷,0.2-2mg/ml) 凯氏定氮法(粗蛋白测定,0.2 – 2.0mg /ml) 双缩脲法(1-10mg /ml) 福林酚法(0.005-0.10mg /ml) G250 (0.025-0.20mg /ml) (考马氏亮蓝法) BCA法(0.010-1.2mg/ml;0.0005-0.001mg/ml) 此次实验采用牛奶样品在凯氏烧瓶中经浓硫酸和催化剂消化后,使蛋白质分解,产成的氨与硫酸结合生成硫酸铵,再在强碱条件下蒸馏出氨,并用硼酸吸收,以标准盐酸滴定,根据标准酸消耗的量,乘以一定系数,即可计算样品中蛋白质的含量。此次实验中使用的是乳制品,系数F=6.38.这种测定方法即为凯氏定氮法。因为食品中除蛋白质外,还含有其他含氮物质,所以此蛋白质称为粗蛋白质。此次实验后,我们组的最终得率为2.77%。 二、实验目的: 1、学习凯氏定氮法测定蛋白质的原理 2、掌握凯氏定氮法的操作技术,包括样品的消化处理,蒸馏、滴定及蛋白 质含量计算等 3、侧面了解测定食品中蛋白质含量的多种方法和优劣 三、基本原理: 利用浓硫酸及催化剂与食品试样一同加热消化,使蛋白质分解,其中C、H 形成CO 2、H 2 O逸出,而氮以氨的形式与硫酸作用,形成硫酸铵留在酸液中。然后 将消化液用NaOH碱化,蒸馏,使氨游离,用水蒸气蒸出,被硼酸吸收。用标准盐酸溶液滴定所生成的硼酸铵,从消耗的盐酸标准液计算出总氮量,再折算为粗蛋白含量。 1.有机物中的氮在强热和CuSO4,浓H2SO4作用下,消化生成(NH4)2SO4 反应式为:H2SO4==SO2↑+ H2O +[O] R-CH2-COOH+[O]==R-CO-COOH+ NH3↑

可溶性蛋白质含量测定

考马斯亮蓝法测定可溶性蛋白质含量 一、原理 考马斯亮蓝G-250(Coomassie brilliant blue G-250)测定蛋白质含量属于染料结合法的一种。该染料在游离状态下呈红色,在稀酸溶液中当它与蛋白质的疏水区结合后变为青色,前者最大光吸收在465nm,后者在595nm在一定蛋白质浓度范围内(1-1000μg),蛋白质与色素结合物在595nm波长下的吸光度与蛋白质含量成正比,故可用于蛋白质的定量测定。 考马斯亮蓝G-250于蛋白质结合反应十分迅速,2min左右即达到平衡。其结合物在室温下1h内保持稳定。此法灵敏度高,易于操作,干扰物质少,是一种比较好的定量法。其缺点是在蛋白质含量很高时线性偏低,且不同来源蛋白质与色素结合状况有一定差异。 二、材料、仪器设备及试剂 1、材料:小麦叶片、马铃薯块茎、或其他植物材料 2、仪器设备:分光光度计、研钵、烧杯、移液管 3、试剂 (1)标准蛋白质溶液:100μg·ml-1牛血清白蛋白:称取牛血清白蛋白25mg,加水溶解并定容至100ml,吸取上述溶液40ml,用蒸馏水稀释至100ml即可。 (2)考马斯亮蓝G-250溶液:称取100mg考马斯亮蓝G-250,溶于50ml90%乙醇中,加入100ml 85%(W/V)的磷酸,再用蒸馏水定容到1L,贮于棕色瓶中,常温下可保存一个月。 三、实验方法及步骤 1、标准曲线的绘制 取6支具塞试管,按表加入试剂。混合均匀后,向各管中加入5ml考马斯亮蓝G-250溶液,摇匀,并放置5min左右,在595nm下比色测定吸光度。以蛋白质浓度为横坐标,以吸光度为纵坐标绘制标准曲线。 管号123456 标准蛋白质(ml)0 蒸馏水量(ml)0 蛋白质含量(μg)020*********

