文档库 最新最全的文档下载
当前位置:文档库 › 运筹学_第3章_运输问题习题

运筹学_第3章_运输问题习题

运筹学_第3章_运输问题习题
运筹学_第3章_运输问题习题

第三章运输问题

3.1农产品经销公司有三个棉花收购站,向三个纺织厂供应棉花。三个收购站A1、A2、A3的供应量分别为50kt、45kt和65kt,三个纺织厂B1、B2、B3的需求量分别为20kt、70kt和70kt。已知各收购站到各纺织厂的单位运价如表3—1所示(单位:千元/kt),问如何安排运输方案,使得经销公司的总运费最少?(只建模型,不求解)

设x ij表示从A i运往B j的棉花数量,则其运输量表如下表所示。

表3—2

min f= 4x11+8x12+5x13+6x21+3x22+6x23+2x31+5x32+7x33

x11+x12+x13 = 50

x21+x22+x23 = 45

x31+x32+x33 = 65

x11+x21+x31 = 20

x12+x22+x32 = 70

x13+x23+x33 = 70

x ij≥0,i=1,2,3;j=1,2,3

例3.2设有某物资从A1,A2,A3处运往B1,B2,B3,B4四个地方,各处供应量、需求量及单位运价见下表。问应如何安排运输方案,才能使总运费最少?

解:先用最小元素法求解。

用位势法对基可行解进行最优性检验。

位势方程组为

u1+v1=3 u1+v3=6 u1+v4=4

u2+v1=2

u3+v2=3

u3+v3=8

取u1=0,解上述方程组得

u1=0

u2=-1

u3=2

v1=3

v2=1

v3=6

v4=4

各非基变量的检验数为

σ12 =c12-(u1+v2)=7-(0+1)= 4>0

σ22 =c22-(u2+v2)=4-(-1+1)= 2>0

σ23 =c23-(u2+v3)=3-(-1+6)= -2<0

σ24 =c24-(u2+v4)=3-(-1+4)= 0

σ31 =c31-(u3+v1)=8-(2+3)= 3>0

σ34 =c34-(u3+v4)=9-(2+4)= 3>0

由于σ23 =-2<0,故表中基可行解不是最优解。

由于σ

该闭回路上,偶数顶点上的基变量最小值为5,以该调整量进行调整得到如表3—11的新的基可行解。

新基可行解的位势方程组为

u1+v1=3 u1+v4=4 u2+v1=2

u2+v3=3

u3+v2=3

u3+v3=8

取u1=0,解上述方程组得

u1=0 u2=-1 u3=4 v1=3 v2=-1 v3=4 v4=4

各非基变量的检验数为

σ12 =7-(0-1)= 8>0 σ13 =6-(0+4)= 2>0

σ22 =4-(-1-1)= 6>0 σ24 =3-(-1+4)= 0 σ31 =8-(4+3)= 1>0 σ34 =9-(4+4)= 1>0

由于所有非基变量的检验数均大等于零,故从表3—11中得到最优解为

x11=25,x14=25,x21=15,x23=5,x32=20,x33=10,其它x ij=0

最优目标值为

f*=3×25+4×25+2×15+3×5+3×20+8×10=360

此外,由于σ24 = 0,故此问题有另一最优基可行解。具体求法是在表3—11中,以x24为进基变量作闭回路,进行调整后得到。

第七章 运筹学 运输问题案例

第七章运输问题 一个农民承包了6块耕地共300亩,准备播种小麦、玉米、水果和蔬菜四种农产品, 问如何安排种植计划,可得到最大的总收益。 解: 这是一个产销平衡的运输问题。可以建立下列的运输模型: 代入产销平衡的运输模板可得如下结果: 得种植计划方案如下表:

