文档库 最新最全的文档下载
当前位置:文档库 › KB0-CC-44两台互备自投排(污)水泵控制电路图

KB0-CC-44两台互备自投排(污)水泵控制电路图

煤矿主排水泵自动化控制系统探索

煤矿主排水泵自动化控制系统探索 煤矿主排水泵自动化控制系统探索 煤矿主排水泵自动化控制系统探索 2019-10-03 自动化论文 煤矿主排水泵自动化控制系统探索 摘要:煤矿井下进水严重威胁着综采工作面的安全生产。在分析传统排水系统的基础上,将其改造为基于PLC的主排水自动控制系统,详细说明了该系统中水位监测系统这一子系统的设计,完成了对该系统的硬件和软件设计,并在实际应用中取得了良好的效果。 关键词:煤矿;主排水泵;改造;PLC;效率 我国对综采工作面的排水工作研究相对滞后。据统计表明,我国仍有部分企业基于人工判断工作面水位增长的速度,不能及时根据水位变化情况实现对主排水泵的精确控制[1]。因此,传统主排水泵的控制方法严重威胁着综采工作面安全。故以某煤矿中央泵房的主排水系统为研究对象对主排水泵的控制方法进行改造,设计一套高效、自动控制的主排水系统,并对其实际应用效果进行分析。 1水位监测系统的设计 1.1主排水系统简介 该煤矿中央泵房的主排水系统包括5台主排水泵。其中,1台泵为在用泵,3台

泵为备用泵,剩余1台泵为检修泵。该主排水系统及其各泵支路的结构如图1所示。 1.2水位监测原理分析 水位监测主要是基于压力传感器所实现的,其原理图如图2所示。该传感器内部总共有4个电桥。当其所承受的压力为0时,4个电桥处于相对平衡的状态,所输出的电压信号为0。将其置于水中,由于水压的作用,电桥的平衡被打破,而且水位越高,压力越大,其输出的电压值越大,即输出电压值与水位高度是成正比的关系[2]。 1.3水位监测系统的硬件组成 水位监测系统的主要功能是实现对主水仓水位的监测,当水位超过一定限值时在发出报警的同时控制主排水泵的启动。因此,水位监测系统的硬件主要包括传感器、转换器、PLC以及接口等。系统将传感器采集到的.水压信号转换为电信号输送至PLC中,并与PLC中的预设值进行比较,一旦发现超出预设值即发出报警。 2主排水泵自动控制系统的设计 2.1功能需求 1)实现对主排水泵的自动控制。系统能够根据实时水位实现对主排水泵的启动、停止操作等控制。2)实现对主排水泵的手动控制。当系统需要检修或PLC失效时,做作业人员可以根据检修的要求,任意控制一台主排水泵的停止与运行,并要求在手动控制状态每台泵处于相互独立的状态。3)实现水泵的自动轮换和调用。当系统监测到某台水泵开启的次数已经达到其检修的要求,系统会自动将该水泵从轮换阵容中剔除;水泵在每次启动或停止工作时均必须确保出水闸处于关闭状态。4)报警功能。当PLC控制系统不能正常工作时,系统将自动发出报警,

主排水系统智能化控制系统

正龙煤业城郊煤矿主排水泵房智能化控制系统 技术协议 甲方:河南省正龙煤业有限公司城郊煤矿 乙方:徐州上若科技有限公司 根据矿井自动化控制系统的发展需要,对城郊煤矿副井底主排水泵房进行智能化控制系统改造,经甲、乙双方充分技术探讨、方案协商,达成如下技术协议: 一、遵守的主要现行标准及规范 《煤矿安全规程》2009版 MT/T 1004-2006 《煤矿安全生产监控系统通用技术条件》 MT/T 1006-2006 《矿用信号转换器》 MT/T 1008-2006 《煤矿安全生产监控系统软件通用技术条件》 MT/T 1002-2006 《煤矿在用主排水系统节能监测方法和判定规则》 MT 381-2007 《煤矿用温度传感器通用技术条件》 AQ 1029-2007 《煤矿安全监控系统及检测仪器使用管理规范》 AQ 1043-2007 《矿用产品安全标志标示》 二、现场设备情况 (1)水泵 MD580-70×8型,10台,流量580m3/h,扬程560m。 (2)电机 Y500-4型,10台,功率1250kW,额定电压6kV,额定电流143.1A,转速1480转/分。 (3)排水阀门 Z941H-64型 DN250 Pg64,手动操作。 (4)排水管路 Φ426×14 3趟。 (5)抽真空方式

射流方式,射流泵DSP-3型,射流阀DN25-64型,吸水阀DN20-64型。 (6)开关柜型号:KYGC-Z型,10台(保护器为DL型) (7)水仓 共3个,通过配水阀与吸水井相通。 三、系统技术要求 1.系统总体要求 城郊煤矿副井底主排水泵房智能化控制系统采用工业以太网、现场总线技术和可编程控制技术,对主排水系统进行在线监测和水泵自动化操作控制,实现水泵的各项运行参数在线实时监测、统计和显示,通过智能专家系统使水泵始终处于高效率的安全运行状态,通过故障参数进行分析、预警,防止事故发生。同时,可根据操作员指令或预定控制程序,自动完成水泵的定时启动、定水位启动、自动切换启动、智能经济运行等操作,自动控制分时运行、削峰填谷,实现水泵的高效经济运行和现场无人值守运行功能。系统既可现场就地操作控制,也可远程操作控制,当控制系统出现故障(即所有水泵均不能自动运行)时,可切换至手动方式(由水泵司机人工操作)启动水泵,确保主排水系统正常启动运行。乙方提供给甲方的矿井主排水智能化控制系统,必须达到以下技术要求和功能: 1、具有优先控制功能:系统根据检测的水泵历史工况数据使流量最大,吨/百米电耗最低的水泵优先启动。 2、正常情况下,根据小井水位(或水仓水位)系统能自动控制水泵启动、停运台数。当水仓水位高于警戒值(还没有达到安全极限值)需要启动两台水泵或两台以上水泵时,系统则应根据历史检测的水泵工况数据,优先依次启动流量大、吨/百米电耗低、压力(扬程)和流量与第一台在用水泵工况相接近的水泵。当水位低于临界水位需要停运一台或二台及以上的正在运行的水泵时,则应根据历史检测数据,优先依次停运流量较小、吨/百米电耗较高、压力(扬程)和流量相对较低的水泵。当水位排至最低水位时,所有水泵应自动停止运行。 非正常排水(排水抗灾或有淹井危险)时,应具有依次启动主排水泵房所有水泵的自动监测监控功能。 3、水位监测监控传感器采用超声波传感器,安装在与水仓相连的吸水小井内,且根据水位监测的实际情况,具有自动控制水泵依次启动运行或依次停运的

