文档库 最新最全的文档下载
当前位置:文档库 › 电动汽车DCDC移相全桥变换器整流桥震荡原因及控制

电动汽车DCDC移相全桥变换器整流桥震荡原因及控制

电动汽车DCDC移相全桥变换器整流桥震荡原因及控制
电动汽车DCDC移相全桥变换器整流桥震荡原因及控制

移相全桥ZVS变换器整流桥寄生振荡的抑制

移相全桥零电压开关PWM变换器(PS-FB- ZVS-PWM converter)利用变压器的漏感或原边串联电感和功率管的寄生电容或外接电容来实现零电压开关,同时又实现了PWM控制。该变换器电路结构简洁,控制电路简单,是中大功率直直变换场合的理想电路拓扑之一[1]。

但是,传统的移相全桥变换器输出整流二极管不是工作在软开关状态,存在反向恢复过程。在输出整流二极管反向恢复时,由于变压器的漏感(或附加的谐振电感)和整流二极管的结电容以及变压器的绕组电容之间发生高频谐振,整流桥产生寄生振荡,二极管上存在很高的尖峰电压[2~4]。这将带来电路损耗,并影响整流桥的使用寿命。因此,必须采用有效的缓冲电路来抑制寄生振荡,消除输出整流二极管上的尖峰电压。

1整流桥寄生振荡的产生与抑制对策

整流桥寄生振荡产生于变压器的漏感或附加的谐振电感与变压器的绕组电容和整流管的结电容之间。当副边电压为零时,在全桥整流器中四只二极管全部导通,输出滤波电感电流处于自然续流状态。而当副边电压变化为高电压Vin/K(K是变压器变比)时,整流桥中有两只二极管要关断,另两只继续导通。这时候,变压器的漏感或附加的谐振电感就开始和关断的整流二极管的电容谐振。

整流桥换流的等效电路如图1所示。从中可以看出,副边漏感上电流ILlk是负载电流I Lf和即将关断的二极管反向恢复电流之和,其大小为:

其中,Cd为整流二极管结电容。即使采用快恢复二极管,二极管依然会承受至少两倍的尖峰电压[2]。

为了抑制寄生振荡,减小输出整流二极管上的尖峰电压,必须采用有效的缓冲电路。文献当中提出了多种方式,主要有RC缓冲电路、RCD缓冲电路、主动箝位缓冲电路、第三个绕组加二极管箝位缓冲电路和原边加二极管箝位缓冲电路等[2~4]。前几种方式,要么带来额外的损耗,不利于提高变换器的效率,要么需要增加开关管或者绕组,增加了电路复杂

性和成本。因此本文重点讨论原边加二极管箝位的缓冲电路形式。

2原边加箝位二极管的缓冲电路原理分析

一种原边加箝位二极管的ZVS全桥变换器主电路拓扑如图2所示。其中, D1~D4分别是开关管Q1~Q4的内部寄生二极管,C1~C4分别是Q1~Q4的寄生电容或者外接电容。Lr 是谐振电感(包括了变压器的漏感),Cb是隔直电容。每个桥臂两个开关管成180°互补导通,两个桥臂导通角相差一个相位,即移相角,通过调节移相角可以调节输出电压。Q1和Q3分别领先于Q4和Q2一个相位, Q1和Q3组成超前桥臂,Q2和Q4组成滞后桥臂。D5和D 6为变换器原边附加的箝位二极管。副边采用全桥整流方式,CDR1 ~CDR4分别为二极管DR1~DR4的等效并联电容。

图2 原边加箝位二极管的全桥变换器主电路拓扑

图3 原边带箝位二极管的全桥变换器主要波形

上述原边带箝位二极管的ZVS移相全桥变换器电路的主要工作波形如图3所示。在一个开关周期中,该变换器共有18种开关状态,后9种类似前9种。在此只分析前9种状态。在分析前,作如下假设: (1)除输出整流二极管外,所有开关管、二极管均为理想器件;(2)所有电感、电容和变压器均为理想元件;(3)C1=C3=Clead,C2=C4=Clag;(4)

K是变压器原副边匝比;(5)输出整流二极管等效为一个理想二极管和一个电容并联,且这些电容大小相等,即CDR1 =CDR2 =CDR3 =CDR4。

图4给出了箝位二极管起作用前后的t5 ~t间几个开关状态的等效电路(主要电流通路用粗黑线表示)。各开关状态工作情况描述如下:

在t0时刻之前,原边Q1和Q4导通,副边输出整流管DR1和DR4导通, DR3和DR2

截止, CDR3和CDR2中充满电荷。t0时刻关断Q1,原边电流ip给C1充电,同时给C3放电,A点电压下降。由于有C1和C3,Q1是零电压关断。此时变换器谐振工作,参与谐振的是谐振电感、超前管结电容和副边整流二极管结电容。这样,输出滤波电感电流iLf一部分给CDR3和CDR2放电,其余部分折算到一次侧给C1充电和给C3放电。CDR3和C DR2放电,ip和iLr谐振下降。由于C点电位始终大于0,故D6不可能导通。同时由于C DR3和CDR2放电,副边电压减小,原边电压随之减小,而B点电位钳在0,所以C点电位必定小于输人电压Vin,因此D5也不可能导通。

t1时刻,C3的电压下降到零,即A点电位降为0, D3自然导通,此时可以零电压开通Q3。此后CDR3和CDR2继续放电,iLr和ip继续下降。

t2时刻,CDR3和CDR2放电结束,DR3和DR2导通,四个整流二极管全通,副边短接,则变压器原边C点电压下降到0. iLr与ip相等,处于自然续流状态。

t3时刻零电压关断Q4 , 副边四个整流二极管同时导通,Lr和C2、C4谐振工作,给C 4充电,同时给C2放电,iLr与ip相等,一起线性下降。由于C4和C2的存在,Q4是零电压关断。到t4时刻,C4的电压上升至Vin, C2的电压下降到0,D2自然导通,此时可以零电压开通Q2。

t5时刻, ip由正值过零,且向负方向增加,Q3和Q2为ip提供通路,由于ip仍不足以提供负载电流, DR1~DR4仍然同时导通, Vrect=0。等效如图4(a)所示。Vin全部加在Lr上,iLr、ip同时线性负增长。

到t6时刻, ip达到折算至一次测的负载电流-iLf/K, DR1和DR4关断, DR2和DR3流过全部负载电流。Lr与CDR1和CDR4谐振工作,给CDR1和CDR4充电。等效如图4(b)所示。

在t7时刻, CDR1和CDR4上的电压上升到Vin /K,此时VBC上升到Vin,C点电位变为0,D6导通,将VBC钳在Vin,因此将CDR1和CDR4电压钳在Vin/K,从而消除了整流桥的尖峰电压和二极管反向恢复造成的损耗。等效如图4(c)所示。此时,iLr=- I4,ip=iLr +iD6。

到t8时刻,iD6线性下降为零,D6自然关断,该模态结束。

t9时刻,原边Q2和Q3导通,输出整流管DR2和DR3导通, DR1和DR4截止,一次侧给二次侧提供能量, 等效如图4(d)所示。t9~t18类似t0~t9的工作情况,[t16,t17]期间,D5导通。

4实验结果

针对原边加箝位二极管的缓冲形式,实际制做了一个5.5kW的全桥变换器样机,进行了实验验证。变换器主要参数如下:输入电压为170~330VDC,输出电压为220V DC, 满载输出电流为25A,串联谐振电感Lr=11μH,隔直电容Cb=3μF,输出滤波电感Lf=1.8mH,输出滤波电容Cf=6580μF,开关管采用IGBT 2MBI300-060,开关频率为20kHz。

图5所示为变压器原边和整流桥输出电压波形。可见,由于箝位二极管的存在,副边整流二极管的反向恢复造成的振荡已经得到有效抑制。

本文还做了变换器原边不加箝位二极管和加箝位二极管的对比实验。图6为输入输出参数均相同的情况下,两者整流桥输出电压波形对比图。可以明显看出,未加箝位二极管时,寄生振荡非常剧烈,电压尖峰很高;而加箝位二极管后,振荡衰减了很多,电压尖峰也小了许多。图7进一步给出了输入电压和负载电流分别不变的情况下,两者变换效率的对比曲

线。可以看出,加箝位二极管以后,变换器的效率均得到提高。实验证明,加箝位二极管对整流桥振荡的抑制以及变换器效率的提高都是有益和有效的。

5结论

本文讨论了移相全桥ZVS变换器副边整流桥寄生振荡产生的原因及其抑制对策,并重点介绍了一种原边加箝位二极管的缓冲电路形式,它只是在基本的ZVS移相全桥变换器的变压器原边电路中附加了两个二极管,从而在保留基本的ZVS变换器的优点的同时,有效地抑制了输出整流二极管上的电压振荡,减小了电压尖峰,提高了系统变换效率。

参考文献

[1] 陈坚.电力电子学-电力电子变换和控制技术.北京:高等教育出版社,2002.

[2] 阮新波,严仰光著.脉宽调制DC/DC全桥变换器地软开关技术.北京:科学出版社,200 1.

[3] Redl R, etc.. A Novel Soft-switching Full-bridge DC/DC Converter: Analysis, Des ign Consider- ations, at 1.5 kW, 100 kHz. IEEE Trans on Power Electronics, 1991, 6(3): 408-418.

[4]Xinbo Ruan,Fuxin Liu. An improved ZVS PWM full-bridge converter with clamping diodes. Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35t h AnnualVolume 2,20-25 June 2004 Page(s):1476-1481 Vol.2