# 某客车制造厂根据合同要求从当年开始起连续四年年末交付40辆规格型号相同的大型客车。该厂在这四年内生产大型客车的能力及每辆客车的成本情况如下表: 根据该厂的情况,若制造出来的客车产品当年未能交货,每辆车每积压一年的存储和维护费用为4万元。在签订合同时,该厂已储存了20辆客车,同时又要求四年期未完成合同后还需要储存25辆车备用。问该厂如何安排每年的客车生产量,使得在满足上述各项要求的情况下,总的生产费用加储存维护费用为最少 ^ 解:得运价表(产大于销的运输模型)如下: | 得生产安排的方案:

第一季度正常上班生产20台,加班27台,拿出正常生产18台和加班2台,加上年前储存的20台,满足本季度的40台; 第二季度正常生产38台,不安排加班。加上第一季度储存的2台,满足本季度的40台; 第三季度正常生产15台,不安排加班。加上第一季度储存的25台,满足本季度的40台; 第四季度正常生产42台。加班生产23台。拿出正常生产的17台的加班生产的23台满足本季度的40台。剩余25台以后务用。 如下表表示: 某企业生产有甲、乙、丙、丁四个分厂生产同一种产品,这四个分厂的产量分别为:200吨、300吨、400吨和100吨,这些产品供应给A、B、C、D、E、F六个地区,六个地区的需求量分别为:200吨、150吨、350吨、100吨、120吨、120吨。由于工艺、技术的差别,各分厂运往各销售地区的单位运价(万元/吨)、各厂单位产品成本(万元/吨)和各销地的销售价格(万元/吨)如下表: (万元/吨)

浅谈运筹学中的运输问题.doc11

浅谈运筹学中的运输问题 摘 要:运筹学自二战以来开始打来那个应用在除战争以外的许多领域,尤其在企业管理中表现的尤为突出。运筹学的思想贯穿了企业管理的始终,在企业战略管理、生产计划、市场营销、运输问题、库存管理、人事管理、财务会计等各个方面都具有重要的作用,对企业管理的发展产生重要影响。这里我们主要对运输问题几种方法做一个简单的介绍。 关键词:最下元素法;沃格尔法(V ogel ) 首先我们先来介绍运输问题的数学模型:设有m 个产地(记作A 1,A 2,A 3,…,Am ),生产某种物资,其产量分别为a 1,a 2,…,am ;有n 个销地(记作B 1,B 2,…,Bn ),其需要量分别为b 1,b 2,…,bn ;且产销平衡,即 。从第i 个产地到j 个销地的单位运价为cij ,在满足各地需要的前提下,求总运输费用最小的调运方案。 设xij (i =1,2,…,m ;j =1,2,…,n )为第i 个产地到第j 个销地的运量,则数学模型为: n j m i x n j b x m i a x ij j m i ij n j i ij ,,1;,,1, 0,,1,,11 1 ==≥====∑∑== ∑∑ ===n j ij ij m i x c z 1 1 min (!)最小元素法:最小元素法的思想是就近优先运送,即最小运价Cij 对应的变量xij 优先赋值 {} j i ij b a x ,min = 然后再在剩下的运价中取最小运价对应的变量赋值并满足约束,依次下去,直到最后一个初始基可行解。 下面举一个例子:求表3-7给出的运输问题的初始基本可行解。

解: 在x 12、x 22、x 33、x 34中任选一个变量作为基变量,例如选x 12 初始基本可行解可用下列矩阵表示 ??????????634610 表3-8中,标有符号 的变量恰好是3+4-1=6个且不包含闭回路, {} 323123141312,,,,,x x x x x x 是一组基变量,其余标有符号×的变量是非基变量, (2)运费差额法(V ogel ):最小元素法只考虑了局部运输费用最小,对整个产销系统的总运输费用来说可能离最优值较远。有时为了节省某一处的运费,而在其它处可能运费很大。运费差额法对最小元素法进行了改进,考虑到产地到销地的最小运价和次小运价之间的差额,如果差额很大,就选最小运价先调运,否则会增加总运费。例如下面两种运输方案, 20101258515 10??????=?C 2010125815510? ?????=?C 15 15 15 15 前一种按最小元素法求得,总运费是Z 1=10×8+5×2+15×1=105,后一种方案考虑到C 11与C 21之间的差额是8-2=6,如果不先调运x 21,到后来就有可能x 11≠0,这样会使总运费增加较大,从而先调运x 21,再是x 22,其次是x 12这时总运费Z 2=10×5+15×2+5×1=85