煤矿自动化系统建设

煤矿自动化系统建设 第一章系统概述 煤矿全矿井自动化监控系统由地面控制中心、井下监控站、现场分站、网络信息传输系统、网络通信接口设备和矿井工业闭路电视系统等组成。煤矿全矿井自动化系统采用过程知识系统,具有高先进性、高稳定性和可靠性。自动化控制水平要求如下: 1) 总体要求:对生产监控系统范围内的各子系统设备能够在生产控制中心进行集中监视和控制,实现全矿集中控制; 2) 井下要求:除掘进头外的所有电气设备均能在地面控制中心进行控制和监视。井下各子系统的控制均实现无人值守,仅有巡检工进行巡视和维护; 3) 地面要求:自动化水平与企业的管理有密切关系,考虑到煤矿及煤矿周围的社区情况,故煤矿自动化系统除主扇风机、矸石山外,均实现无人值守,仅有巡检工进行巡视和维护。但对主扇风机等控制系统能够实现集中监视。 第二章矿井自动化系统平台 随着现代煤矿采集工业中计算机自动化技术的广泛应用,以及无人化矿井采集的概念的逐步推广,煤矿采集安全作业的需

要,拥有实时高效可靠,高度集成化、智能化的中央监控系统平台越来越成为当代煤矿采集控制管理中心,进行生产管理的重要工具。一套良好的中央监控系统平台,是集数据通信、处理、采集、控制、协调、综合智能判断、图文显示为一体的综合数据应用软件系统,能在各种情况下准确、可靠、迅捷地作出反应,及时处理,协调各系统工作,达到实时、合理监控的目的。我公司在充分利用国内、国外监控一体化指挥平台技术基础上,开发具有“集中管理,分散控制;监控全面,使用方便”特点的过程知识平台软件,由于系统是基于先进的平台软件技术开发,从技术,设计,开发,维护等各个方面保证系统的先进性,是一套符合现代煤矿生产集中控制的软件系统。中央监控系统平台,在中央监控管理上从真正意义上实现了系统的高度集成。它能实现包括CCTV视频监控系统,排水设备监控系统、安全生产设备监控系统,环境监测系统,紧急电话系统,大屏幕显示系统,电力监控系统,选煤厂系统,报表系统以及联动预案调度系统的支持。原有设计的中央控制集成系统中各个相互独立的子系统,通过工业以太网技术,被有机的整合在一起,所有的监控管理操作,都可在一台工作站上完成,这摆脱了以往其他煤炭采集管理系统中各子系统中独成一体的,需要分别操作控制的模式,管理人员不必再在各个子系统控制主机间来回奔波,这大大提高了工作效率,降低了劳动强度,提高了设备利用率,降低运营成本。

电动阀工作原理

1.电动阀即电磁阀,就是利用电磁线圈产生的磁场来拉动阀芯,从而改变阀体的通断,线圈断电,阀芯就依靠弹簧的压力退回。 电磁阀是用来控制流体的自动化基础元件,属于执行器;并不限于液压,气动。电磁阀用于控制液压流动方向,工厂的机械装置一般都由液压钢控制,所以就会用到电磁阀。 电磁阀的工作原理,电磁阀里有密闭的腔,在的不同位置开有通孔,每个孔都通向不同的油管,腔中间是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油刚的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。这样通过控制电磁铁的电流就控制了机械运动。(中华泵阀网) 一:适用性 管路中的流体必须和选用的电磁阀系列型号中标定的介质一致。流体的温度必须小于选用电磁阀的标定温度。电磁阀允许液体粘度一般在20CST以下,大于20CST应注明。工作压差,管路最高压差在小于0.04MPa时应选用如ZS,2W,ZQDF,ZCM系列等直动式和分步直动式;最低工作压差大于0.04MPa时可选用先导式(压差式)电磁阀;最高工作压差应小于电磁阀的最大标定压力;一般电磁阀都是单向工作,因此要注意是否有反压差,如有安装止回阀。流体清洁度不高时应在电磁阀前安装过滤器,一般电磁阀对介质要求清洁度要好。

注意流量孔径和接管口径;电磁阀一般只有开关两位控制;条件允许请安装旁路管,便于维修;有水锤现象时要定制电磁阀的开闭时间调节。注意环境温度对电磁阀的影响电源电流和消耗功率应根据输出容量选取,电源电压一般允许±10%左右,必须注意交流起动时VA值较高。 二、可靠性 电磁阀分为常闭和常开二种;一般选用常闭型,通电打开,断电关闭;但在开启时间很长关闭时很短时要选用常开型了。 寿命试验,工厂一般属于型式试验项目,确切地说我国还没有电磁阀的专业标准,因此选用电磁阀厂家时慎重。 动作时间很短频率较高时一般选取直动式,大口径选用快速系列。 三、安全性 一般电磁阀不防水,在条件不允许时请选用防水型,工厂可以定做。 电磁阀的最高标定公称压力一定要超过管路内的最高压力,否则使用寿命会缩短或产生其它意外情况。 有腐蚀性液体的应选用全不锈钢型,强腐蚀性流体宜选用塑料王(SLF)电磁阀。 爆炸性环境必须选用相应的防爆产品。 四、经济性