移相全桥PWM DC-DC变换器的数学建模

移相全桥 移相全桥ZVS 变换器由于其充分利用了电路本身的寄生参数,使开关管工作在软开关状态,降低了开关管的开关噪声和开关损耗,提高了变换器的效率,近年来在中大功率场合得到广泛应用。随着微处理器价格的不断下降和计算能力的不断提高,采用数字控制已经成为中大功率开关电源的发展趋势,许多数字控制方法相继提出。但对于DC/ DC 变换器这种强非线性系统,传统的基于线性系统理论的控制方法并不能获得理想的动态特性。 该文在建立移相全桥变换器模型的基础上,提出一种新的模糊PID 预测控制策略,将传统控制方法与智能控制方法相结合,通过模糊控制对传统PID 控制器进行增益调节,同时采用预测控制以补偿数字控制系统中的时延。这种控制策略比较简单,易于数字控制器的实现,该文采用MA TLAB 方法进行了仿真研究。 2 移相全桥变换器小信号模型的建立 一般建立DC/ DC 变换器的小信号模型的方法是状态空间平均法,但对于移相全桥ZVS 变换器来说,用状态空间平均法建模是一项十分复杂的工作。因为这种变换器具有12种开关状态,因此列写状态空间方程式是一个非常复杂的工作。 根据移相全桥ZVS PWM 变换器源于BUCK 变换器的事实,从电路工作的描述中可以 看出变压器副边的有效占空比^ off off off d D d =-,变压器原边电压的占空比d 而且依靠输出滤波电感电流L i ,漏感lk L ,输入电压in V 和开关频率s f ,所以移相全桥变换器小信号传递 函数也将取决于漏感lk L ,开关频率s f ,滤波电感电流扰动^ L i ,输入电压扰动^in V ,和变压 器原边占空比扰动^ d 等因素。为了精确地建立移相全桥变换器的动态特性模型,找出lk L , s f ,^ L i ,^in V 和^ d 对^ off d 的影响是必要的。这些影响可以加入到PWM BUCK 变换器的小 信号电路模型中(图1),从而获得移相全桥PWM 变换器的小信号模型(图2)。 我们知道由于谐振电感lk L 和变压器副边整流二级管的影响,移相全桥变换器存在占空比丢失的现象,副边有占空比为:off D D D =-? 即()()221/21lk off L o in nL D D I D V T L V T =- --???? 移相全桥变换器输出电压增益为: ()()2 221/22o lk off L o in in V n L nD nD I D V T L V V T ==- --???? 其中,n 为变压器副边匝数与原边匝数的比值;L I 为电感电流平均值。 下面通过式(l )来分析对off D 产生影响的因素。 l )占空比扰动^ d 对off D 的影响^ d d 由式(l )可得

移相全桥ZVZCSDCDC变换器综述

移相全桥ZVZCSDC/DC变换器综述 河北秦皇岛燕山大学朱艳萍电源技术应用 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC 拓扑结构,以供大家参考。 1)NhoE.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计。

移相全桥ZVZCS主电路综述

移相全桥ZVZCS DC/DC变换器综述 [导读]移相全桥ZVZCS DC/DC变换器综述摘要:概述了9种移相全桥ZVZCSDC/DC 变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺 关键词:变换器 移相全桥ZVZCS DC/DC变换器综述 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。 关键词:移相控制;零电压零电流开关;全桥变换器 1 概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。 2 电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCS PWM DC/DC拓扑结构,以供大家参考。 1)Nho E.C.电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k 太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了i L1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,

移相控制全桥ZVS—PWM变换器的分析与设计

移相控制全桥ZVS—PWM变换器的分析与设计 摘要:阐述了零电压开关技术(ZVS)在移相全桥变换器电路中的应用。分析了电路原理和各工作模态,给出了实验结果。着重分析了主开关管和辅助开关管的零电压开通和关断的过程厦实现条件。并且提出了相关的应用领域和今后的发展方向。关键词:零电压开关技术;移相控制;谐振变换器 0 引言 上世纪60年代开始起步的DC/DC PWM功率变换技术出现了很大的发展。但由于其通常采用调频稳压控制方式,使得软开关的范围受到限制,且其设计复杂,不利于输出滤波器的优化设计。因此,在上世纪80年代初,文献提出了移相控制和谐振变换器相结合的思想,开关频率固定,仅调节开关之间的相角,就可以实现稳压,这样很好地解决了单纯谐振变换器调频控制的缺点。本文选择了全桥移相控制ZVS-PWM谐振电路拓扑,在分析了电路原理和各工作模态的基础上,设计了输出功率为200W的DC/DC变换器。 1 电路原理和各工作模态分析 1.1 电路原理 图1所示为移相控制全桥ZVS—PWM谐振变换器电路拓扑。Vin为输入直流电压。Si(i=1.2.3,4)为第i个参数相同的功率MOS开关管。Di和Gi(i=l,2,3,4)为相应的体二极管和输出结电容,功率开关管的输出结电容和输出变压器的漏电感Lr作为谐振元件,使4个开关管依次在零电压下导通,实现恒频软开关。S1和S3构成超前臂,S2和S4构成滞后臂。为了防止桥臂直通短路,S1和S3,S2和S4之间人为地加入了死区时间△t,它是根据开通延时和关断不延时原则来设置同一桥臂死区时间。S1和S4,S2和S3之间的驱动信号存在移相角α,通过调节α角的大小,可调节输出电压的大小,实现稳压控制。Lf和Cf构成倒L型低通滤波电路。 图2为全桥零电压开关PWM变换器在一个开关周期内4个主开关管的驱动信号、两桥臂中点电压VAB、变压器副边电压V0以及变压器原边下面对电路各工作模态进行分析,分析时时假设:

ZVS移相全桥变换器设计

电气工程学院课程设计说明书 设计题目: 系别: 年级专业: 学生姓名: 指导教师:

电气工程学院《课程设计》任务书 课程名称:电力电子与电源综合课程设计 基层教学单位:电气工程及自动化系指导教师:朱艳萍 说明:1、此表一式三份,系、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

电力电子与电源课程设计组内自评表

摘要 首先,本文阐述PWM DC/DC变换器的软开关技术,且根据移相控制PWM全桥变换器的主电路拓扑结构,选定适合于本论文的零电压开关软开关技术的电路拓扑,并对其基本工作原理进行阐述,同时给出ZVS软开关的实现策略。 其次,对选定的主电路拓扑结构进行电路设计,给出主电路中各参量的设计及参数的计算方法,包括输入、输出整流桥及逆变桥的器件的选型,输入整流滤波电路的参数设计、高频变压器及谐振电感的参数设计以及输出整流滤波电路的参数设计。 然后,论述移相控制电路的形成,对移相控制芯片进行选择,同时对移相控制芯片UC3875进行详细的分析和设计。对主功率管MOSFET的驱动电路进 最后,基于理论计算,对系统主电路进行仿真,研究其各部分设计的参数是否合乎实际电路。搭建移相控制ZVS DC/DC全桥变换器的实验平台,在系统实验平台上做了大量的实验。 实验结果表明,本文所设计的DC/DC变换器能很好的实现软开关,提高效率,使输出电压得到稳定控制,最后通过调整移相控制电路,可实现直流输出的宽范围调整,具有很好的工程实用价值。行分析和设计。 关键词开关电源;高频变压器;移相控制;零电压开关;UC3875

1KW移相全桥变换器设计

课程设计 课程名称电力电子技术课程设计 题目名称1kW移相全桥直流变换器设计专业班级11级电气工程及其自动化学生姓名 学号 指导教师 二○一四年四月十三日 目录

一,设计内容和要求 (3) 1.1 主电路参数 (3) 1.2 设计内容 (3) 1.3 仿真波形 (3) 二,设计方案 (3) 2.1 主电路工作原理 (3) 2.2 芯片说明 (4) 2.2.1采用的芯片说明 (4) 2.2.2 UCC3895引脚说明 (5) 2.2.3 UCC3895工作原理 (6) 图2-4 基于ucc3895芯片的控制电路图 (8) 2.3控制电路设计 (8) 三,设计论述 (8) 3.1电路参数设计: (8) 3.1.1 主电路参数: (8) 3.1.2 变压器的设计 (9) 3.1.3 输出滤波电感的设计 (10) 3.1.4 功率器件的选择 (11) 3.1.5 谐振电感的设计 (12) 3.1.6 输出滤波电容和输入电容和选择 (13) 四,仿真设计 (14) 五,结论 (15) 六,参考文献 (16)

一,设计内容和要求 Vin=300VDC,Vo=48VDC,Po=1kW,fs=100kHz,输出电压纹波为0.1V 1.2 设计内容 主电路:选择开关管、整流二极管型号,计算滤波电感感值、滤波电容容值,谐振电感感值、占空比、变压器匝比等电路参数。 控制电路:UCC3895芯片周边元器件参数 1.3 仿真波形 给出仿真电路,得到仿真波形 二,设计方案 2.1 主电路工作原理 控制主要有两种:双极性控制和移相控制,本设计主要使用移相控制。由图2-2可见,电路结构与普通双极性PWM变换器类似。Q1、D1和Q4、D4组成超前桥臂、Q2、D2和Q3、D3组成滞后桥臂;C1~C4分别是Q1~Q4的谐振电容,包括寄生电容和外接电容;Lr是谐振电感,包括变压器的漏感;T副方和DR1、DR2组成全波整流电路,Lf、Cf组成输出滤波器,R1是负载。Q1和Q3分别超前Q4和Q2一定相位(即移相角),通过调节移相角的大小来调节输出电压。由图2可见,在一个开关周期中,移相全桥ZVS PWM DC-DC变换器有12种开关模态,通过控制4个开关管Q1~Q4在A、B两点得到一个幅值为Vin的交流方波电压;经过高频变压器的隔离变压后,在变压器副方得到一个幅值为Vin/K的交流方波电压,然后通过由DR1和DR2构成的输出整流桥,得到幅值为Vin/K的直流方波电压。这个直流方波电压经过 Lf和Cf组成的输出滤波器后成为一个平直的直流电压,其电压值为Uo=DVin/K(D是占空比)。Ton是导通时间Ts是开关周期(T=t12-t0)。通过调节占空比D来调节输出电压Uo。

移相全桥变换器的建模与仿真.