运筹学(胡运权版)第三章运输问题课后习题答案

P66: 8.某部门有3个生产同类产品的工厂(产地),生产的产品由4个销售点出售,各工厂A 1, A 2,A 3的生产量、各销售点B 1,B 2,B 3,B 4的销售量(假定单位为t )以及各工厂到销售点的单位运价(元/t )示于下表中,问如何调运才能使总运费最小? 表 解:一、该运输问题的数学模型为: 可以证明:约束矩阵的秩为r (A) = 6. 从而基变量的个数为 6. 34 33323124232221 3141 141312116115893102114124min x x x x x x x x x x x x x c z i j ij ij +++++++++++== ∑∑ ==??? ??????????==≥=++=++=++=++=+++=+++=+++4,3,2,1;3,2,1,0141214822 1016342414332313322212312111343332312423222114131211j i x x x x x x x x x x x x x x x x x x x x x x x x x ij 111213142122232431323334x x x x x x x x x x x x 712111111111111111111111111??? ? ? ? ? ? ? ? ? ???

二、给出运输问题的初始可行解(初始调运方案) 1. 最小元素法 思想:优先满足运价(或运距)最小的供销业务。

其余(非基)变量全等于零。此解满足所有约束条件,且基变量(非零变量)的个数为6(等于m+n-1=3+4-1=6). 总运费为(目标函数值) ,1013=x ,821=x ,223=x ,1432=x ,834=x ,614=x ∑∑===314 1 i j ij ij x c Z

第七章 运筹学 运输问题案例

第七章运输问题 7.1 一个农民承包了6块耕地共300亩,准备播种小麦、玉米、水果和蔬菜四种农产品, 问如何安排种植计划,可得到最大的总收益。 解: 这是一个产销平衡的运输问题。可以建立下列的运输模型: 代入产销平衡的运输模板可得如下结果: 得种植计划方案如下表: 7.2 某客车制造厂根据合同要求从当年开始起连续四年年末交付40辆规格型号相同的大型客车。该厂在这四年内生产大型客车的能力及每辆客车的成本情况如下表: 根据该厂的情况,若制造出来的客车产品当年未能交货,每辆车每积压一年的存储和维

护费用为4万元。在签订合同时,该厂已储存了20辆客车,同时又要求四年期未完成合同后还需要储存25辆车备用。问该厂如何安排每年的客车生产量,使得在满足上述各项要求的情况下,总的生产费用加储存维护费用为最少? 解:得运价表(产大于销的运输模型)如下: 第一季度正常上班生产20台,加班27台,拿出正常生产18台和加班2台,加上年前储存的20台,满足本季度的40台; 第二季度正常生产38台,不安排加班。加上第一季度储存的2台,满足本季度的40台; 第三季度正常生产15台,不安排加班。加上第一季度储存的25台,满足本季度的40台; 第四季度正常生产42台。加班生产23台。拿出正常生产的17台的加班生产的23台满足本季度的40台。剩余25台以后务用。 7.3 某企业生产有甲、乙、丙、丁四个分厂生产同一种产品,这四个分厂的产量分别为:200吨、300吨、400吨和100吨,这些产品供应给A、B、C、D、E、F六个地区,六个地区的需求量分别为:200吨、150吨、350吨、100吨、120吨、120吨。由于工艺、技术的差别,各分厂运往各销售地区的单位运价(万元/吨)、各厂单位产品成本(万元/吨)和各销地的销售价格(万元/吨)如下表:

运筹学课件第三章运输问题

第三章运输问题 一、学习目的与要求 1、掌握表上作业法及其在产销平衡运输问题求解中的应用 2、掌握产销不平衡运输问题求解方法 二、课时 6学时 第一节 运输问题及其数学模型 一、运输问题的数学模型 单一品种运输问题的典型情况:设某种物品有m 个产地A 1,A 2,…,A m ,各产地的产量分别是a 1,a 2,…,a m ;有N 个销地B 1,B 2,…,B n ,各销地地销量分别为b 1,b 2,…,b n 。假定从产地A i (i =1,2, …,m )向销地B j (j =1,2,…,n )运输单位物品的运价是c ij ,问怎样调运这些物品才能使总运费最小? 表中x ij i j ij i j 如果运输问题的总产量等于其总销量,即有 ∑∑===n j j m i i b a 1 1 则称该运输问题为产销平衡运输问题;反之,称为产销不平衡运输问题。 产销平衡运输问题的数学模型如下:

???? ? ????≥=====∑∑∑∑===+=0,...,2,1,...,2,1..min 1 111 1 ij m i j ij n j i ij m i n j ij ij x n j b x m i a x t s x c z 这就是运输问题的数学模型,它包含m ×n 个变量,(n 十m)个约束方程.其系数矩阵的结构比较松散,且特殊。 二、运输问题数学模型的特点 1、运输问题有有限最优解,即必有最优基本可行解 2、运输问题约束条件的系数矩阵A 的秩为(m+n-1) 该系数矩陈中对应于变量x ij 的系数向量p ij ,其分量中除第i 个和第m 十j 个为1以外,其余的都为零.即 A ij =(0…1…1…0)’=e i +e m+j 对产销平衡的运输问题具有以下特点: (1)约束条件系数矩阵的元素等于0或1 (2)约束条件系数矩阵的每一列有两个非零元素,对应于每一个变量在前m 个约束方程中出现一次,在后n 个约束方程中也出现一次。 此外,对于产销平衡问题,还有以下特点 (3)所有结构约束条件都是等式约束 (4)各产地产量之和等于各销地销量之和

运筹学模型在运输问题中的应用

《数值分析》课程设计非线性方程求根公式的集成与菜单调用 院(系)名称信息工程学院 专业班级12普本信计 学号1201110054 学生姓名孟浩 指导教师孔繁民 2015年6月16日

课程设计任务书 2014—2015学年第二学期 专业班级:12 普本信计学号:1201110054 姓名:孟浩 课程设计名称:运筹学 设计题目:运筹学模型在运输问题中的应用 完成期限:自2015年 5 月24 日至2015 年05 月30 日共 1 周一、设计目的 运筹帷幄之中,决胜千里之外。运筹学是多种学科的综合性学科,是最早形成的一门软科学。他把科学的方法、技术和工具应用到包括一个系统管理在内的各种问题上,以便为那些掌握系统的人们提供最佳的解决问题的办法。他用科学的方法研究与某一系统的最优管理有关问题。因此运筹学是一门有重要应用价值的学科,特别在现代科学管理中是处处离不开运筹学。为了更好的理解运筹学,我们运用运筹学知识建立数学模型来解决运输问题中的应用的问题。 二、设计要求 1、运用LINGO等工具。 2、运筹学模型在运输问题中的应用。 3、按照格式要求写出3000字文档。 三、参考文献 [1]谢金星薛毅,优化建模与LINDO/LINGO软件[M],北京:清华大学出版社. [2]吴祈宗,运筹学[M] ,北京:机械工业出版社. [3]朱德通,最优化模型与实验/应用数学系列丛书[M] ,上海:同济大学出版社 [4]谷歌地图 https://www.wendangku.net/doc/b73924686.html,/maps?q=%E4%BB%CB%AE+%BB%AF%B7%CA&ie=gbk. 工作任务与工作量要求:查阅文献资料不少于3篇,课程设计报告1篇不少于3000字 指导教师(签字):教研室主任(签字): 批准日期:年月日