水泵自动化控制系统使用说明书 矿方

水泵自动化控制系统使用说明书 二零一四年七月

目录

水泵自动化控制系统使用说明书 一、概述 1、系统用途 井下水泵自动控制系统适用于有甲烷和煤尘爆炸危险的煤矿井下水泵房的主、备水泵集中监测和监控。该系统以进口PLC作为核心主控单元,采用工业以太环网+现场总线模式的远程分布式监测、控制系统,通过各种传感器、电动阀门等监测各水泵和管路的工作状态,实现井下排水系统的自动控制,从而达到有效地节约能源、降低劳动强度、降低运行成本和延长设备使用寿命等目的,使井下排水系统安全可靠、节能高效、经济合理地运行。系统可实现煤矿井下排水系统无人值守,提高煤矿智能化调度和信息化管理水平,并可方便地接入矿井综合自动化系统。 2、主要功能及特点 ·每台水泵具有远程、自动、半自动、手动控制方式; ·本系统采用进口PLC,可靠性高,使用寿命长,能连续运行工作,操作维护简便等特点。 ·本系统能根据水仓水位等工况参数实现无人值守自动工作,从而实现减人提效的目的。 ·本系统通过以太网与矿井工业环网系统相接,使调度指挥人员随时了解水泵的工作情况及水仓水位情况,便于调度指挥,提高工作效率。 ·通过PLC主机可在地面实现对水泵进行遥控,并可以对水泵自动控制系统进行编程,满足客户需求。 ·检测电机电流、电压、三相绕组温度和轴承温度; ·控制水泵电机的起动、停止,检测高爆开关分合闸状态; ·控制阀门电动执行器的开、关,检测开、关到位以及力矩开关信号,具有过力矩保护功能; ·实时检测真空泵工作状态、水泵吸水管真空度及水泵出水口压力;

·若某台泵或所属阀门发生故障,则自动退出工作,后备水泵自动投入; ·井下触摸屏图形化动态显示水泵、真空泵、电动阀门的运行状态; ·光纤以太网接口便于接入矿井综合自动化系统。 ·现场控制中心将采集的数据和调度策略传至地面调度中心,使地面调度中心同步显示水泵运行工况,地面调度中心可以发出指令给现场,实现远程指挥; ·通过摄像机将水泵工况画面传输到地面调度中心,地面调度中心能够直观的看到水泵现场的具体情况; ·实时显示和记录所有的检测数据,绘制实时曲线和历史曲线,可以随时查询、打印实时数据及任意时间段的历史数据; ·人机界面显示的内容丰富、形象、直观,操作简单、易懂,提高了系统的自动化程度和智能程度; ·根据不同时期的具体情况,可以对软件的运行参数进行调整,以适应复杂的情况,提高了系统的适应性; ·软件对操作权限进行了划分,不同的值班人员具有不同的操作权限,从而进行不同的操作。 二、系统和硬件组成 1、硬件组成 主站电控箱 概述 KXJ5-1140(660)(A)矿用隔爆兼本安型可编程控制器适用于有甲烷和煤尘爆炸危险的煤矿井下,是主排水自动化系统的核心单元,用于对井下水泵实现集中控制和监测。控制器以PLC为控制核心,可依据各个运行方式,实现整个泵房的集中控制、数据监测以及故障检测,性能可靠、功能完善、数据稳定,可以方便地接入矿井综合自动化系统。

煤矿水泵自动控制系统

煤矿水泵自动控制系统解决方案一、概述 煤矿水泵自动控制系统是根据煤矿矿井的实际情况,在原来的设施基础上进行自动化改造,以使设备在无人干涉的情况下自动运行和自我诊断的一套系统。通过工业计算机的决策控制,对设备的运行状态、运行过程进行自动检测、自动控制,使设备达到最佳工作状态,从而达到有效地节约能源、降低劳动强度、降低运行成本和延长设备使用寿命等目的。系统综合了工业控制技术和现代软件技术,保证了系统的稳定性和可靠性,并可与全煤矿自动化系统进行联网,作为全煤矿自动化系统的一个子系统。 二、系统功能和特点 1、无需人为干预,由工业计算机控制,根据水位自动启、停水泵,自动实 现水泵的轮换工作,做出合理调度; 2、系统具有过载、欠压、泄漏、超温、轴温等保护功能,当出现以上状况 或电机出现故障,系统自动停止该水泵的工作,同时启用备用水泵; 3、现场控制中心将采集的数据和调度策略传至地面指挥中心,使地面指挥 中心同步显示水泵运行工况,地面指挥中心可以发出指令给现场控制中 心,实现远端指挥; 4、通过摄像机将水泵工况画面传输到现场控制中心和地面指挥中心,使现 场控制中心和地面指挥中心能够直观的看到水泵现场的具体情况; 5、本系统保留了设备原先手动控制方式,手动控制具有优先控制权,保证 了即使系统出现故障,也可以在手动控制下实现水泵的正常工作; 6、系统的实时性好,对各设备的运行工况能够实时监测、实时控制; 7、可以随时查询、打印实时趋势及任意时间段的历史趋势; 8、人机界面显示的内容丰富、形象、直观,操作简单、易懂;

9、软件中嵌入了大量的控制策略,可以根据实际情况做出不同的决策,大 大提高了系统的自动化程度和智能程度; 10、根据不同时期的具体情况,可以对软件的运行参数进行调整,以适应复 杂的情况,提高了系统的适应性; 11、系统能够进行远距离监控,并可无限扩展; 12、软件对操作权限进行了划分,不同的值班人员具有不同的操作权限,并 能够对值班人员进行考勤。 三、系统组成 整个系统由数据采集与检测、现场监测与控制、远端监控指挥三部分组成。 1、数据采集与检测。数据采集由DCS模块完成,模块检测传感器状态,并 将数据通过通讯模块传送至控制计算机。主要采集的模拟量数据有:水 位、主电机电流、水泵轴温、电机绕组温度、电机轴温、排水管流量、 真空度等;数字量数据有:启动柜真空断路器和电抗器柜真空接触器状 态、真空泵工作状态、电动阀门状态、水泵出水口压力等。 2、现场监测与控制。现场监测与控制部分由控制计算机、管理控制软件、 手动集中操作面板组成。控制计算机和管理控制软件组成自动监控系统, 负责将模块传输来的数据整理分析,根据控制策略做出决策,并将数据 记录存储。手动集中操作面板与自动监控系统平行实现控制功能,直接 操作启动柜。 3、远端监控指挥。远端监控指挥部分由计算机、管理软件、网络传输部分 组成,通过计算机网络,同步显示现场工况。远端监控具有开放的接口, 可以扩展功能或接入其他系统。 系统组成示意图: 四、工作原理

