文档库 最新最全的文档下载
当前位置:文档库 › 概率作业纸第三章答案

概率作业纸第三章答案

概率作业纸第三章答案
概率作业纸第三章答案

第三章 随机变量的数字特征

第一节 数学期望

一、选择

1. 掷6颗骰子,令X 为6颗骰子的点数之和,则()E X =( D )

(A )42 (B )21/2 (C )7/2 (D ) 21

2. 对离散型随机变量X ,若有()k k P X x p == (1,2,3,)k = ,则当( B )时,

1

k

k k x

p ∞

=∑称为X 的数学期望。

(A )

1

k

k k x

p ∞=∑收敛 (B )1

k k k x p ∞

=∑收敛 (C ){}k x 为有界函数 (D )lim 0k k k x p →∞

=

二、填空

1. 设随机变量X 的概率密度为1,10,()1,01,0,x x f x x x +-≤≤??

=-<≤???

其它,则()E X = 0 。

2. 设连续型随机变量X 的概率密度为,01,

()0,,

kx x f x α?<<=??其它 其中,0k α>,又已知

()0.75E X =,则k = 3 ,α= 2 。 三、简答题

1.把4个球随机地放入4个盒子中去,设X 表示空盒子的个数,求()E X 。

解: ()4

446

0464A P X ===,()1234434361464C C A P X ===

()2444(22)212464C P X -===,()344

1

3464

C P X === 所以 ()6362118101236464646464

E X =?

+?+?+?= 2.设(,)X Y 的联合概率密度为212,01,

(,)0,

y y x f x y ?≤≤≤=??其它,,求()(),E X E Y 。

解:()120

01

4

(,)125

x

y x E X xf x y dxdy xdx y dy ≤≤≤=

==

????,同理()35E Y =。

第二节 随机变量函数的数学期望

一、填空

1. 设随机变量X 服从参数为1的指数分布,则数学期望()

2X

E X e

-+=4/3 。

2. 设随机变量X 服从二项分布(3,0.4)B ,则()

2

E X = 2.16 。

二、简答题

1.设随机变量X 和Y 相互独立,概率密度分别为

,0,()0,0,x X e x f x x -?>=?≤? ,0,

()0,0,y Y e y f y y -?>=?≤?

求随机变量函数Z X Y =+的数学期望。

解:因为X 和Y 相互独立,所以,0,0,

(,)()()0,,x y X Y e x y f x y f x f y --?>>==??其它

()()0

()x y E Z E X Y x y e dxdy +∞+∞

--=+=+?

?

x y x y xe dx e dy e dx ye dy +∞+∞

+∞

+∞

----=+?

???

112=+=。

2.按季节出售某种应时商品,每售出1 kg 获利润6元,如到季末尚有剩余商品,则每kg 净亏损2元,设某商店在季节内这种商品的销售量X (以kg 计)是一随机变量,X 在区间

()8,16内服从均匀分布,为使商店所获得利润最大,问商品应进多少货?

解: 设t 表示进货量,易知应取816t <<,进货t 所得利润记为()t W X ,且有

62(),8,()

()6,

16,()t X t X X t W X t t X --<

<

得[]()t E W X 最大。X 的概率密度为1

,016,

(,)80,

x f x y ?<

[]16

81()()()()8

t t t E W X W x f x dx W x dx +∞

-∞==

?? []16

82

1162()688

1432

2t t x t x dx tdx t t =

--+=--??

[]()140,t d W X t dt

=-= 得 14t =。

[]22

()10,t d E W X dt

=-<

故知当14t =时,[]()t E W X 取得极大值,且可知这也是最大值。 所以,进货14kg 时平均利润最大。

第三节 关于数学期望的定理

一、填空

1. 已知离散型随机变量X 服从参数为2的泊松分布2

2(),0,1,2,,!

k k e P X x k k -=== 则随机变量32Z X =-的数学期望()E Z = 4 。

2. 设X 服从泊松分布,已知[](1)(2)1E X X --=,则()E X = 1 。

3.设X 表示10次独立重复射击命中目标的次数,,每次射中目标的概率为0.4,则2

X 的

数学期望()

2

E X = 18.4 。

二、简答题

1. 设(,)X Y 在A 上服从均匀分布,其中A 为x 轴,y 轴及直线10x y ++=所围成的区域,求()32E X Y -+。 解:因为A 的面积为

1

2

,所以(,)X Y 的概率密度为 2,10,10,

(,)0,x y f x y -<<-<

?其它, ()00

1

1

(,)21E X xf x y dxdy xdx dy +∞+∞

-∞

-∞

--===-????

()(,)1E Y yf x y dxdy +∞+∞

-∞-∞

==-?

?

()()()32321E X Y E X E Y -+=-+=

2.一民航送客车载有20位旅客自机场开出,旅客有10个车站可以下车,如到达一个车站没有旅客下车就不停车,以X 表示停车的次数,求()E X 。(设每位旅客在各个车站下车是等可能的,并设旅客是否下车相互独立) 解: 引入随机变量 0,1,i i X i ?=?

?在第站没有人下车,在第站有人下车,

,i =1,2,

,10. 易知1210X X X X =+++ ,现在来求()E X 。

按照题意,{}209010i P X ??