移相全桥变换器的建模与仿真 由于开关电源是一个线性与非线性相结合的综合系统,给系统的动态研究和设计带来很多不便。本文主要是用状态空间平均法来进行建立模型,它是由美国加里福尼亚理工学院的R.D.MiddlebrOOk于1976年提出的。这种方法不仅简化了计算过程,使各种不同结构变换器的解析模型具有了统一的形式,而且操作性更强,工作人员仍可以用波德图(Bode Plot)或者奈奎斯特(Nyquist)定理来对系统进行系统稳定的判定。 1 建模 由于移相全桥变换器可由Buck变换器变化而来,首先根据Buck变换器的原理,采用状态空间平均法,建立Buck变换器的小信号模型。为简单起见,本文简化变换器,使其工作在理想状态,即状态转换是瞬间完成的,在任何时候都只有两种状态存在——导通或关断。选择电感电流iL和电容电压Uc为状态参量,输出电压Uo和输入电流Is为输出参量,Ui为输入参量,D为晶体管占空比。如图l所示。 1)变换器工作在CCM状态下,由图2可知,在0≤t≤DTs时间段内, 2)变换器工作在DCM状态下,由图3可知,在DTs≤t≤Ts时间段内, 二极管的导通占空比为D’=1一D,则基本的状态平均方程组为: 将上面各式代入到(10)式并减去式(11)得扰动方程为 由于变压器存在漏感Lr,使得移相全桥变换器的有效占空比为Deff,它总小于原边占空比D,则有效占空比的计算如下式: 由(16)式可看出,IL、Ui、D的扰动都会使有效占空比Deff发生扰动,而这三种不同的扰动量di、du、dd的表达式分别为 从而得到移相全桥变换器的小信号等效电路模型如图4所示。 根据图4导出移相全桥变换器主电路的传递函数,

移相ZVS-PWM全桥变换器综述

移相ZVS-PWM全桥变换器概述 摘要:移相ZVS-PWM DC/DC全桥变换器巧妙利用变压器漏感和开关管的结电容来完成谐振过程,使开关管实现零电压开关(ZVS),从而减少了开关损耗。重点简述了该类变换器的基本原理,介绍了几种常见的拓扑,并简要地分析了它们的优缺点,最后指出了其发展方向。 关键词:移相全桥变换器零电压开关(ZVS) Overview of Phase Shift ZVS-PWM Full Bridge Converter Abstract:Phase shift PWM DC/DC full bridge converter completing resonance procedure through leakage inductance of the transformer and junction capacitor of switch. It can make the switch achieve ZVS, decreasing the switching loss and interference .This paper describes the basi c principle of the converter, introduce several common topology, some common topologies as well as their advantages and drawbacks are discussed and analyzed. Finally it points out the development direction of the Converter. Key words:phrase shift,full bridge converter,ZVS 引言 全桥变换器广泛应用于中大功率的直流变换场合,近些年来,其软开关技术吸引了国内外学者的广泛关注,出现了很多控制策略和电路拓扑,其中移相控制是目前研究较多的控制方式,而以移相全桥零电压开关变换器(FB-ZVS-PWM)应用更为广泛。这种控制方式实际上是谐振变换技术与常规PWM变换技术的结合,巧妙利用变压器漏感和开关管的结电容来完成谐振过程,实现开关管的ZVS,拓扑结构简洁,开关频率恒定,广泛应用在中、大功率场合。它通过移相控制方式,使功率开关管实现了软开关导通和关断,减小了开关管损耗,提高了整机频率,提高了功率密度,保持了恒频控制,减小了开关管的电流及电压应力,可实现高频化。但它也存在滞后臂只能在较窄负载范围内实现软开关、占空比丢失严重、转换效率较低等不足之处。为解决以上问题,很多学者提出了不同的解决方法,但就目前的技术状况而言,移相全桥ZVS-PWM变换器还有待于进一步研究[1,2]。 1 传统FB ZVS-PWM DC/DC全桥变换器[3,4] 该变换器主回路如图1所示。4个开关管两端并联电容或利用开关管的寄生电容,并利用变压器的漏感即可实现开关管的零电压关断。而要实现开关管的零电压开通,必须要有回路来释放开关管结电容(或外部附加电容)上的电荷,并给同一桥臂将要关断的开关管结电容(或外部附加电容)充电。图中桥对角的两个开关管作为一组,每组同时断开或接通,两组轮流工作,在一周期中的短时间内,四个开关将均处于断开状态。四个开关管导通(或关断)占空比均相等。 该变换器的优点是功率开关管实现了ZVS,减小了开关损耗,降低了开关噪声,提高了效率,并且电路结构简单,保持了恒频率控制。其主要缺点为:①滞后臂开关管在轻载下很难实现ZVS,通常要增加谐振电感来实现;②漏感或加谐振电感带来占空比丢失;③原边有较大环流;增加了系统的通态损耗,降低了变换效率;④漏感和副边整流二极管及电容会产生电压尖峰和电压振荡,会进一步降低变换效率。

ZVS移相全桥变换器设计

. 电气工程学院 课程设计说明书 设计题目: 系别: 年级专业: 学生姓名: 指导教师:

电气工程学院《课程设计》任务书 课程名称:电力电子与电源综合课程设计 基层教学单位:电气工程及自动化系指导教师: 说明:1、此表一式三份,系、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