水泵液位控制电路原理图

西安祥天和电子科技有限公司详情咨询官网https://www.wendangku.net/doc/b24698367.html, 主营产品:液位传感器水泵控制箱报警器GKY仪表液位控制系统,液位控制器,无线传输收发器等 水泵液位控制电路原理图 水泵液位自动控制系统的主要由以下三个部分组成: 液位信号的采集液位信号的传输水泵控制系统 1.液位信号的采集 液位信号的采集主要是选择合适的液位传感器。液位传感器的发展从最早的电极式、UQK/GSK传统浮子、到现在的压力式、光电式和GKY液位传感器等,形成了多种液位控制方式。电极式便宜简单,但在水中会吸附杂质,使用寿命短。传统浮子与相对滑动轨道之间只有1mm 左右的细缝,很容易被脏东西卡住,可靠性较低。这些是不能在污水中使用的。光电式也不能用于污水,因为玻璃反射面脏了就会出现误判断。GKY液位传感器可以弥补这些缺陷,在污水和清水中可以使用。所以液位控制的系统设计应该根据具体使用环境慎重选择传感器,如果选择不当,将会导致控制系统故障频发,甚至瘫痪,这是导致现有很多液位自动控制系统使用不到一年就失灵的重要原因。 不同液位传感器检测液位的原理是不同的,具体可参见百度文库中“如何选择液位传感器”“什么是液位开关液位开关原理”等文章。 2.液位信号的传输 液位信号的传输可以有有线和无线两种方式。有线就是通过普通电缆线或屏蔽线传输,大部分传统液位传感器通过普通的BV线就可以了,传输信号易受干扰的压力式、电容式传感器需要用屏蔽线传输而且距离不能太远。 在传输距离远或不方便铺设传输线路的场所,需要使用无线液位传输系统。无线液位传输系统可以有多种方式:第一种是直接采用无线收发设备传输液位信号,如GKY-WX。第二种是借助于通讯网络的短信收发功能将液位信号传达到目的地,如GKY-DXSF。第三种是目前最流行一种传输方式,就是借助中间服务器平台,采用流量卡来传输液位信号,如 GKY-GPRSSF。

煤矿水泵自动控制系统

煤矿水泵自动控制系统解决方案 一、概述 煤矿水泵自动控制系统是根据煤矿矿井的实际情况,在原来的设施基础上进行自动化改造,以使设备在无人干涉的情况下自动运行和自我诊断的一套系统。通过工业计算机的决策控制,对设备的运行状态、运行过程进行自动检测、自动控制,使设备达到最佳工作状态,从而达到有效地节约能源、降低劳动强度、降低运行成本和延长设备使用寿命等目的。系统综合了工业控制技术和现代软件技术,保证了系统的稳定性和可靠性,并可与全煤矿自动化系统进行联网,作为全煤矿自动化系统的一个子系统。 二、系统功能和特点 1、无需人为干预,由工业计算机控制,根据水位自动启、停 水泵,自动实现水泵的轮换工作,做出合理调度; 2、系统具有过载、欠压、泄漏、超温、轴温等保护功能,当 出现以上状况或电机出现故障,系统自动停止该水泵的工 作,同时启用备用水泵; 3、现场控制中心将采集的数据和调度策略传至地面指挥中 心,使地面指挥中心同步显示水泵运行工况,地面指挥中 心可以发出指令给现场控制中心,实现远端指挥; 4、通过摄像机将水泵工况画面传输到现场控制中心和地面

指挥中心,使现场控制中心和地面指挥中心能够直观的看 到水泵现场的具体情况; 5、本系统保留了设备原先手动控制方式,手动控制具有优先 控制权,保证了即使系统出现故障,也可以在手动控制下 实现水泵的正常工作; 6、系统的实时性好,对各设备的运行工况能够实时监测、实 时控制; 7、可以随时查询、打印实时趋势及任意时间段的历史趋势; 8、人机界面显示的内容丰富、形象、直观,操作简单、易懂; 9、软件中嵌入了大量的控制策略,可以根据实际情况做出不 同的决策,大大提高了系统的自动化程度和智能程度; 10、根据不同时期的具体情况,可以对软件的运行参数进行调 整,以适应复杂的情况,提高了系统的适应性; 11、系统能够进行远距离监控,并可无限扩展; 12、软件对操作权限进行了划分,不同的值班人员具有不同的 操作权限,并能够对值班人员进行考勤。 三、系统组成 整个系统由数据采集与检测、现场监测与控制、远端监控指挥三部分组成。 1、数据采集与检测。数据采集由DCS模块完成,模块检测 传感器状态,并将数据通过通讯模块传送至控制计算机。

常用电气控制电路知识讲解

常用电气控制电路

常用电气控制电路 1.控制柜内电路的一般排列和标注规律为便于检查三相动力线布置的对错,三相电源L1、L2、L3 在柜内按上中下、左中右或后中前的规律布置。L1、L2、L3三相对应的色标分别为黄、绿、红,在制作电气控制柜时要尽量按规范布线。二次控制电路的线号,一般的标注规律是:用电装置(如交流接触器)的右端接双数排序,左端按单数排序。 二次控制电路的线号编排如图1所示。动力线与弱点信号线要尽量远离,如传感器、PLC、DCS 集散控制系统、PID控制器等信号线,如果不能做到远离,要尽量垂直交叉。弱电线缆最好单独放入一个金属桥架内,所有弱电信号的接地端都在同一点接地,且与强电的接地分离。 常用电气控制电路图1 二次控制电路的线号编排 2.电动机起停控制电路该电路可以实现对电动机的起停控制,并对电动机的过载和短路故障进行 保护,电动机起停控制电路如图2所示。