== ??? {}20

91110i P X ??==- ???

所以()20

91,1,2,,1010i E X i ??

=-= ???

进而 ()()20121091018.78410E X E X X X ??

??=+++=-=?? ???????

第四节 方差与标准差

二、选择

1. 对于任意两个随机变量X 和Y ,若()()()E XY E X E Y =,则( B )

(A )()()()D XY D X D Y = (B )()()()D X Y D X D Y +=+

(C )X 和Y 独立 (D )X 和Y 不独立

2. 设两个相互独立的随机变量X 和Y 的方差分别是4和2,则随机变量32X Y -的方差是( D ) 。

(A )8 (B )16 (C )28 (D )44 3. 设随机变量ξ和η相互独立,又25X ξ=+,38Y η=-,则下列结论不正确的是( B )

(A )()4()9()D X Y D D ξη+=+ (B )()4()9()D X Y D D ξη-=- (C )()()()E X Y E X E Y +=+ (D )()()()E XY E X E Y =

二、填空

1. 设随机变量X 在区间[]1,2-上服从均匀分布,随机变量1,0,0,0,1,0X Y X X >??

==??-

, 则方差

()D Y =

8/9 。

2. 设X 是一随机变量, ()1E X =,[](1)4E X X -=, 则()D X = 4 。 三、简答题

1. 设(,)X Y 的联合概率密度为215,01,

(,)0,

xy y x f x y ?≤≤≤=??其它,,求()D X 。

解:()122005

(,)156

x

E X xf x y dxdy x dx y dy +∞

+∞

-∞-∞=

==

????, ()12232005

(,)157

x E X x f x y dxdy x dx y dy +∞+∞-∞-∞===????,

()()()225255

736252

D X

E X E X =-=-=????。

第五节 某些常用分布的数学期望与方差

三、选择

1. 设X 服从 ( C )分布,则()()E X D X =。

(A ) 正态 (B ) 指数 (C )泊松 (D )二项

2. 已知X 服从二项分布,且() 2.4E X =,() 1.44D X =,则二项分布的参数为( B )

(A )4,0.6n p == (B )6,0.4n p ==

(C )8,0.3n p == (D )24,0.1n p == 二、填空

1. 已知随机变量X 在[]0,2上服从均匀分布,则 ()

2

E X =

4/3

.

2. 设()()12P X P X ===,且X 服从参数为λ的泊松分布,则()E X = 2

()D X = 2 。

三、简答题

1. 设二维随机变量(,)X Y 在区域:01,R x y x <<<内服从均匀分布,试求 (1)X 的边缘概率密度;

(2)随机变量函数21Z X =+的方差()D Z 。

解:因为区域R 的面积为1,所以(,)X Y 的联合概率密度为

1,01,,

(,)0,x y x f x y ?<<

其它,

(1)当0x <或1x >时,()0X f x =,当01x ≤≤时,()2x

X x f x dx x -==?,

所以X 的边缘概率密度为2,01,

()0,X x x f x ≤≤?=??其它。

(2)()1

0223E X x xdx ==?,()122

0122

E X x xdx ==?

()()()22

2

2144()(())9

D Z D X D X

E X E X ??=+==-=

??

2017概率作业纸答案

第一章 随机事件及其概率 §1.1 随机事件§1.2 随机事件的概率 一、单选题 1.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( D ) (A ) “甲种产品滞销,乙种产品畅销”(B )“甲、乙两种产品均畅销” (C ) “甲种产品畅滞销” (D )“甲种产品滞销或乙种产品畅销” 2.对于事件、A B ,有B A ?,则下述结论正确的是( C ) (A )、A B 必同时发生; (B )A 发生,B 必发生; (C )B 发生,A 必发生; (D )B 不发生,A 必发生 3.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C ) (A)()()P C P AB = (B))()()(B P A P C P += (C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P 二、填空题 1. 设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示 (1)仅A 发生为:ABC ; (2),,A B C 中正好有一个发生为:ABC ABC ABC ++; (3),,A B C 中至少有一个发生为:U U A B C ; (4),,A B C 中至少有一个不发生表示为:U U A B C . 2.某市有50%住户订日报,65%住户订晚报,85%住户至少订这两种报纸中的一种,则同时订这两种报纸的住户所占的百分比是30%. 3. 设111 ()()(),()()(),(),4816 P A P B P C P AB P AC P BC P ABC === ====则 ()P A B C ??= 7 16 ;()P ABC =9 16;(,,)P A B C =至多发生一个34 ;(,,P A B C = 恰好发生一个)316 .

