文档库 最新最全的文档下载
当前位置:文档库 › 电容信号转换集成电路CAV424

电容信号转换集成电路CAV424

电容信号转换集成电路CAV424
电容信号转换集成电路CAV424

电容信号转换集成电路CAV424

CA V424 是一个多用途的几乎可以处理各种电容式传感器信号的完整的转换接口集成电路。它同时具有信号采集(相对电容量变化)、处理和差分电压输出的功能。CA V424检测到待测电容与一个固定参考电容的电容相对变化量。对于参考电容可能的5%到100%的电容变化,该IC对10pF到2nF大范围的电容进行了优化。差分电压输出信号可直接连接到下面的A / D转换器或其他Analog Microelectronics公司的信号调理IC。使用集成的温度传感器,易于建立数字调节系统。

4.1.1CA V424的特点

CA V424是一个集成的C / V转换器,并包含完整的片上电容信号处理单元。它具有以下特点:

1高的检测灵敏度

2宽的电容检测范围:5%-100%的相对电容变化.5pF至2nF.

3 最大检测频率2kHz

4输出放大级电压可调

5可调的输出滤波电路

6高的耐压强度17V

7内置温度传感器

8宽的工作温度范围:–40°C...+105°C

9工作电压:5V ± 5%

10比例电压输出

主要应用在工业过程控制、测距、压力测量、湿度测量、液位控制等领域。

4.1.2 CA V424的工作原理

CAV424 电路方框图如下:

图4—1 CAV424的内部框图

工作原理介绍:

CAV424 是这样工作的:一个通过电容C OSC 频率可调的参考振荡器驱动二个构造对称的积分器并使它们在时间和相位上同步(见图3)。二个被控制的积分器的振幅是由电容C R 和C M来决定,这里C R 作参考电容而C M 作为测量电容。由于积分器具有很高的共模抑制比和分辨率,所以二个振幅的差值所提供的信号就反映出二个电容C R 和C M的差值。这个电压差值通过后面的有源滤波器滤波为直流电源信号(整流效应),然后送到可调的放大器,调整到所需要的输出电压值。如果二个电容C R 和C M值相同,那么经过整流和滤波得到的一个直流电压信号就是零。如果测量电容C M 改变了ΔC M,那么得到的输出电压与之是成正比的。

如果二个电容C R 和C M 值不相同,那么当ΔC M = 0 时,在输出端得到的是一个偏置值,它始终是叠加在直流电压信号上的。

4.1.2.1 可参考振荡器

参考振荡器对外接的振荡器电容C OSC 充电,然后放电,周而复始(见图3)。参考振荡器电流I OSC 由外接电阻R OSC 和参考电压V M来确定:

(4—1)参考振荡器的频率是按如下给出的:

(4—2)

这里ΔV OSC 是参考振荡器的输出电压峰谷值之差(V OSC,HIGH 和V OSC,LOW ),它是由内置电阻定义并且有一个固定电压值2.1V(当V CC =5V 时)(见图4-2)。参考振荡器的频率是由R OSC 和C OSC 确定,它们的取值范围见表2。

图4—2 振荡器电压曲线

4.1.2.2 电容积分器

二个对称构造的内置电容式积分器的作用原理与上述的参考振荡器相似。区别在于放电时间是充电时间的一半。其次,它的放电最小电压被钳制在一个内置的固定电压V CLAMP 上(见图4-3)。

图4—3 二个积分器的电压输出

电容式积分器电流I CR 和 I CM 由外接电阻R CM , R CR 和参考电压V M 来确定:

M CM

CM

V I R = (4—3)

M CR

CR

V I R = (4—4)

电容C M 和C R 充电至最大值V CM 和V CR ,可由理论公式计算如下:

(4—5)

(4—6)

二个电容C M 和C R 上的电压V CM 和V CR 首先通过信号处理电路的加减法器相减。具有整流功能的加减法器也同时消去了钳位固定电压V CLAMP 。经过滤波后在输出端得到一个直流电压信号V TPAS 。