图2 电动机起停控制电路 在图2中,L1、L2、L3是三相电源,信号灯HL1用于指示L2和L3两相电源的有无,电压表V 指示L1和L3相之间的线电压,熔断器FU1用于保护控制电路(二次电路)避免电路短路时发生火灾或损失扩大。合上断路器QF1,二次电路得电,按下起动按钮(绿色)SB2,交流接触器KM1的线圈通电,交流接触器的主触点KM1的辅助触头KM1-1闭合,电动机M1通电运转。由于KM1-1触头已闭合,即使起动按钮SB2抬起,KM1的线圈也将一直有电。KM1-1的作用是自锁功能,即使SB2抬起也不会导致电动机的停止,电动机起动运行。按下停止按钮SB1,KM1的线圈断电,KM1-1和KM1触头放开,电动机停止,由于KM1-1已经断开,即使停止按钮SB1抬起,KM1的线圈也仍将处于断电状态,电动机M1正常停止。当电动机内部或主电路发生短路故障时,由于出现瞬间几倍于额定电流的大电流而使断路器QF1迅速跳闸,使电动机主电路和二次电路断电,电动机保护停止。当电动机发生过载时,电动机电流超出正常额定电流一定的百分比,热继电器FR1发热,一定时间后,FR1的常闭触头FR1-1断开,KM1线圈断电,KM1-1和KM1主触头断开,电动机保护停止。KM1线圈得电时,HL2指示灯亮说明电动机正在运行,KM1的线圈断电后HL2灯灭,说明电动机停止运行。当FR1发生过载动作,常开触头FR1-2闭合,HL3灯亮说明电动机发生了过载故障。假设上述的三相交流电动机M1的功率3.7kW,额定电流为7.9A,工作电压为AC380V,则3.7kW电动机起停控制电路元件清单见表1。 表1 3.7kW电动机起停控制电路元件清单

煤矿水泵控制

口 煤 矿 水 泵 智 能 控 制 方 案重庆恒邦矿山机械制造有限公司

2015.08.14

、概述 1 r/ U _ 、丿八口口特,,,,,,,,,,,,,,,,,,, 三、主要用途及适用范围,,,,,,,,,,, 四、使用环境条件 五、设计依据及原则 六、系统功能介绍,,,,,,,,,,,,,,,,, 七、系统组成及工作原理,,,,,,,,,,, 八、水泵监控系统操作说明 九、配件清单及价格 十、质量保证和售后服务

井下泵房排水控制系统技术方案 一、系统概述 随着计算机控制技术的迅速发展,以微处理器为核心的可编程序控制器(PLC )控制已逐步取代继电器 控制,普遍应用于各行各业的自动化控制领域。但目前煤矿井下主排水系统仍多采用继电器控制,水泵的开停及选择切换均由人工完成,还做不到根据水位或其它参数自动开停水泵,这将严重影响井下主排水泵房的管理水平和经济效益的提高,为了提高工作效率和节省水泵的运行费用以及满足矿领导的决策,做如下实施 该系统采用PLC +触摸屏+传感器+电动阀门,运用组态友好的人机界面实时监测,实现手动控制和自动 控制,在保证各个设备独立可靠运行的情况下又实现集中控制;实现系统参数检测和储存、监视;故障信息查询、监控;对关键参数实行自动调节等,从而实现整个系统的自动控制。现场设本安操作台和隔爆兼本安型电气控制箱实现三台水泵的排水控制。操作台上设操作按钮及开关、指示灯、报警蜂鸣器、触摸屏、实现系统工作方式选择就地启/停控制等操作、系统状态指示、报警指示、触摸屏实现整个系统的状态监测、数据监视、参数修改等。隔爆兼本安型电气控制箱内设PLC,实现整个系统控制。二、产品特点 本系统的特点是集数字化、自动化、信息化为一体,实现无人值守全自动化控制。系统采用模块化结构,具有很好的维护性和可扩展能力。 三、主要用途及适用范围 本系统主要用于完成矿山水泵等远程无人值守控制,产品的主要适用范围如下: 功率:50KW ?2000KW 电压:AC127V ?AC6000V 频率:OHZ?60HZ 四、使用环境条件 环境温度与湿度:工作环境温度不超过+ 40oC,并且24小时内的平均温度不超过+ 35oC,最低环境温度不得低于—5oC。 相对湿度在最高温度为+ 40oC时不超过50%,在较低温度时,允许有较高的相对湿度(如在20oC时为90%)。 空气质量:不含有过量的尘埃、酸、碱腐蚀性及爆炸性微粒和气体。 海拔高度:海拔高度不超过2000米。 振动:安装地基处允许的振动条件:振动频率范围10—150HZ,最大振动加速度不应超过5m/s2。

《电工识图》教学大纲

《电工识图》教学大纲 一、课程教学目标 本课程从识图的角度出发,以常用的电气图为实例,详细地介绍了识读电气图的方法和技巧,以帮助广大学生掌握识读电气图的方法和技巧。本书的识图实例,其实用性强,覆盖面广。通过识图示例的引导,力求达到举一反三、触类旁通的目的,使学生能够读懂更多更新的电气图。 二、教学内容和要求 (一)识读电气图的基本知识 1.了解电气符号及其分类 2.了解电气图的特点 3.理解电气制图的一般规则

4.了解识读电气图的基本要求和步骤 (二)电动机控制电路图的识读 1.了解三相笼型感应电动机直接启动 控制电路的识读 2.了解三相笼型感应电动机减压启动 控制电路的识读 3.了解三相笼型感应电动机的制动和 保护电路 4.了解三相交流绕线型感应电动机控 制电路的识读 (三)常用机电设备电气控制电路的识读 1.了解复杂电气控制电路图的方法和 步骤 2.掌握C650卧式车床电气控制电路 的组成和工作过程 3.掌握Z3040型摇臂钻床电气控制电 路的组成和工作过程 4.了解排水泵和消防泵电气控制电路 的组成 (四)电子控制电路图的识读 1.理解识读电子控制电路图的方法和 步骤