概率统计章节作业答案

第一章随机事件与概率 一、单项选择题 1.掷一枚骰子,设A ={出现奇数点},B ={出现1或3点},则下列选项正确的是 ( B ). A.AB ={出现奇数点} B. AB ={出现5点} C. B ={出现5点} D. A B =Ω 2.设A 、B 为任意两个随机事件,则下列选项中错误的是 ( A ). A. ()A B B A +-= B. ()A B B A B A AB +-=-=- C. ()A B B A B -+=+ D.AB AB A += 3.将一枚匀称的硬币投掷两次,令A i ={第i 次正面向上}(i =1,2),则“至少有一次正面向上”可表示为 ( D ). A.1212A A A A B.12A A C.12A A D.12A A 4.某人向一目标射击3次,设A i 表示“第i 次射击命中目标”(i =1,2,3),则3次都没有命中目标表示为 ( A ). A.123A A A B.123A A A ++ C.123A A A D.123A A A 5.设A 与B 为互为对立事件,且()0,()0P A P B >>,则下列各式中错误的是 ( A ). A.(|)0P A B = B. (|)0P B A = C. ()0P AB = D. ()1P A B = 6.设事件A 与B 相互独立,P (A )=0.2, P (B )=0.4, 则(|)P A B = ( D ). A. 0.2 B. 0.4 C. 0.6 D. 0.8 7.已知事件A 与B 互不相容, P (A )>0, P (B )>0, 则 ( C ).

A.()1P A B = B.()()()P AB P A P B = C. ()0P AB = D.()0P AB > 8.设P (A )=0, B 为任一事件, 则 ( C ). A.A =Φ B.A B ? C.A 与B 相互独立 D. A 与B 互不相容 9.已知P (A )=0.4, P (B )=0.5, 且A B ?,则P (A |B )= ( C ). A. 0 B. 0.4 C. 0.8 D. 1 10.设A 与B 为两事件, 则AB = ( B ). A.A B B. A B C. A B D. A B 11.设事件A B ?, P (A )=0.2, P (B )=0.3,则()P A B = ( A ). A. 0.3 B. 0.2 C. 0.5 D. 0.44 12.设事件A 与B 互不相容, P (A )=0.4, P (B )=0.2, 则P (A|B )= ( D ). A. 0.08 B. 0.4 C. 0.2 D. 0 13.设A , B 为随机事件, P (B )>0, P (A |B )=1, 则必有 ( A ). A.()()P A B P A = B.A B ? C. P (A )=P (B ) D. P (AB )=P (A ) 14.从1,2,3,4,5中任意取3个数字,则这3个数字中不含5的概率为 ( A ). A. 0.4 B. 0.2 C. 0.25 D. 0.75 15.某学习小组有10名同学,其中6名男生、4名女生,从中任选4人参加社会活动,则4人中恰好2男2女的概率为 ( A ). A. 3 7 B.0.4 C. 0.25 D.16 16.某种动物活20年的概率为0.8,活25年的概率为0.6,现有一只该种动物已经活了20年,它能活到25年的概率是 ( B ). A. 0.48 B. 0.75 C. 0.6 D. 0.8 17.将两封信随机地投到4个邮筒内,则前两个邮筒内各有一封信的概率为 ( A ).

概率作业纸第五六七章答案

第五章 数理统计的基本知识 一、选择 1. 设n X X X ,,,21 独立且服从同一分布),(2σμN ,X 是样本均值,记()∑=--=n i i X X n S 1 2 2111, ()∑=-=n i i X X n S 1 2 22 1, ()∑=--=n i i X n S 1 22 3 11μ, ()∑=-=n i i X n S 1 2 24 1μ,则下列服从)1(-n t 的是 ( A ). (A )n S X t 1μ-= (B )n S X t 2μ-= (C )n S X t 3μ-= (D )n S X t 4 μ -= (A) )(2n χ (B) )1(2-n χ (C) )1(-n t (D) )(n t 3. 设总体)4,2(~2N X ,n X X X ,,,21 为取自总体X 的一个样本,则下面结果正确的 是( D ) (A) )1,0(~42N X - (B))1,0(~16 2 N X - (C) )1,0(~2 2N X - (D))1,0(~42 N n X - 二、填空 1.已知某总体X 的样本值为99.3,98.7,100.05,101.2,98.3,99.7,99.5,10 2.1, 100.5,则样本均值X = 99.93 ,样本方差2 S = 1.43 . 2.设总体)4,(~μN X ,1220,, ,X X X 为取自总体X 的一个容量为20的样本,则概率 20 21 P[46.8()154.4]i i X X =≤-≤∑= 0.895 . 3.从总体(63,49)N 中抽取容量为16的样本,则P[60]X ≤= 0.0436 . 2. 设总体),(~2 σμN X , 则统计量~)(1 1 22 2 ∑=-=n i i X X σ χ(B )

应用数理统计吴翊李永乐第三章假设检验课后作业参考答案

第三章 假设检验 课后作业参考答案 某电器元件平均电阻值一直保持Ω,今测得采用新工艺生产36个元件的平均电阻值为Ω。假设在正常条件下,电阻值服从正态分布,而且新工艺不改变电阻值的标准偏差。已知改变工艺前的标准差为Ω,问新工艺对产品的电阻值是否有显著影响(01.0=α) 解:(1)提出假设64.2:64.2:10≠=μμH H , (2)构造统计量36 /06.064 .261.2/u 00 -=-= -= n X σμ (3)否定域???? ??>=???? ??>?? ??? ??<=--21212 αααu u u u u u V (4)给定显著性水平01.0=α时,临界值575.2575.22 12 =-=- α αu u , (5) 2 αu u <,落入否定域,故拒绝原假设,认为新工艺对电阻值有显著性影响。 一种元件,要求其使用寿命不低于1000(小时),现在从一批这种元件中随机抽取25件,测 得其寿命平均值为950(小时)。已知这种元件寿命服从标准差100σ=(小时)的正态分布, 试在显著水平下确定这批元件是否合格。 解:

{}01001:1000, H :1000 X 950 100 n=25 10002.5 V=u 0.05H x u αμμσμα-≥<====->=提出假设:构造统计量:此问题情形属于u 检验,故用统计量:此题中:代入上式得: 拒绝域: 本题中:0.950.950 u 1.64u 0.0u H =>∴即,拒绝原假设认为在置信水平5下这批元件不合格。 某厂生产的某种钢索的断裂强度服从正态分布( )2 ,σ μN ,其中()2 /40cm kg =σ。现从一 批这种钢索的容量为9的一个子样测得断裂强度平均值为X ,与以往正常生产时的μ相比, X 较μ大20(2/cm kg )。设总体方差不变,问在01.0=α下能否认为这批钢索质量显著提 高 解: (1)提出假设0100::μμμμ>=H H , (2)构造统计量5.13 /4020 /u 00 == -= n X σμ (3)否定域{}α->=1u u V (4)给定显著性水平01.0=α时,临界值33.21=-αu (5) α-<1u u ,在否定域之外,故接受原假设,认为这批钢索质量没有显著提高。 某批矿砂的五个样品中镍含量经测定为(%): 设测定值服从正态分布,问在0.01α=下能否接受假设,这批矿砂的镍含量为

概率作业纸第二章答案

第一章 随机事件及其概率 第三节 事件的关系及运算 一、选择 1.事件AB 表示 ( C ) (A ) 事件A 与事件B 同时发生 (B ) 事件A 与事件B 都不发生 (C ) 事件A 与事件B 不同时发生 (D ) 以上都不对 2.事件B A ,,有B A ?,则=B A ( B ) (A ) A (B )B (C ) AB (D )A B 二、填空 1.设,,A B C 表示三个随机事件,用,,A B C 的关系和运算表示⑴仅A 发生为ABC ⑵,,A B C 中正好有一件发生为ABC ABC ABC ++⑶,,A B C 中至少有一件发生为 C B A 第四节 概率的古典定义 一、选择 1.将数字1、2、3、4、5写在5张卡片上,任意取出3张排列成三位数,这个数是奇数的概率是( B ) (A ) 21 (B )53 (C )103 (D )10 1 二、填空 1.从装有3只红球,2只白球的盒子中任意取出两只球,则其中有并且只有一只红球的概 率为11322 535 C C C = 2.把10本书任意放在书架上,求其中指定的3本书放在一起的概率为 ! 10! 8!3 3.为了减少比赛场次,把20个球队任意分成两组,每组10队进行比赛,则最强的两个队 被分在不同组内的概率为1910 10 20 91812=C C C 。 三、简答题 1.将3个球随机地投入4个盒子中,求下列事件的概率

(1)A ---任意3个盒子中各有一球;(2)B ---任意一个盒子中有3个球; (3)C---任意1个盒子中有2个球,其他任意1个盒子中有1个球。 解:(1)834!3)(334==C A P (2)1614)(31 4==C B P (3)169 4)(3 132314==C C C C P 第五节 概率加法定理 一、选择 1.设随机事件A 和B 同时发生时,事件C 必发生,则下列式子正确的是( C ) (A))()(AB P C P = (B))()()(B P A P C P += (C)1)()()(-+≥B P A P C P (D)1)()()(-+≤B P A P C P 2.已知41)()()(= ==C P B P A P , 0)(=AB P , 16 1 )()(==BC P AC P 。则事件A 、B 、C 全不发生的概率为( B ) (A) 82 (B) 8 3 (C) 85 (D) 86 3.已知事件A 、B 满足条件)()(B A P AB P =,且p A P =)(,则=)(B P ( A ) (A) p -1 (B) p (C) 2 p (D) 21p - 二、填空 1.从装有4只红球3只白球的盒子中任取3只球,则其中至少有一只红球的概率为 3 33734 135 C C -=(0.97) 2.掷两枚筛子,则两颗筛子上出现的点数最小为2的概率为 0.25 3.袋中放有2个伍分的钱币,3个贰分的钱币,5个壹分的钱币。任取其中5个,则总数超过一角的概率是 0.5 三、简答题 1.一批产品共20件,其中一等品9件,二等品7件,三等品4件。从这批产品中任取3 件,求: (1) 取出的3件产品中恰有2件等级相同的概率; (2)取出的3件产品中至少有2件等级相同的概率。 解:设事件i A 表示取出的3件产品中有2件i 等品,其中i =1,2,3; (1)所求事件为事件1A 、2A 、3A 的和事件,由于这三个事件彼此互不相容,故

概率论与数理统计习题集及答案

《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。 2. 第一盒中有4个红球6个白球,第二盒中有5个红球5个白球,随机地取一盒,从中 随机地取一个球,求取到红球的概率。