几种蛋白质含量测定方法的比较

几种蛋白质含量测定方法的比较 【摘要】:蛋白质含量测定方法,是生物化学研究中最常用、最基本的分析之一。目前常 用的方法有凯氏定氮法、双缩脲法(Biuret)、紫外吸收法、考马斯亮蓝法(Bradford),Folin —酚试剂法(Lowry)杜马斯燃烧法。其中Bradford 法灵敏度颇高,比紫外吸收法灵敏10~20 倍,比Biuret法灵敏100 倍以上。凯氏定氮法虽然比较复杂,但较准确,往往以定氮法测定的蛋白质作为其他方法的标准蛋白质。过去Folin—酚试剂法法是应用最广泛的一种方法,由于其试剂乙的配制较为困难(现在已可以在本公司订购),近年来逐渐被考马斯亮兰法所取代。测定农产品中全氮的凯氏定氮法在许多国家已被杜马斯然烧定氮法所代替,杜马斯燃烧法是基于在高温下(大约 900 ℃),通过控制进氧量、氧化消解样品的原理而进行氮测定的。这6种方法并不能在任何条件下适用于任何形式的蛋白质,每种方法都有其优缺点,在选择方法时应考虑:⑴实验对测定所要求的灵敏度和精确度;⑵蛋白质的性质;⑶溶液中存在的干扰物质;⑷测定所要花费的时间 【关键词】:凯氏定氮法双缩脲法紫外吸收法考马斯亮蓝法 Folin—酚试剂法杜马斯燃烧法 一、凯氏定氮法 1.1原理 凯氏定氮法测定蛋白质分为样品消化、蒸馏、吸收和滴定4 个过程。其原理是样品中含氮有机化合物与浓硫酸在催化剂作用下共热消化,含氮有机物分解产生氨,氨又与硫酸作用,变成硫酸铵。然后加碱蒸馏放出氨, 氨用过量的硼酸溶液吸收,再用盐酸标准溶液滴定求出总氮量换算为蛋白质含量。 1.2特点 凯氏定氮法是目前分析有机化合物含氮量常用的方法,是测定试样中总有机氮最准确和最简单的方法之一,被国际国内作为法定的标准检验方法。凯氏定氮法样品的最佳消化条件为硫酸铜2.50 g, 硫酸钾0.10 g,浓硫酸4.00 mL;硫酸铜的用量为影响消化时间的主要因素,硫酸钾和浓硫酸用量为第二和第三主要因素;用此最佳条件做实验, 消化时间仅为12 min;与其他硫酸铜、硫酸钾、浓硫酸用量方法对比,该法所需消化时间最短,试剂用量减少,可降低实验成本,也降低了对环境的污染。 凯氏定氮法适用范围广泛,测定结果准确,重现性好,但操作复杂费时,试剂消耗量大。若采用模块式消化炉代替传统的消化装置, 可同时测定几份样品,节省时间,提高了工作效率,适用于批量蛋白质的测定,具有准确、快速、简便、低耗、稳定的优点。 二、双缩脲法(Biuret ) 2.1原理 双缩脲(NH3CONHCONH3)是两个分子脲经180 ℃左右加热,放出1 个分子氨后得到的产物。在强碱性溶液中,双缩脲与CuSO4 形成紫色络合物,称为双缩脲反应。凡具有两个酰胺基或两个直接连接的肽键,或能够以1 个中间碳原子相连的肽键,这类化合物都有双缩脲反应。紫色络合物颜色的深浅与蛋白质浓度成正比,而与蛋白质分子量及氨基酸成分无关,故可用来测定蛋白质含量。