2.了解晶闸管触发电路的基础知识 3.掌握识读电子电器电路图的方法 4.掌握识读机械设备电子控制电路图 的方法 (五)厂矿变配电系统电气图的识读 1.了解电路系统和配电系统的组成 2.掌握厂矿变配电系统主电路的作 用、类型及绘制特点、识读方法 3.掌握变配电系统二次电路图的识读(六)照明和动力电气电路图的识读1.了解照明电气电路图的组成、识读 方法和步骤 2.了解动力电气电路图的组成、识读 方法和步骤 (七)PLC梯形图和指令语句表的识读1.掌握PLC的基本原理 2.了解三菱FX2系列PLC的编程元件 和指令系统 3.掌握识读PLC梯形图和指令语句表 的方法和步骤

ZSK(B)型矿用水泵自动化控制系统的应用

ZSK(B)型矿用水泵自动化控制系统的应用 我矿井下自动排水采用的ZSK(B)型矿用水泵自动化控制系统,以操作台、隔爆控制箱、就地控制箱、传感器等为主要组成部分,实现中央水泵房的“无人值守”。现就该系统的应用进行一些探讨。 标签:ZSK(B)型矿用水泵;自动化控制系统;应用 1 系统设备及组成 水泵房监控装置包括PLC隔爆控制箱、井下集中操作台、LED模拟显示屏、就地控制箱和外围传感器,地面上位工控机等五部分。 2 ZSK(B)型矿用水泵自动化控制系统硬件特点 2.1 采用PLC可编程控制器为核心 PLC是选用AB公司的PLC,工业生产中最常见的控制器。该系统不会因PLC故障而无法排水,大大提高了生产的可靠性,和应急预案提出的前瞻性。 2.2 外围设备性能可靠 原来使用的电磁阀因采用线圈牵引动作方式存在电压适应性差、密闭性能不好、压力过高打开受阻等缺点,给排真空带来了不少的问题后更改为24V供电的电动球阀解决了原来的问题。 2.3 应急措施齐全 井下环境恶劣经常发生电力设备故障,经常造成故障断电或检修断电致使控制设备无法正常运行。低压电源断电后将不能打开排真空的电动球阀,无法排真空使得水泵无法排水,为解决此问题,将电动球阀并联一个手动球阀解决因低压电源故障、高压电源正常时造成无法排水问题。 2.4 模块化灵活性高 无排风扇结构,易于实现分布,成为各种从小规模到中等性能要求的控制任务既方便又经济,大大提高了维护和更换的灵活性。 2.5 组网功能强大 系统PLC控制器提供TCP/IP的RJ45接口可挂接在中央变电所的网络交换机上,通过交换机与全矿综合自动化系统连接,并通过点表直接同上位机进行通讯完成远程控制功能,实现“无人值守”。

XXX煤矿水泵房自动化设计方案

一、技术方案 1.概述 煤炭行业是我国的支柱产业随着煤炭行业高产高效的发展,矿井安全问题已成为制约煤炭生产的关键因素涌水是危及矿井安全的重要因素一旦发生透水事故,不仅影响生产,甚至会使矿井淹没,危及生产工人生命水泵房排水系统担负着整个矿井积水排除的任务,其安全可靠性直接影响矿井生产的效率和安全目前。 我国大多矿井水泵房仍然普遍使用传统的人工操作排水系统这种排水系统由于自动化程度低,应急能力差,还做不到根据水位或其它参数自动开停水泵,这将严重影响主排水泵房的管理水平和经济效益的提高。存在很大的安全隐患随着我国煤炭行业的发展,排水系统自动化已成为亟待解决的问题。 从XXXXXX煤矿自动化生产实际出发,针对现有排水系统存在的弊病,结合现代工业技术和控制理论,开发适于煤矿使用的自动排水系统利用工业专用测控保护器和液位检测装置,组成自动监控系统,根据水仓水位变化情况,实现自动排水。 自动排水系统解决了排水系统自动控制的难题,利用现代最优控制理论,分析矿井涌水情况和用电情况,建立了排水系统的离散数学模型根据最优性原理,用动态规划法,对排水系统进行分段决策控制,并提出通过递推算法对数学模型进行求解,得出获取最优控制策略的一般方法。 自动排水系统具有以下特点水位实时在线检测与显示水泵自动启动与停止多台水泵实行“轮班工作制”,提高水泵使用寿命根据涌水量大小和用电“避峰就谷”原则,自动控制投入运行的水泵台数与矿井监控系统联网,便于集中控制。 2. 系统介绍 2.1系统建设意义 随着全球网络化进程的不断发展,企业的信息化管理已广泛受到各级领导的

重视,信息化管理的实现,对不断提高企业的生产、经营、管理、决策的效率和水平,发挥着越来越重要的作用。综合自动化系统的实现,也对煤矿企业减员增效的实施有着直接的促进作用。 煤矿水泵是煤矿生产的主要设备之一,实现泵房的远程控制与监测,是综合自动化建设的重要组成部分。目前,在矿井泵房的排水系统设计中 ,一般设置多台多级离心水泵,二组工作、一组备用,并设置了用于轮换检修的水泵。这些水泵电压高、功率大、运行工况复杂,人工很难做到实时监控。另外,对于水泵启动前吸水管路的充水(抽真空)、水仓水位监测、泵房内设备的运行与管理等工作,普遍采用人工操作方式。传统模式操作过程繁琐、劳动强度大、人为因素多、启泵时间长、自动化程度低,已不能适应现代化矿井管理的要求,因此,有必要使泵房水泵实现自动化控制。 系统设计以系统安全、可靠、先进为原则,系统实现在安全生产指挥调度中心对排水系统泵房的所有设备进行网络监视和控制,做到泵房无人值守、设备安全可靠运行。 2.2系统建设目标 项目建设的总方针是立足信息化大前提,保证系统的先进性、安全性、可靠性,安装、使用和维护方便简单,将XXXXXX煤矿主排水泵配套集控系统建设成为技术先进、稳定可靠、利用率高的煤矿排水监控系统,为矿井安全、高效、节能生产做好基础。 系统设计目标如下: ◆将PLC控制系统、计算机网络通信技术和排水控制系统结合,实现以“集 中控制为主,远程监测为辅”的控制模式,保证系统技术方面的先进性。 ◆保证自动排水系统运行的连续性和可靠性,系统连续可靠运转时间达到 360天/年以上。 ◆系统立足建设无人值守泵房的总目标,同时提高节能效率和管理水平, 减少操作人员和工人的劳动强度,为今后矿井生产综合自动化打下良好 基础。 ◆实现地面对主排水系统设备的多点位信息传输和集中监测监控。具有在