概率作业B解答

普通高等教育“十一五”国家级规划教材 随机数学 (B) 标准化作业简答 吉林大学公共数学中心 2013.2

第一次作业 一、填空题 1.解:应填 29 . 分析:样本空间含基本事件总数2 10C ,事件所含基本事件数为10个,即(1,2),(2,3)…, (9,10),(10,1)共10个,故所求概率为 210102 9 C =. 2.应填0.6. 分析: ()()()1()1()()()P AB P A B P A B P A B P A P B P AB ==+=-+=--+, 故()1()0.6.P B P A =-= 3.应填1 3. 4. 应填172 5. 5.应填 23. 6 . 二、选择题 1.(D ).2.(C ).3.(B ).4.(C ).5.(C ).6.(A ). 三、计算题 1.将n 只球随机地放入N ()n N ≤个盒子中,设每个盒子都可以容纳n 只球,求:(1)每个盒子最多有一只球的概率1p ;(2)恰有()m m n ≤只球放入某一个指定的盒子中的概率2p ;(3)n 只球全部都放入某一个盒子中的概率3p . 解:此题为古典概型,由公式直接计算概率. (1)1n N n P p N =. (2)2(1)m n m N n C N p N --=. (3)31 1 n n N p N N -= = .

2.三个人独立地去破译一份密码,已知每个人能译出的概率分别为111 ,,534,问三人 中至少有一人能将此密码译出的概率是多少? 解:设i A 表示事件“第i 个人译出密码”,1,2,3.i =B 表示事件“至少有一人译出密码”. 则1231234233 ()1()1()()()15345 P B P A A A P A P A P A =-=-=- =. 3.随机地向半圆)0(202>-<

概率统计第二章答案

概率论与数理统计作业 班级 姓名 学号 任课教师 第二章 随机变量及其分布 教学要求: 一、理解随机变量的概念;理解离散型随机变量及其分布律的定义,理解分布律的性质;掌 握(0-1)分布、二项分布、Poisson 分布的概念、性质;会计算随机变量的分布律. 二、理解分布函数的概念及其性质;理解连续型随机变量的定义、概率密度函数的基本性质, 并熟练掌握有关的计算;会由分布律计算分布函数,会由分布函数计算密度函数,由密度函数计算分布函数. 三、掌握均匀分布、正态分布和指数分布的概念、性质. 一、掌握一维随机变量函数的分布. 重点:二项分布、正态分布,随机变量的概率分布. 难点:正态分布,随机变量函数的分布. 练习一 随机变量、离散型随机变量及其分布律 1.填空、选择 (1)抛一枚质地均匀的硬币,设随机变量?? ?=,,出现正面 ,,出现反面H T X 10 则随机变量X 在区间 ]22 1 ,(上取值的概率为21. (2)一射击运动员对同一目标独立地进行4次射击,以X 表示命中的次数,如果 {}81 80 1= ≥X P ,则{}==1X P 8. (3)设离散型随机变量X 的概率分布为{},,2,1, ===i cp i X P i 其中0>c 是常数, 则( B ) (A )11-=c p ; (B )1 1 +=c p ; (C )1+=c p ; (D )0>p 为任意常数 2.一袋中装有5只球,编号为1,2,3,4,5.在袋中同时取出3只球,以X 表示取出的3只球中的最大号码,写出随机变量X 的分布律. 解:从1~5中随机取3个共有103 5=C 种取法. 以X 表示3个中的最大值.X 的所有可能取值为;5,4,3 {}3=X 表示取出的3个数以3为最大值,其余两个数是1,2,仅有这一种情况,则

概率论与数理统计03-第三章作业及答案

习题3-1 而且12{0}1P X X ==. 求1和2的联合分布律. 解 由12{0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布 于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律

(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04 P X P X =?== ≠, 所以 X 1和X 2不独立. 2. 设随机变量(X ,Y )的概率密度为 (,)(6),02,24, 0,.f x y k x y x y =--<<<

概率作业纸第二章答案

第二章 随机变量及其分布 第二节 离散随机变量 一、选择 1. 设离散随机变量X 的分布律为: ),3,2,1(,}{ ===k b k X P k λ 且0>b ,则λ为( C ) (A) 0>λ (B)1+=b λ (C)b += 11λ (D)1 1-=b λ 二、填空 1.进行重复独立试验,设每次试验成功的概率为 54, 失败的概率为5 1 , 将试验进行到出现一次成功为止, 以X 表示所需试验次数, 则X 的分布律是 {} 1,2, , 5 4 )51(1=?==-K K X P K 三、计算题 1. 一个袋子中有5个球,编号为1,2,3,4,5, 在其中同时取3只, 以X 表示取出的3个球中的最大号码, 试求X 的概率分布. 的概率分布是 从而,种取法,故 只,共有任取 中,,个号码可在,另外只球中最大号码是意味着事件种取法,故 只,共有中任取,,个号码可在,另外只球中最大号码是意味着事件只有一种取法,所以 只球号码分布为只能是取出的事件的可能取值为解X C C X P C X C C X P C X C X P X X 5 3 }5{624,321253},5{10 3 }4{2321243},4{101 1}3{,3,2,13},3{. 5,4,3352 4223523233 5 = ===== ===== ==

第三节 超几何分布 二项分布 泊松分布 一、选择 1.设随机变量),3(~),,2(~p B Y p B X , {}{}() C Y P X P =≥= ≥1,9 5 1则若 (A) 4 3 (B) 29 17 (C)27 19 (D) 9 7 二、填空 1.设离散随机变量X 服从泊松分布,并且已知{}{},21===X P X P {})0902.0_____(3 2_42-=e X P =则. 三、计算题 1.某地区一个月内发生交通事故的次数X 服从参数为λ的泊松分布,即)(~λP X ,据统计资料知,一个月内发生8次交通事故的概率是发生10次交通事故的概率的 2.5倍. (1) 求1个月内发生8次、10次交通事故的概率; (2)求1个月内至少发生1次交通事故的概率;