如果积分器电流I CR 和 I CM 在电容值C M,min 时相同(即参考电容和测量电容的本底电容值相同),那么经过加减法器和滤波器后的输出值为零(见图4-4)。

图4—4 :带有信号处理示意的电流方框图

图中Stromreferenz=电流源ReferenzOszillator=参考振荡器Integrator=积分器Signalverarbeituung=信号处理

4.1.2.3信号处理

经过滤波和光滑处理的直流电压信号为V TPAS:

(4—7)

信号V TPAS 可以通过内置的运算放大器直接放大,放大增益G LP 由外接电阻R L1 和R L2 来确定,计算如下式:

(4—8)

由式子(4-7)得到:

(4—9)

对地(GND)输出电压信号为:

(4—10)

输出电压信号V LPOUT = f(C M, (C R), f osc, I CM, I CR)的函数关系:此时测量电容C M的本底电容和参考电容C R 值不变,而f osc 或者I CM 和I CR 是参数。

可以看出,输出信号是电容C M和C R 以及参考振荡器频率f OSC 和积分器充放电电流I CM 和I CR 的函数。

图4—5 :当电容值CM > CR 时,对地电压信号输出

式子(4-10)中的一个电压V M 是输出电压的一部分,它的值是工作电源电压的一半。因为它与工作电源电压是成比例变化的,所以得到的差分输出电压信号V LPOUT 也是比例输出的电压信号。

图4—5 CAV424 应用电路图(当充放电电流ICM 和ICR 是常数时)

图4-5所示的电路是当充放电电流I CM 和I CR 为常数的时候。也就是说,当测量电容的本底电容值C M,min 变化时,比如不同的测量物体,参考振荡器的频率必须始终适应新的不同的本底电容值C M,min 的测量。

第二,如果将参考振荡器频率f osc,固定,那么当测量电容的本底电容值C M,min 变化时,二个电流值I CM 和I CR 要与之相适应。建议选择I CM 和I CR 相等I CM = I CR。二个方法是同等的,只是根据不同的应用条件来选择。第二个方法的电路见图

4-6。

如果fosc = 常数,I CM, I CR = f(C M, C R) 满足式子(1)至(9),就如同充放电电流I CM 和I CR为常数,而fosc = f(C M, C R) 满足式子(1)至(9)一样。在动态测量时,测量电容的变化速率f det要满足下式:

f det 是检测频率,也是容许测量电容单位时间里的变化次数。

图4—6 CAV424 应用电路图(当参考振荡器频率fosc 是常数时)

4.1.3 CA V424的电路参数

4.1.3.1固定参数的确定

与测量电容变化没有关系的外接元器件取值如下:

表1:外接元器件取值

4.1.3.2电路参数

Tamb = 25°C, VCC = 5V (除非另外注明)

表2:CA V424 电路参数

注意:

1) 振荡器电容取值应尽量满足:C OSC = 1.6 ?C M,Min 。

2) 电容CM 和CR 的取值可以超出范围,只是系统性能会下降,电气特性的数值会超出规定。

3) 流入集成电路的电流均为负。

4) RTEMP 是在管脚VTEMP 上的最小负载电阻。

4.1.3.3电路参数边界条件

表3:电路参数的边界条件

4.1.3 CA V424的电路方框图和管脚示意图

CA V424的电路方框图:

CA V424的管脚示意图:

图4-8 CAV424 管脚示意图

表4:CAV424 管脚名称

4.2 信号的温度补偿

为了使零点温度漂移最小,被测电容Cx2和参考电容Cx1的温度系数应尽可能接近。对于整个传感器而言,所有的外接电阻必须具有相同的温度系数。对温度引起的零点补偿可通过选择具有相同温度系数的电阻Rcx1 、Rcx和Rcosc实现,电阻的温度系数必须优于±5 ×10 - 5/ ℃,并且要求这3 个电阻在印刷电路板上紧凑布局。CA V424 本身只是将电容信号变换成电压信号,对电容信号和电路本身所带来的非线性无法进行修正;同时,参考电容与被测电容的温度系数不可能完全一致,被测介质的介电常数ε也是随温度变化而变化的。如果没有附加的温度补偿措施,CA V424 的整个测量系统有大约±1. 5 %FS 的温度漂移。