电力电子与电源课程设计组内自评表

摘要 首先,本文阐述PWM DC/DC变换器的软开关技术,且根据移相控制PWM全桥变换器的主电路拓扑结构,选定适合于本论文的零电压开关软开关技术的电路拓扑,并对其基本工作原理进行阐述,同时给出ZVS软开关的实现策略。 其次,对选定的主电路拓扑结构进行电路设计,给出主电路中各参量的设计及参数的计算方法,包括输入、输出整流桥及逆变桥的器件的选型,输入整流滤波电路的参数设计、高频变压器及谐振电感的参数设计以及输出整流滤波电路的参数设计。 然后,论述移相控制电路的形成,对移相控制芯片进行选择,同时对移相控制芯片UC3875进行详细的分析和设计。对主功率管MOSFET的驱动电路进 最后,基于理论计算,对系统主电路进行仿真,研究其各部分设计的参数是否合乎实际电路。搭建移相控制ZVS DC/DC全桥变换器的实验平台,在系统实验平台上做了大量的实验。 实验结果表明,本文所设计的DC/DC变换器能很好的实现软开关,提高效率,使输出电压得到稳定控制,最后通过调整移相控制电路,可实现直流输出的宽范围调整,具有很好的工程实用价值。行分析和设计。 关键词开关电源;高频变压器;移相控制;零电压开关;UC3875

移相全桥ZVZCSDCDC变换器综述.

移相全桥ZVZCSDC/DC变换器综述 摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考。关键词:移相控制;零电压零电流开关;全桥变换器 1概述所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断。ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响。图1 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的。即当原边电流减小到零后,不允许其继续反方向增长。原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件;图2 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件。图3 2 电路拓扑根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考。图4 1)NhoE.C. 电路如图1所示[1]。该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关。这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高。变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电容很大。该电路可以工作在电流临界连续状态,但必须采用频率控制,不利于滤波器的优化设计。图5 2)ChenK. 电路如图2 所示[2][3]。该电路超前桥臂并联有串联的电感和电容。电感L1和L2很小,不影响开关管的ZVS,但有两个好处:一是限制振荡的电流峰值;二是在负载很小,开关管不能实现ZVS时,限制开关管的开通电流尖峰。该拓扑结构利用IGBT的反向击穿特性,解决了滞后桥臂IGBT关断时的电流拖尾问题,可以提高IGBT的开关频率,而且在负载很小时也能实现零电流开关。但是,这个电路也付出了代价,漏感L1k中的能量L1kip2/2和ip反向时漏感L1k中的能量全部消耗在反向击穿的IGBT中。图6 3)原边加隔直电容和饱和电感的FB-ZVZCS-PWM变换器如图3[4]所示。它在基本的移相全桥变换器的基础上增加了一个饱和电感Ls,并在主电路上增加了一个阻挡电容Cb,阻挡电容Cb与饱和电感Ls适当配合,能使滞后桥臂上的主开关管实现零电流开关。在原边电压过零阶段,饱和电感工作在线性状态,阻止原边电流ip反向流动,在原边电压为Vin或-Vin时,它工作在饱和状态。尽管它有许多明显的优势,但也有不足之处,如最大占空比范围仍受到很多限制,特别是饱和电感上有很大的损耗,饱和电感磁芯的散热问题是一个必须解决的问题。 4)副边采用有源箝位开关的FB-ZVZCS-PWM变换器如图4所示[5]。这种电路没有使用耗能元件,在副边增加有源箝位开关S,并通过对有源箝位开关的适当控制,为滞后桥臂创造零电流开关条件。超前桥臂在零电压导通与关断的过程中,输出滤波电感Lf参与了谐振过程,而输出滤波电感通常具有很大的值,超前桥臂开关管可以在很大的

电流型移相全桥DCDC变换器研究

电流型移相全桥DC/DC变换器研究 [ 2007-07-26 21:16:17] 字体大小: 摘要:重点分析了ZCS 电流型移相全桥DC/DC 变换器的启动工作过程,通过在升压电感上附加一个耦合线圈,改进了变换器的启动特性;并给出了实验结果. 关键词:ZCS;全桥相移;启动电路 0 引言 移相全桥零电流开关DC/DC 变换器是一种适用于大功率开关电源的软开关电路.它具有主电路结构简单,易于实现高频化;变压器的漏感可以纳入谐振电路实现功率器件软开关;主电路采用IGBT时,电压应力也很小.因为电路中IGBT的关断是在零电流条件下,可以有效地抑止IGBT由于拖尾电流带来的关断损耗.主电路变压器匝比小则有更容易避免饱和的优点[1][2]. 1 燃料电池并网系统 本论文研究的是一个输入电压为100 V,输出依380 V的DC/DC 变换器,应用于燃料电池并网发电系统,完成燃料电池输出和并网逆变器输入之间升压功能.系统结构框图如图1 所示[3],其所采用的DC/DC 升压装置原理如图2 所示. 图1 燃料电池并网系统 图2 移相全桥DC/DC 升压变换器 本文所分析的电路,通过输入电感储能向输出端供电,类似与Boost 电路,由于在启动过程中,输出电压从0 开始逐渐增大,在启动的一段时间范围内,输入电感始终处于充电状态,电感电流持续增大,最终导致输入 电流过流.另外,在输出端也会有类似Boost电路的电压超调现象,使得输出电压过压.因此如何解决电流型D C/DC变换器启动过程中出现的输入过流、输出过压问题,成为此种电流型DC/DC 变换器能否应用于燃料电池发电系统前端DC/DC变换器的关键技术之一. 2 电路控制原理 图3 所示为主电路IGBT驱动的时序,电路工作原理类似于Boost 电路.具体分析见参考文献[3].