答案(概率与概率分布作业 )

概率与概率分布作业 1、一家电器店想研究顾客对DVD 机的购买意愿与他们购买的TV 机种类的关系。下表为对随机选择的 (1)根据表中记录,求随机一位顾客的以下概率: ① 没有购买高清TV 的概率 考点:事件的逆事件 解:6.04.01)(1)(33=-=-=B P B P ② 同时购买平板TV 和DVD 机的概率 考点:事件的交或积 解:25.0100/25)(21==B A P ③ 购买平板TV 或DVD 机的概率 考点:事件的并或和;概率的加法法则 解:7.025.035.06.0)()()()(212121=-+=-+=?B A P B P A P B A P ④ 已经购买了高清TV ,还会购买DVD 机的概率 考点:条件概率 解:75.04 .03 .0)()()(33131=== B P B A P B A P (2)顾客对DVD 机的购买意愿与他们购买的TV 机种类有统计学上的关系吗?(或者说,顾 客购买的TV 机种类影响购买DVD 机的概率吗?) 考点:事件的独立性 解:以高清TV 为例,3.0)(31=B A P ,24.04.06.0)()(31=?=B P A P )()()(3131B P A P B A P ≠,同理,)()()(1111B P A P B A P ≠,)()()(2121B P A P B A P ≠ 所以,顾客对DVD 机的购买意愿与他们购买的TV 机种类不是独立的。(或者说,顾客购买的TV 机种类影响购买DVD 机的概率。) 【注】一个事件的发生与否并不影响另一个事件发生的概率,则称两个事件独立。此时概率的乘法公式可简化为P(AB)=P(A)·P(B)。反过来,也可以用该公式验证两事件是否独立。 (3)另一份调查指出,买DVD 机的男性比率比不买DVD 机的男性比率多一倍。如果随机选择的第101位顾客是一位男性,他会买DVD 机的概率是多少? 考点:贝叶斯公式

概率论作业与答案(1)

Ⅱ、综合测试题 概率论与数理统计(经管类)综合试题一 (课程代码 4183) 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。 1.下列选项正确的是 ( B ). A. A B A B +=+ B.()A B B A B +-=- C. (A -B )+B =A D. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是 ( D ). A.P (A -B )=P (A )-P (B ) B.P (AB )=P (A )P (B ) C. P (A +B )=P (A )+P (B ) D. P (A +B )=P (A )+P (B )-P (AB ) 3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ). A. 18 B. 16 C. 14 D. 1 2 4.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ). A. 1120 B. 160 C. 15 D. 12 5.设随机事件A ,B 满足B A ?,则下列选项正确的是 ( A ). A.()()()P A B P A P B -=- B. ()()P A B P B += C.(|)()P B A P B = D.()()P AB P A = 6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足 ( C ). A. 0()1f x ≤≤ B. f (x )连续 C. ()1f x dx +∞-∞ =? D. ()1f +∞= 7.设离散型随机变量X 的分布律为(),1,2,...2k b P X k k ===,且0b >,则参数b 的 值为 ( D ). A. 1 2 B. 13 C. 15 D. 1

概率作业纸第六章答案

第六章 参数估计 第一节 参数的点估计 一、选择 1. 以样本的矩作为相应(同类、同阶)总体矩的估计方法称为(A ). (A) 矩估计法 (B) 一阶原点矩法 (C) 贝叶斯法 (D) 最大似然法 2. 总体均值)(X E 的矩估计值是(A ). (A )x (B )X (C )1x (D )1X 二、填空 1.设总体X 服从泊松分布)(λP ,其中0>λ为未知参数.如果取得样本观测值为 n x x x ,,,21 ,则参数λ的最大似然估计值为x . 2.设总体X 在区间[]θ,0上服从均匀分布,其中0>θ为未知参数.如果取得样本观测值为 n x x x ,,,21 ,则参数θ的矩估计值为x 2. 三、简答题 1. 设设总体X 的概率密度为 ,0()0, 0x e x f x x θθ-?>=?≤? ,求参数θ的矩估计值. 解 :,0 dx xe EX x ? +∞ -=θθ设du dx u x x u θ θθ1 ,1,=== 则0 011 1()0() u u u EX ue du ue e du e θθθθ+∞ +∞--+∞--+∞ ????==-+=+-? ?????? ?=θ 1 故1EX θ=,所以x 1?=θ