为了实现较高的测量精度,需要用温度信号对传感器的输出进行补偿。CA V424 内部集成有温度传感器,温度灵敏度为8mV/ ℃。温度对应的电压信号可通过单片机PIC16C711 的ADC 管脚采样后用作查表指针,通过查询事先存入单片机的“温度- 电容量”表格来控制PWM 管脚的输出,脉宽调制信号通过滤波产生一个电压的平均值,它可作为修正电压由Rcx2对传感器的零点, Rcosc对传感器的量程进行调整。通过上述的数字方法补偿传感器的温度漂移和硬件电路所带来的

非线性误差。

其中PIC16C711是MICROCHIP公司设计的低成本、低功耗、高性能、8位全静态CMOS微控制器。它采用RISC结构,具有极高的性能价格比和可靠性,广泛应用在汽车、安全、遥控传感器和应用控制领域。

图4-8 系统组成方框图

基于LM331频率电压转换器电路设计

基于LM331频率电压转换器电路设计LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建 说明 LM331基本上是从国家半导体精密电压频率转换器。该集成电路具有手像应用模拟到数字的转换,长期一体化,电压频率转换,频率电压转换。宽动态范围和出色的线性度,使适合上述应用的IC,这里的LM331作为电压转换器转换成一个成比例的电压,这是非常线性的输入频率与输入频率的频率有线。电压转换的频率达到差分输入频率使用电容C3和电阻R7,和由此产生的脉冲序列喂养的PIN6的 IC(阈值)。在PIN6负由此产生的脉冲序列的边缘,使得内建的比较器电路,触发定时器电路。在任何时刻,电流流过的电流输出引脚(引脚6)将输入频)的值成正比。因此,输入频率(FIN)成正比的电压(VOUT)率和定时元件(R1和C1 将可在负载电阻R4 。电路图

注意事项 该电路可组装在一个VERO板上。 我用15V直流电源电压(+ VS),同时测试电路。 LM331可从5至30V DC之间的任何操作。 R3的值取决于电源电压和方程是R3 =(VS - 2V)/(2毫安)。 根据公式,VS = 15V,R3 = 68K。 输出电压取决于方程,VOUT =((R4)/(R5 + R6))* R1C1 * 2.09V *翅。壶R6可用于校准电路。

常用电源和压芯片

常用电源和稳压芯片 LM2930T-5.0 5.0V低压差稳压器 LM2930T-8.0 8.0V低压差稳压器 LM2931AZ-5.0 5.0V低压差稳压器(TO-92) LM2931T-5.0 5.0V低压差稳压器 LM2931CT 3V to 29V低压差稳压器(TO-220,5PIN) LM2940CT-5.0 5.0V低压差稳压器 LM2940CT-8.0 8.0V低压差稳压器 LM2940CT-9.0 9.0V低压差稳压器 LM2940CT-10 10V低压差稳压器 LM2940CT-12 12V低压差稳压器 LM2940CT-15 15V低压差稳压器 LM123K 5V稳压器(3A) LM323K 5V稳压器(3A) LM117K 1.2V to 37V三端正可调稳压器(1.5A) LM317LZ 1.2V to 37V三端正可调稳压器(0.1A) LM317T 1.2V to 37V三端正可调稳压器(1.5A) LM317K 1.2V to 37V三端正可调稳压器