移相全桥ZVS变换器的原理与设计

移相全桥ZVS变换器的原理与设计 移相全桥ZVS变换器的原理与设计 摘要:介绍移相全桥ZVS变换器的原理,并用UC3875控制器研制成功3kW 移相全桥零电压高频通信开关电源。 1引言 传统的全桥PWM变换器适用于输出低电压(例如5V)、大功率(例如1kW) 的情况,以及电源电压和负载电流变化大的场合。其特点是开关频率固定,便于控制。为了提高变换器的功率密度,减少单位输出功率的体积和重量,需要将开 关频率提高到1MHz级水平。为避免开关过程中的损耗随频率增加而急剧上升,在移相控制技术的基础上,利用功率MOS管的输出电容和输出变压器的漏电感作为谐振元件,使全桥PWM变换器四个开关管依次在零电压下导通,实现恒频软开关,这种技术称为ZVS零电压准谐振技术。由于减少了开关过程损耗,可保证整个变换器总体效率达90%以上,我们以Unitrode公司UC3875为控制 芯片研制了零电压准谐振高频开关电源样机。本文就研制过程,研制中出现的问题及其改进进行论述。 2准谐振开关电源的组成 ZVS准谐振高频开关电源是一个完整的闭环系统,它包括主电路、控制电路及CPU通讯和保护电路,。 从图1可以看出准谐振开关电源的组成与传统PWM开关电源的结构极其相似,不同的是它在DC/DC变换电路中采用了软开关技术,即准谐振变换器(QRC)。它是在PWM型开关变换器基础上适当地加上谐振电感和谐振电容而形成的,由于运行中,工作在谐振状态的时间只占开关周期的一部分,其余时间都是运行在非谐振状态,所以称为“准谐振”变换器。准揩振变换器又分为两种,一种是零电流开关(ZCS),一种是零电压开关(ZVS),零电流

9种移相全桥ZVZCSDCDC变换器

摘要:概述了9种移相全桥ZVZCSDC/DC变换器,简要介绍了各种电路拓扑的工作原理,并对比了优缺点,以供大家参考. 关键词:移相控制;零电压零电流开关;全桥变换器 1概述 所谓ZVZCS,就是超前桥臂实现零电压导通和关断,滞后桥臂实现零电流导通和关断.ZVZCS方案可以解决ZVS方案的故有缺陷,即可以大幅度降低电路内部的循环能量,提高变换效率,减小副边占空比丢失,提高最大占空比,而且其最大软开关范围不受输入电压和负载的影响. 滞后桥臂零电流开关是通过在原边电压过零期间使原边电流复位来实现的.即当原边电流减小到零后,不允许其继续反方向增长.原边电流复位目前主要有以下几种方法: 1)利用超前桥臂开关管的反向雪崩击穿,使储存在变压器漏感中的能量完全消耗在超前桥臂的IGBT中,为滞后桥臂提供零电流开关的条件; 2)在变压器原边使用隔直电容和饱和电感,在原边电压过零期间,将隔直电容上的电压作为反向阻断电压源,使原边电流复位,为滞后桥臂开关管提供零电流开关的条件; 3)在变压器副边整流器输出端并联电容,在原边电压过零期间,将副边电容上的电压反射到原边作为反向阻断电压源,使原边电流迅速复位,为滞后桥臂开关管提供零电流开关的条件. 2电路拓扑 根据原边电流复位方式的不同,下面列举几种目前常见的移相全桥ZVZCSPWMDC/DC拓扑结构,以供大家参考. 1)NhoE.C.电路如图1所示[1].该电路是最基本的移相全桥ZVZCS变换器,它的驱动信号采用有限双极性控制,从而实现超前桥臂的零电压和滞后桥臂的零电流开关.这种拓扑结构的缺陷是L1k要折衷选择,L1k太小,在负载电流很小时,超前桥臂不能实现零电压开关;L1k太大,又限制了iL1k的变化速度,从而限制了变换器开关频率的提高.变换器给负载供电方式是电流源形式,电感L1k电流交流变化,输入电流脉动很大,要求滤波电

5kW移相全桥ZVSDCDC变换器的研究_图文(精)

硕士学位论文 5kW 移相全桥ZVS DC/DC变换器的研究 RESEARCH ON 5kW PHASE-SHIFT FULL BRIDGE ZVS DC/DC CONVERTER 刘鑫 哈尔滨工业大学 2011年6月 国内图书分类号:TM614 学校代码:10213 国际图书分类号:621.3 密级:公开 工学硕士学位论文 5kW 移相全桥ZVS DC/DC变换器的研究 硕士研究生:刘鑫导师:马洪飞教授申请学位:工学硕士学 科:电气工程 所在单位:电气工程及自动化学院答辩日期:2011年6月授予学位单位:哈尔滨工业大学 Classified Index:TM614 U.D.C:621.3 Dissertation for the Master Degree in Engineering RESEARCH ON 5kW PHASE-SHIFT FULL BRIDGE ZVS DC/DC CONVERTER