2. 设总体X 服从几何分布 .,3,2,1,)1();(1 =-=-x p p p x p x 如果取得样本观测值为n x x x ,,,21 ,求参数p 的矩 估计值与最大似然估计值. 解:由已知可得 p X E X v 1)()(1==,所以x x n p n i i ==∑=111 由此可得参数的矩估计值为x p 1 ?=. 似然函数为n x n n i x n i i i p p p p p L -=-∑-=-= =∏1 )1()) 1(()(1 1 取对数,得).1ln()( ln )(ln 1 p n x p n p L n i i --+=∑=于是,得 0)(11 )(ln 1 =---=∑=n i i n x p p n dp p L d .由此可得参数的最大似然估计值为x p 1?=. 3. 设总体X 服从“0-1”分布: .1,0,) 1();(1 =-=-x p p p x p x x 如果取得样本观测值为)10(,,,21或=i n x x x x ,求 参数p 的矩估计值与最大似然估计值. 解:由已知可得 p X E X v ==)()(1,所以x x n p n i i ==∑=1 1 由此可得参数的矩估计值为x p =?. 似然函数为∑-∑ =-= ==- =-∏n i i n i i i i x n x n i x x p p p p p L 1 1 ) 1()) 1(()(1 1 取对数,得).1ln()(ln )( )(ln 1 1 p x n p x p L n i i n i i --+=∑∑==于是,得 0)(11 1)(ln 1 1=---=∑∑==n i i n i i x n p x p dp p L d .由此可得参数的最大似然估计值为x p =?.

概率统计第三章答案

概率论与数理统计作业8(§3.1~§3.3) 一、填空题 1. Y X ,独立同分布 323110//P X ,则()().XY E ,Y X P 9 4 951==≤+ 2. 设X 的密度函数为2(1)01 ()0 x x f x -<=? ?其它 又知()0.75E X =, 求k 和a 的值。 解:由 (),dx kx dx x f a 11 ==?? +∞ ∞ -得 ,a k 11 =+ 又 ()0.75E X =,则有 (),.dx kx x dx x xf a 75010 =?=?? +∞ ∞ -得 ,.a k 7502 =+ 故由上两式解得k =3,a =2.

2. 对某工厂的每批产品进行放回抽样检查。如果发现次品,则立即停止检查而认为这批产品不合格;如果连续检查5个产品,都是合格品,则也停止检查而认为这批产品合格。设每批产品的次品率为p ,求每批产品抽查样品的平均数。 解:设随机变量X 表示每批产品抽查的样品数,则: ∴X 的概率分布表如下: 3.设二维随机变量()Y X ,的联合密度函数为 ()?????≤≤=其它,0 1 42122 y x y x y x f 1)求()X E ,()Y E 及()XY E ; 2)求X 与Y 的边缘密度函数; 解:1)()() ;dx x x dy y x x dx dxdy y ,x xf EX x 08214 2111731 2 112=-=? == ???? ?--+∞ ∞ -+∞∞ - ()() ;dx x x dy y x y dx dxdy y ,x yf EY x 9 7 4742111821 21 1 2=-=? ==???? ? --+∞ ∞ -+∞ ∞ - ()()() ;dx x x dy y x xy dx dxdy y ,x xyf XY E x 0474 2111931 2 11 2=-=? ==???? ? --+∞ ∞ -+∞ ∞ - 2)当时,1≤x ()()() ;x x ydy x dy y ,x f x f x X 62 21 8 214212 -=== ? ? +∞ ∞ - 当时,1≥x ().x f X 0= 当时,10≤≤y ()();y ydx x dx y ,x f y f y y Y 25 22 7 421=== ? ? - ∞ +∞ - 当时,或01<>y y ().y f Y 0= X ) m X (P =4 q 5 21p pq 4 3 2 pq 3 pq ;),,,m (pq )m X (P m 43211===-) q p (1=+4 545q q pq )X (P =+==4 324325101055432p p p p q pq pq pq p EX +-+-=++++=∴()() ?? ? ??>≤-=∴. x ,;x ,x x x f X 10182162

概率作业卷及答案 2

概率论与数理统计作业卷(一) 一、填空题 . ____)(.6.03.0,4.0,.1=B A P B A B B B A B A 的概率件的对立事件,那么积事表示若和的概率分别是及其和事件设随机事件 . ____)(,)()()(.2===B P p A P B A P AB P B A 则且,两个事件满足条件、已知.______,,,8 1 )()(0)(,41)()()(.3都不发生的概率为则事,设C B A BC P AC P AB P C P B P A P ==== ==. _____310.4本书放在一起的概率为则其中指定的本书随意放在书架上,把二、选择题 1 )()()()D (1 )()()()C ()()()()B ()()()A (.1-+≤-+≥==B P A P C P B P A P C P B P A P C P AB P C P C B A 确的是必发生,则下列结论正同时发生时,事件与当事件7 4) D (52)C (61)B (41)A (2.2的概率为 是掷两枚骰子,则最小点 的大小 ,无法比较,则回,此时记若依次取出,取后不放不放回,此时记若依次取出,取后,此时记若依次取出,取后放回取出三个数依次为红依次取出三个数,记在数集212 12 121211)D ()C ()B ()A ()()II ();()II ();()I (".3,2,1"}5,4,3,2,1{.3p p p p p p p p A P p A P p A P p A >=<====4 3) D (3 2) C (2 1) B (4 1 ) A (5532.4超过一角的概率为个,则总币值 中个壹分的硬币,任取其个贰分,个伍分,袋中装有三、计算证明题 个全非废品的概率。 任取个是废品的概率;个恰有任取这批产品的废品率;个废品,求:个,有一批产品共3)3(13)2()1(6200.1. 72.09.08.0.2烧断的概率,至少有一根保险丝被流强度超过这一定值时,求电,同时烧断的概率为和别为它们单独烧断的概率分强度超过一定值时,乙两根保险丝,当电流一条电路上安装有甲、 }50{}50{9210.321但不含三个数字中含,和三个数字中不含事件的概率:下列三个不同的数字,试求等十个数字中任意选出,,,,从==A A .4 1 )1,0(4的概率个数的积小于 内任取两个数,求这两从区间