运筹学在运输问题中的应用

运筹学在运输问题中的应用 关键字:运筹学运输 引言:运输是土木工程中经常遇到的问题,在工程造价中占较大的比例。如何使运输费用达到最小化,这就需要在施工前优化施工组织设计,将运筹学、网络技术等理论的设计方法应用到施工中,使得成本费用最经济。下面我们借鉴运筹学中的理论来解决运输问题。 一、运输路线最短问题。 根据运筹学中最短路径算法,寻找最短路线,就是从最后一段开始,用由后向前逐步递推的方法求卅各点到终点的最短路线,最终求得南起点到终点的最短路线。 某工程需要从点Sl运送500吨的建筑材料一个工地S1O。 首先.将图l的路线问题看成四个阶段的问题.南S1到S2,S3,S4为第一阶段;南S2,S3,S4到S5,S6,S7为第二阶段;南S5,S6,S7到S8。S9为第i阶段;南S8,S9到SIO为第四阶段。下面引进几个符号:

D(Sk,Sm)为Sk到Sm的距离,f(Sk)Sk到终点的最短距离。 (1)在第四阶段。 目前状态可以是S8或S9,可选择的下一状态是S1O,所以有 (2)在第i阶段。 目前状态可以是S5或S6或S7,可以选择的下一状态为S8或S9.所以有 (3)在第二阶段。 目前状态可以是S2或S3或S4,可以选择的下一状态为S5或S6或S7,所以有 (4)在第一阶段。 目前状态只有S1,可以选择的下一状态为S2或S3或S4.所以有 通过最短路径算法计算。可知从Sl(出发点)到S1O(终点)的最短运输路程为1080千米(权数路径距离),所走的最优路线采用“顺序追踪法”来确定,最优运输路径:S1一S3一S6—S8—S10。 二、自卸车排队问题

在工程中经常遇到材料的运输和施工之间的关系,例如铺路的碎石、沥青的运输和路面的铺设之间的关系。如果运输工作进行得太快,而施工进程跟不上,就会有太多的原料来不及施工,导致运输设备和人员的闲置。相反,如果运输进度赶不上施工,就会出现施工设备和人员的闲置。 下面以高速公路高速公路沥青路面机械化施工系统为例子进行说明。高速公路沥青路面机械化施工系统,是指以沥青混合料拌和站、自卸汽车、沥青混凝土摊铺机、初压压路机、复压压路机、终压压路机等6种主体机械组成的沥青路面铺筑机群施工系统。沥青混凝土混合料作为纽带,将这6种机械共同联系在一起。准确、协调地工作,形成在“拌和一运料一摊铺一初压一复压一终压”过程中机械间的“相互影响、相互联系、相互制约”规律,即沥青路面施工系统机群工作规律。” 要研究沥青路面施工系统机群工作规律,首先应研究、分析机群施工系统的概率规律性及机械排队数量的目的,为研究拌和站、自卸汽车、摊铺机、初压压路机、复压压路机、终压压路机的运行工作情况作准备,为该系统资源优化配置(即机械的性能与数量优化组合)提供理论依据。其中重点是研究机械排队队长分布和机械排队数量。 1、系统流程分析 系统理想的工作情况是:当沥青混合料拌和站刚拌合好l车料时,就有l辆汽车到达拌和站处并装料;当摊铺机需要进料时,就有1辆汽车到达摊铺机处并立即卸料;沥青混凝土经摊铺机摊铺后,压路机立即分别予以压实。 拌和子系统是指由拌和站与运料汽车形成的系统。汽车总数是有限的。如只有M辆汽车,每辆汽车来到系统中接受服务后仍回到原来的总体,还会再来。由于拌和站的空间比较大,运输汽车是有限的,不会出现有运输车不能进入的情况,所以问题可以归结为单服务台等待制模型M/M/1/∞。这类问题的主要特征是系统空问是无限的,允许永远排队。 设:M为运料汽车总数量;L为平均队长;λn为拌和站处汽车平均到达率;μn为拌和站服务率,即单位时间内装车数量;W为平均逗留时间;Wq为平均等待时间。则系统状态流图见图1。

相关文档
相关文档 最新文档