食品中蛋白质的含量测定

蛋白质的测定方法 测定食品中的蛋白质含量有二种方法,一是凯氏微量法,二是自动定氮分析法。 一.凯氏微量法 有手工滴定定氮和自动定氮仪定氮,实验者可根据经济条件设备而定。 1.原理 蛋白质是含氮的有机化合物。食品与硫酸和催化剂一同加热消化,使蛋白质分解,分解的氨与硫酸结合生成硫酸铵。然后碱化蒸馏使氨游离,用过量硼酸吸收后再以硫酸或盐酸标准溶液滴定,根据酸的消耗量乘以换算系数,即为蛋白质含量。 2NH2(CH2)2COOH+13H2SO4 (NH4)2SO4+6CO2+12SO2+16H2O (NH4)2SO4+2NaOH 2NH3+2H2O+Na2SO4 2.方法 本法参照GB 5009.5 -85 适用于各类食品及饲料中蛋白质的测定 3.试剂 所有试剂均用不含氨的蒸馏水配制。试剂均为分析纯。 3.1硫酸铜 3.2硫酸钾 3.3浓硫酸 3.4 2%硼酸溶液(或1%的硼酸) 3.5 混合指示剂:1份0.1%甲基红乙醇溶液与5份0.1%溴甲酚绿乙醇溶液临用时混合。也可用2 份0.1%甲基红乙醇溶与1份0.1%次甲基蓝乙醇溶液临用时混合。 3.6饱和氢氧化钠:500g氢氧化钠加入500ml水中,搅拌溶解,冷却后放置数日,澄清后使用。 3.7 0.01mol/L或0.05mol/L盐酸标准溶液:需标定后使用(配制及标定方法见附录) 4.仪器 消化炉凯氏定氮蒸馏装置万分之一电子天平 凯氏定氮蒸馏装置:如图所示 5. 操作步骤 5.1样品处理:精密称取0.1~2.0g固体样品或2~5g半固体样品或吸取液体样品5~20ml,放入100ml 或500ml凯氏烧瓶中,加入0.2g硫酸铜,0.3g硫酸钾及3~20ml浓硫酸,放置过夜后小心加热,待内容物全部炭化,泡沫完全停止后,加强火力,并保持瓶内液体微沸,至液体呈蓝绿色澄清透明后,取下放冷后用约2~10ml蒸馏水冲洗瓶壁,混匀后继续加热至液体呈蓝绿透明,取下放冷,小心加10~20ml水混匀,放冷后,移入100ml容量瓶中,并用少量水洗定氮瓶,洗液并入容量瓶中,再加水至刻度,混匀备用。取与处理样品相同量的硫酸铜、硫酸钾、硫酸按同一方法做试剂空白实验。

可溶性蛋白质含量的测定

植物体内可溶性蛋白质含量的测定 植物体内的可溶性蛋白质含量是一个重要的生理生化指标,如在研究每一种酶的作用时常以比活(酶活力单位/毫克蛋白质,unIT/Mg ProTeIn)表示酶活力大小及酶制剂纯度,这就需要测定蛋白质含量。常用的测定方法有LoWry法和考马斯亮蓝G-250染色法,本实验将分别介绍这两种方法。 方法一:LoWry法(劳里法) 【原理】 LoWry法是双缩脲法(BIureT)和福林酚法(FolIn-酚)的结合与发展。其原理是蛋白质溶液用碱性铜溶液处理后,碱性铜试剂与蛋白质中的肽键作用产生双缩脲反应,形成铜—蛋白质的络合盐。再加入酚试剂后,在碱性条件下,这种被作用的蛋白质上的酚类基团极不稳定,很容易还原酚试剂中的磷钨酸和磷钼酸(PHosPHoMolyBdATe &PHosPHoTungsTATe),使之生成磷钨蓝和磷钼蓝的混合物。这种溶液蓝色的深浅与蛋白的含量成正相关,所以可以用于蛋白质含量的测定。LoWry法除使肽链中酪氨酸、色氨酸和半胱氨酸等显色外,还使双缩脲法中肽键的显色效果更强烈,其显色效果比单独使用酚试剂强3~15倍,约是双缩脲法的100倍。由于肽键显色效果增强,从而减少了因蛋白质种类不同引起的偏差。LoWry法适于微量蛋白的测定,对多个样品同时测定较为方便。但对不溶性蛋白和膜结合蛋白必须进行预处理(如加入少量的SDS)。 1.双缩脲法的原理双缩脲(NH2-CO-NH-CO-NH2)在碱性溶液中可与铜离子产生 紫红色的络合物,这一反应称为双缩脲反应。因为蛋白质中有多个肽键,也能与铜离子发生双缩脲反应,且颜色深浅与蛋白质的含量的关系在一定范围内符合比尔定律,而与蛋白质的氨基酸组成及分子量无关,所以可用双缩脲法测定蛋白质的含量。 双缩脲反应主要涉及肽键,因此受蛋白质特异性影响较小。且使用试剂价廉易得,操作简便,可测定的范围为1~10Mg蛋白质,适于精度要求不太高的蛋白质含量的测定,能测出的蛋白质含量须在约0 5Mg以上。双缩脲法的缺点是灵敏度差、所需样品量大。干扰此测定的物质包括在性质上是氨基酸或肽的缓冲液,如TrIs缓冲液,因为它们产生阳性呈色反应,铜离子也容易被还原,有时出现红色沉淀。 2.福林-酚法的原理该方法是双缩脲法的发展,包括两步反应: (1)在碱性条件下,蛋白质与铜作用生成蛋白质—铜络合物。

相关文档