煤矿主排水自动化系统控制强排水泵的实践尝试

煤矿主排水自动化系统控制强排水泵的实践尝试 矿井主排水自动化控制系统已得到广泛应用,提高了矿井安全及自动化水平。目前,煤矿正越来越多地投入强排水泵的使用,以提高矿井防灾抗变能力。通常情况下,矿井强排水系统与主排水系统相互独立,且主排水自动化控制系统也不对强排水系统进行控制。现在尝试把强排水系统纳入主排水自动化控制系统中,实现在地面和井下现场对强排水泵的自动控制,以提高工作效率及安全水平。 标签:煤矿主排水系统;强排系统;自动化控制;试验 前言 目前,煤矿主水泵房已普遍使用主排水自动化系统,极大提高了主排水泵房的管理及运行水平。目前,一些矿井逐步上马强排水系统,其启动装置与启闭阀门位于地面,通过地面开关柜起动,一般不纳入主排水自动化控制系统,形成了与主排水系统相互独立的局面(强排水管路与正常排水管互相独立、互不联通)。现尝试将强排水系统纳入主水泵自动化控制系统,利用井下水泵房控制中心、地面自动化控制中心控制地面强排水泵开关柜、井口位置的电动阀门(手自一体),完成对强排水系统的自动控制。 1 主排水泵房自动化排水系统构成 (1)井下水泵房控制中心。水泵房控制中心采用矿用PLC可编程控制箱,PLC根据相关原则自动控制投入运行的水泵台数。在完成对主水泵自动控制的前提下,现对该控制中心进行扩充编程、制作控制页面,通过矿井以太环网,完成对强排水泵的运行控制。(2)地面自动化控制中心。地面监控站设置在地面调度室内,通过工控机对水泵房的状态进行监控,水泵房内所有的信息都可以在地面的工控机上进行显示,并可在地面控制各个水泵运行。通过编程,同时实现在地面控制强排水泵的运行,包括地面集中自动控制和现场手动两种方式。本文主要讨论集中自动控制。 2 设计选用的强排水泵系统简介 (1)经计算,我矿突发最大涌水量为800m3/h,设计选择BQ550-230/6-560W-S矿用潜水电泵两台,配套10kV,560kW电动机。矿用潜水泵技术参数:额定流量Q=550m3/h,扬程H=230m,级数6级,泵额定效率η=80%。实际运行工况点:Q=520m3/h,H=206m,η=78%。两台泵全部工作小时排水量:1040m3/h>800m3/h。(2)供配电系统:强排水泵电源由矿井地面35/10kV变电所提供,采用MYJV22-8.7/103*70型电缆,两路,长度:各2000m。地面采用10kV开关柜+强排水泵电机方式,水泵起停由地面变电所控制。(3)管路系统:沿井筒敷设φ325×8无缝钢管两趟,遇有突发水情况时,两台泵及管路全部投入工作。

常见给排水系统的原理与电气设计方法

常见给排水系统的原理及电气设计方法 一、电动机主电路中常用设备 1、主开关 主开关对电机起着控制、保护、安全隔离的作用,一般选具有隔离功能的断路器,断路器应选用电动机保护型,其分段能力应满足配电系统的要求。 对非消防类电机,断路器的长延时脱扣器的整定电流宜为电机额定电流的1.1~1.25倍,作为热继电器保护的后备保护。 对消防类电机,断路器可不带长延时脱扣器,只设瞬动或短延时脱扣器,其整定电流要躲过电动机的启动电流,又要满足短路保护的灵敏度要求,通常为电动机启动电流的2~2.5倍。 配电系统采用TT接地型式时,主开关需要采用漏电开关,控制要求中需补充“漏电故障只报警不跳闸”。所有消防设备都需要补充这句话,选择开关型号时,需注意所选开关是否有此功能。 2、接触器 接触器的作用为控制主电路的通断,其额定电流大于电动机的额定电流。 3、热继电器 热继电器对电动机起着过载保护的作用,热继电器的整定

电流为电动机额定电流的1~1.05倍。 主电路电流小于XXA时,热继电器直接串接入主电路中,主电路电流大于XXA时,主电路需增设电流互感器,热继电器接入电流互感器回路中。 4、电动机的控制回路 1)控制回路需要螺旋式熔断器作隔离保护作用。 2)控制方式:就地控制、两地控制、自动控制。有自动控制者,均有手动控制。 3)信号 按显示方式可分为灯光信号和音响信号;按显示内容分为:运行信号、故障信号、液位报警信号、控制电源监视信号; 按显示地点分为就地信号、远方集中信号。 二、室内消火栓泵 1、临时高压系统 系统组成:消防水池(上海不需要)、消火栓泵(一用一备)、高位消防水箱、消火栓按钮。高位消防水箱不能满足最不利点消火栓0.07MPa静水压力要求时,需要设置包括稳压泵、气压水罐和稳压泵在内的增压设施,此部分又称为“局部稳高压”。 消火栓系统、喷淋系统通常为共用高位消防水箱,当有多个单体时,往往也是共用一个高位消防水箱。 消防泵控制要求:1、消火栓泵为一用一备,就地控制柜