Candidate : Supervisor : Speciality : Liu Xin Academic Degree Applied for: Prof.Ma Hongfei Master of Engineering Power Electronics and Electric Drivers School of Electrical Engineering and Automation June, 2011 Affiliation : Date of Defence: Degree-Conferring-Institution : Harbin Institute of Technology 哈尔滨工业大学硕士学位论文 摘要 DC/DC变换器是电力电子领域重要组成部分,在能源紧张的今天,提高 DC/DC变换器的效率及功率密度,具有重要的意义。功率器件的发展和软开关技术的提出使变换器高效高功率密度成为可能。 移相全桥ZVS DC/DC变换器是一种能够实现软开关和大功率能量变换的变换器。本文围绕移相全桥ZVS DC/DC变换器的特点,分析了其工作原理、占空比丢失、变压器副边整流二极管振荡、滞后臂软开关实现条件等关键问题,并设计和制作了一款5kW 的原理样机。 第一章介绍了DC/DC变换器的背景及发展方向,其中包括器件、软开关技术和目前DC/DC变换器研究的热点。同时还介绍了全桥变换器常见的控制策略,以及移相全桥变换器常见的问题和国内外学者提出的改进方法。第二章针对课题内

通信电源DC-DC变换器的移相全桥电路分析

通信电源DC/DC变换器的移相全桥电路分析 本文针对通信电源中DC/DC变换器的移相全桥主电路进行了分析及研究,并提出了采用改进型倍流整流移相全桥电路,来克服传统ZVS PWM全桥变换器存在的一些问题。 1 集中供电方式通信电源系统 为了保证稳定、可靠、安全供电,通信电源系统可采用集中供电、分散供电、混合供电或一体化供电方式。其中集中供电方式通信电源系统的组成框图如图1 所示。 图1 集中供电通信电源系统示意图 目前,国内外通信电源仍然大都采用模拟和数字相结合的控制方式,大量应用数字化技术的还主要是保护和监控电路以及与系统的通信,完成电源的起动、输入与输出的过、欠压保护,输出的过流与短路保护及过热保护等,通过特定的界面电路,也能完成与系统间的通信与显示,但PWM 部分仍然采用专门的模拟芯片。如中兴和华为目前还是采用传统的模拟技术,艾默生已有部分产品采用了全数字的控制,但其EMC、环路稳定性等问题还有待于改善。 本文针对通信电源的特点及现状,采用倍流整流的移相全桥变换器作为主电路,进行了关键参数的计算,并设计出样机进行分析仿真结果。

2 改进型倍流整流移相全桥变换器关键参数设计 倍流整流主电路结构如所图2 示。该电路由全桥逆变和倍流整流电路组成,根据负载大小的不同,该电路可工作在断续和连续模式,在断续状态下,副边二极管自然换流,没有反向恢复引起的电压尖峰,也没有占空比丢失的情况发生,但占空比较小,效率较低。 图2 倍流整流主电路 在连续模式下(如图3 所示),要从实现副边整流二极管的自然换流以及实现滞后管ZVS 两个方面着手。而实现这两点的关键在于阻断电容和输出滤波电感的优化设计。

ZVS移相全桥变换器设计

Z V S移相全桥变换器设计 Prepared on 22 November 2020

电气工程学院 课程设计说明书 设计题目: 系别: 年级专业: 学生姓名: 指导教师: 电气工程学院《课程设计》任务书 课程名称:电力电子与电源综合课程设计 基层教学单位:电气工程及自动化系指导教师:朱艳萍

说明:1、此表一式三份,系、学生各一份,报送院教务科一份。 2、学生那份任务书要求装订到课程设计报告前面。 电气工程学院教务科

电力电子与电源课程设计组内自评表 摘要 首先,本文阐述PWM DC/DC变换器的软开关技术,且根据移相控制PWM全桥变换器的主电路拓扑结构,选定适合于本论文的零电压开关软开关技术的电路拓扑,并对其基本工作原理进行阐述,同时给出ZVS软开关的实现策略。 其次,对选定的主电路拓扑结构进行电路设计,给出主电路中各参量的设计及参数的计算方法,包括输入、输出整流桥及逆变桥的器件的选型,输入整流滤波电路的参数设计、高频变压器及谐振电感的参数设计以及输出整流滤波电路的参数设计。

然后,论述移相控制电路的形成,对移相控制芯片进行选择,同时对移相控制芯片UC3875进行详细的分析和设计。对主功率管MOSFET的驱动电路进最后,基于理论计算,对系统主电路进行仿真,研究其各部分设计的参数是否合乎实际电路。搭建移相控制ZVS DC/DC全桥变换器的实验平台,在系统实验平台上做了大量的实验。 实验结果表明,本文所设计的DC/DC变换器能很好的实现软开关,提高效率,使输出电压得到稳定控制,最后通过调整移相控制电路,可实现直流输出的宽范围调整,具有很好的工程实用价值。行分析和设计。 关键词开关电源;高频变压器;移相控制;零电压开关;UC3875 目录

相关文档