概率作业纸第四章答案

第四章 正态分布 第一节 正态分布的概率密度与分布函数 一、选择 1. 设),(~2σμN X ,那么当σ增大时,则)(σμ<-X P ( C ) (A) 增大 (B) 减少 (C) 不变 (D) 增减不定 2. 随机变量~(,1),X N μ且{2}{2},P X P X >=≤则μ=( B ) (A) 1 (B) 2 (C) 3 (D) 4 二、填空 1. 设随机变量),100(~2σN X ,且3085.0)103(=>X P , 则=<<)10397(X P 0.383 2.设随机变量),50(~2σN X ,且6826.0)5347(=<)53(X P 0.1587 三、计算题 1. 某地区的月降水量X (单位:mm )服从正态分布)4,40(2N ,试求该地区连续10个月降水量都不超过50mm 的概率. 9396 .09938.010Y P 9938.010B Y mm 50Y 10mm 50109938.0)5.2()4 40 50440P )50P A P mm 50A 10=)==() ,(~的月数”,则过=“该地区降水量不超设天贝努利试验,相当做超过个月该地区降水量是否观察( ()=(” =“某月降水量不超过解:设==-≤-=≤φx x 第二节 正态分布的数字特征 一、选择 1. 设随机变量X 与Y 独立,)4.0,10(~,) 2.0,10(~B Y B X ,则=+)2(Y X E ( D ) (A) 6 (B) 4 (C) 10 (D) 8 二、填空

___ 2______;1____e 1 )(.11 22 的方差为的数学期望为则, 的概率密度函数为已知连续型随机变量X X x f X x x -+-=π .___2___))2 1(,0(,.22π=--Y X E Y X N Y X 的数学期望则随机变量的随机变量, 正态分布是两个相互独立且服从设 三、计算题 . d )(d )()2(; )1(e 61)(.16 4 42c x x p x x p DX EX x x p X c c x x ,求常数若已知,求, 的概率密度函数为已知连续型随机变量??∞ +∞-+-- =+∞<<∞-=π . 203 221)32 ( ) 32(1)3 2( ) 3 2(121 3 23 21)() 32( 213 2321)()2(3)(,2)(),3,2(~3 21 61 )()1(3 22 3 2)2(2 32 3 2)2(3 2)2(6 4 42 2 2222==-=-Φ-Φ-=-Φ-Φ-=-==-Φ=-= ==== = ? ? ? ? ? ? ∞+-- ∞+?-- ∞+- -∞ -∞ -?-- ∞ -?-- +-- c c c c c c dt e x t dx e dx x P c dt e x t dx e dx x P X D X E N X e e x P c t c x c t c c x c x x x 所以,,从而,知所以,得从而,知所以,由于 解π ππ πππ 第三节 二维正态分布 一、计算题 1.已知矢径OP 的终点的坐标为),(Y X 服从二维正态分布 2 2 221 ),(y x e y x f +- =π 求矢径OP 的长度OP Z =的概率密度 解 22Y X OP Z += =

概率统计第三章答案(3)

概率论与数理统计作业 班级 姓名 学号 任课教师 第三章 多维随机变量及其分布 教学要求: 一、了解多维随机变量的概念,了解二维随机变量的分布函数; 二、了解二维离散型随机变量分布律的概念,理解二维连续型随机变量概率密度的概念; 三、理解二维随机变量的边缘概率分布; 四、理解随机变量的独立性概念; 五、会求两个独立随机变量的简单函数的分布(和、极大、极小). 重点:二维离散型随机变量的联合分布律及二维连续型随机变量的边缘概率密度,随机变 量的独立性. 难点:边缘分布,随机变量的独立性,随机变量的函数的分布. 练习一 二维随机变量及其分布 1.填空题 (1)设二维随机变量),(Y X 的分布函数为),(y x F ,且d c b a <<,,则 =≤}{a X P ()+∞,a F ; =≥}{d Y P ()d F ,1∞+-; =≤<≤<},{d Y c b X a P ),(),(),(),(c a F c b F d a F d b F +--. (2)设二维连续型随机变量),(Y X 的概率密度为),(y x f ,则其分布函数),(y x F = ?? +∞∞-+∞ ∞ -dxdy y x f ),(;若G 是xoy 平面上的区域,则点),(Y X 落在G 内的概率,即 }),{(G Y X P ∈??=G dxdy y x f ),( (3)若二维随机变量),(Y X 的概率密度为 ) 1)(1(),(2 2y x A y x f ++= )0,0(>>y x , 则系数A = ,4 2 π= <}1{X P 2 1. (4)设二维随机变量),(Y X 的分布函数(),3arctan 2arctan ,?? ? ??+??? ? ?+=y C x B A y x F 则常数 A = 2 1 π, B = 2π, C =2 π .

相关文档
相关文档 最新文档