智能润滑系统常见故障分类

目录 1.文本一直初始化/文本无参数块/CPU无响应----------------------------4 2.反馈继电器微亮----------------------------------------------------------------4 3.系统工作52#润滑点时出现跳闸现象--------------------------------------4 4.监控画面重力和压力无显示或不发生变化-------------------------------4 5. 上位机润滑点显示堵塞,但现场实际正常------------------------------5 6. 一号总线控制器工作时,现场润滑点不工作,使用二号控制器时正常,把二号控制器换到一号,现场仍不工作----------------------------5 7.加油泵无法加油----------------------------------------------------------------5 8.监控通讯不上-------------------------------------------------------------------6 9. 润滑泵自动不能运行--------------------------------------------------------6 10. 加油泵自动不能自动加油-------------------------------------------------6 11. 3000系统中现场不能正常打点-------------------------------------------6 12. 气动阀有关问题-------------------------------------------------------------7 13. 主控柜内L400断路器(现场电磁阀电源)系统工作时经常跳闸---------------------------------------------------------------------------------------7 14. 监控画面上有规律的堵塞点,每隔12个润滑点堵塞---------------------------------------------------------------------------------------7 15. 系统不能自动运行----------------------------------------------------------7 16. 监控上不能启动润滑系统-------------------------------------------------7

20121128 现行国家标准图集目录--电气(D)

109DX001《建筑电气工程设计常用图形和文字符号》 49.00代替00DX001204DX002《工程建设标准强制性条文及应用示例(房屋建筑部分-电气专业) 》36.00309DX003《民用建筑工程电气施工图设计深度图样》代替04DX003409DX004《民用建筑工程电气初步设计深度图样》 代替05DX004 505SDX005《民用建筑工程设计互提资料深度及图样-电气专业 》40.006 05SDX006《民用建筑工程设计常见问题分析及图示-电气专业》29.00705SDX007《建筑电气实践教学及见习工程师图册 》29.00806DX008-1《电气照明节能设计》25.00906DX008-2《电气设备节能设计》 23.001009CDX008-3《建筑设备节能控制与管理(国家建筑标准设计参考图)》23.001111CD008-4《固定资产投资项目节能评估文件编制要点及示例(电气)(国家建筑标准设计参考图)》 29.001211CDX008-5《电能计量管理系统设计与安装(国家建筑标准设计参考图)》26.001309DX009《电子信息系统机房工程设计及安装》45.001412DX011《《建筑电气制图标准》图示》56.00含光盘 193(03)D101-1《户内电力电缆终端头》293(03)D101-2《户外电力电缆终端头》393(03)D101-3《电力电缆接头》493(03)D101-4《电力电缆终端头及接头》5 09D101-6《矿物绝缘电缆敷设》22.00代替99D101-6604DX101-1《建筑电气常用数据》 65.00712SDX101-2《民用建筑电气设计计算及示例》78.00807SD101-8《电力电缆井设计与安装》 45.00 999D102-1《6~10kV铁横担架空绝缘线路安装 》原99D176改号1099D102-2《1000V以下铁横担架空绝缘线路安装 》原99D177改号 1103D103《10kV及以下架空线路安装》75.00原86D170、86D171、86D1721206D105《电缆防火阻燃设计与施工》 24.001310CD106《铝合金电缆敷设与安装(国家建筑标准设计参考图)》18.00 197D201-1《35/0.4kV变压器室布置及设备构件安装 》39.80原97D267改号299D201-2《干式变压器安装》13.00原99D268改号 304D201-3《室外变压器安装》 58.00原86D265、86D266合并修编4 03D201-4《10/0.4kV变压器室布置及变配电所常用设备构件安装》64.40原88D263、88D264合并修编 595D202-1《蓄电池安装》 600D202-2《应急柴油发电机组安装》704D202-3《集中型电源应急照明系统 》 20.00 899D203-1《35/6(10)千伏变配电所二次接线(交流操作部分) 》 9 01D203-2 《6~10千伏配电所二次接线(直流操作部分)》 104D301-1204D301-23 04D301-3499D302-1《低压双电源切换电路图》597D302-2《低压母线分段断路器二次接线》601D302-3《低压母线分段断路器二次接线(续)》702D303-1《交流380伏鼠笼型电动机控制原理图》810D303-2《常用风机控制电路图》9 10D303-3《常用水泵控制电路图》106D401-1《吊车供电线路安装》52.00代替90D401-1,91D4012 206D401-4《洁净环境电气设备安装》 24.00311CD403《低压配电系统谐波抑制及治理(国家建筑标准设计参考图)》23.00199D501-199(03)D5011《建筑物防雷设施安装(含2003年局部修改版)》113.00 202D501-2《等电位联结安装》 14.30代替97SD567 303D501-3《利用建筑物金属体做防雷及接地装置安装》403D501-4《接地装置安装》 103D602-1《变配电系统智能化设计(10kV及以下) 》43.00含光盘 203D603《住宅小区建筑电气设计与施工 》47.00被12DX603替代3 05SD604 《小城镇住宅电气设计与安装 》 31.006类 强弱电连接与 控制 139.00替代99D303-2、01D303-3常用电机控制电路图(2010年合订本) 4类 车间电气线路 安装 5类 防雷与接地安 装D501-1~4防雷与接地安装(2003年合订本) 3类 室内管线安装及常用低压控制线路 《室内管线安装》 57.00原96SD181改号 D301-1~3室内管线安装(2004年合订本)166.70 99D302-1、97D302-2原图集号99D373、97D374 D302-1~3双电源切换及母线分段控制接线图(2002年合订本)2类 变配电所设备安装及35/6-10kV二次拉线 35.00原图集号95D211、00D272 D202-1~2备用电源 (2002年合订本) 199.1099D203-1原图集号99D270(上)、(下) D203-1~2变配电所二次接线(2002年合订本) 0类综合项目 88.00(2009年合订本) 1类 电力线路敷设及安装 70.00 D101-1~7(新)电缆敷设(2002年合订本)

相关文档
相关文档 最新文档