(1.5A) LM133K 三端可调-1.2V to -37V稳压器(3.0A) LM333K 三端可调-1.2V to -37V稳压器(3.0A) LM337K 三端可调-1.2V to -37V稳压器(1.5A) LM337T 三端可调-1.2V to -37V稳压器(1.5A) LM337LZ 三端可调-1.2V to -37V稳压器(0.1A) LM150K 三端可调1.2V to 32V稳压器(3A) LM350K 三端可调1.2V to 32V稳压器(3A) LM350T 三端可调1.2V to 32V稳压器(3A) LM138K 三端正可调1.2V to 32V稳压器(5A) LM338T 三端正可调1.2V to 32V稳压器(5A) LM338K 三端正可调1.2V to 32V稳压器(5A) LM336-2.5 2.5V精密基准电压源 LM336-5.0 5.0V精密基准电压源 LM385-1.2 1.2V精密基准电压源 LM385-2.5 2.5V精密基准电压源 LM399H 6.9999V精密基准电压源 LM431ACZ 精密可调2.5V to 36V基准稳压源LM723 高精度可调2V to 37V稳压器 LM105 高精度可调4.5V to 40V稳压器 LM305 高精度可调4.5V to 40V稳压器 MC1403 2.5V基准电压源

常用集成电路的型号及功能说明

型号功能 ACP2371NI 多制式数字音频信号处理电路ACVP2205 梳状滤波、视频信号处理电路 AN5071 波段转换控制电路 AN5195K 子图像信号处理电路 AN5265 伴音功率放大电路 AN5274 伴音功率放大电路 AN5285K 伴音前置放大电路 AN5342K 图像水平轮廓校正、扫描速度调制电路AN5348K AI信号处理电路 AN5521 场扫描输出电路 AN5551 枕形失真校正电路 AN5560 50/60Hz场频自动识别电路 AN5612 色差、基色信号变换电路 AN5836 双声道前置放大及控制电路 AN5858K TV/AV切换电路 AN5862K(AN5862S) 视频模拟开关 AN5891K 音频信号处理电路 AT24C02 2线电可擦、可编程只读存储器 AT24C04 2线电可擦、可编程只读存储器 AT24C08 2线电可擦、可编程只读存储器 ATQ203 扬声器切换继电器电路 BA3880S 高分辨率音频信号处理电路 BA3884S 高分辨率音频信号处理电路 BA4558N 双运算放大器 BA7604N 梳状切换开关电路 BU9252S 8bitA/D转换电路 CAT24C16 2线电可擦、可编程只读存储器 CCU-FDTV 微处理器 CCU-FDTV-06 微处理器 CD54573A/CD54573CS 波段转换控制电路 CH0403-5H61 微处理器 CH04801-5F43 微处理器 CH05001(PCA84C841) 微处理器 CH05002 微处理器 CH7001C 数字NTSC/PAL编码电路 CHT0406 微处理器 CHT0803(TMP87CP38N*) 8bit微处理器 CHT0807(TMP87CP38N) 8bit微处理器 CHT0808(TMP87CP38N) 8bit微处理器 CHT0818 微处理器 CKP1003C 微处理器 CKP1004S(TMP87CK38N) 微处理器 CKP1006S(TMP87CH38N) 微处理器

利用LM331进行频率电压转换教学教材

.ffff5.1 频率/电压变换器* 一、概述 本课题要求熟悉集成频率——电压变换器LM331的主要性能和一种应用; 熟练掌握运算放大器基本电路的原理,并掌握它们的设计、测量和调整方法。 二、技术要求 当正弦波信号的频率f i 在200Hz~2kHz 范围内变化时,对应输出的直流电压V i 在1~5V 范围内线形变化; 正弦波信号源采用函数波形发生器的输出(见课题二图5-2-3); 采用±12V 电源供电. 三、设计过程 1.方案选择 可供选择的方案有两种,它们是: ○ 1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○ 2直接应用F/V 变换器LM331,其输出与输入的脉冲信号重复频率成正比. 因为上述第○ 2种方案的性能价格比较高,故本课题用LM331实现. LM331的简要工作原理 LM331的管脚排列和主要性能见附录 LM331既可用作电压――频率转换(VFC ) 可用作频率――电压转换(FVC ) LM331用作FVC 时的原理框如图5-1-1所示. -输入比较器 定时比较器 + +56 7 1s Q T C t R t V CC 2/3V CC 9/10V CC s 置“1”端 置“0”端 R R L C L -V 0 fi 图5-1-1 +V CC Q + 此时,○ 1脚是输出端(恒流源输出),○6脚为输入端(输入脉冲链),○7脚接比较电平. 工作过程(结合看图5-1-2所示的波形)如下:

2/3V CC v ct t 1.1R t C t t 0V 0 v CL t 3.5v p-p V CC 1/f i t 1 s t 图5-1-2 当输入负脉冲到达时,由于○6脚电平低于○7脚电平,所以S=1(高电平),Q =0(低电平)。

数字电路课程设计报告_简易数字电容测试仪(原创)

数电课程设计报告 题目简易数字式电容测试仪 简易数字电容C测量仪 前言 电子制作中需要用到各种各样的电容器,它们在电路中分别起着不同的作用。与电阻器相似,通常简称其为电容,用字母C表示。顾名思义,电容器就是“储存电荷的容器”。尽管电容器品种繁多,但它们的基本结构和原理是相同的。两片相距很近的金属中间被某物质(固体、气体或液体)所隔开,就构成了电容器。两片金属称为的极板,中间的物质叫做介质。电容器也分为容量固定的与容量可变的。但常见的是固定容量的电容,最多见的是电解电容和瓷片电容。 不同的电容器储存电荷的能力也不相同。规定把电容器外加1伏特直流电压时所储存的电荷量称为该电容器的电容量。电容的基本单位为法拉(F)。但实际上,法拉是一个很不常用的单位,因为电容器的容量往往比1法拉小得多,常用微法(μF)、纳法(nF)、皮法(pF)(皮法又称微微法)等,它们的关系是:1法拉(F)= 1000000微法(μF)1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 电容器在电子线路中得到广泛的应用,它的容量大小对电路的性能有重要的影响,本课题就是用数字显示方式对电容进行测量。 本设计报告共分三章。第一章介绍系统设计;第二章介绍主要电路及其分析;第三章为总结部分。 摘要:由于单稳态触发器的输出脉宽t 与电容C成正比,把电容C转换成宽度为t W的矩 W 形脉冲,然后将其作为闸门信号控制计数器计标准频率脉冲的个数,并送锁存--译码--显示系统就可以得到电容量的数据。 关键词:闸门信号标准频率脉冲

目录 第一章系统设计 (2) 一、设计目的 (2) 二、设计内容要求 (2) 三、设计技术指标 (2) 四、方案比较 (2) 五、方案论证 (3) 1、总体思路 (3) 2、设计方案 (3) 第二章主要电路设计与说明 (4) 一、芯片简介 (4) 1、555定时器 (4) 2、单稳态触发器74121 (4) 3、4位二进制加法计数器47161 (5) 4、4位集成寄存器74 LSl75芯片 (6) 5、七段译码器74LS47-BCD 芯片 (7) 二、总电路图及分析 (7) 1、总图 (7) 2、参数选择及仪表调试 (9) 3、产品使用说明 (9) 4、以测待测电容Cx的电容量为例说明电路工作过程及测容原理 (9) 三、各单元电路的设计与分析 (9) 1、基准脉冲发生器 (9) 2、启动脉冲发生器 (10) 3、Cx转化为Tw宽度的矩形脉冲 (10) 4、计数器 (10) 5、寄存—译码—显示系统 (10) 第三章总结 (11) 参考文献 (11) 附录 (11) 附录1 元器件清单 (11) 附录2 用集成元件代分立元件电路 (12) 评语 (13)

常用开关电源芯片大全复习课程

常用开关电源芯片大 全

常用开关电源芯片大全 第1章DC-DC电源转换器/基准电压源 1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596 18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751

27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875 40.低噪声高效率降压式电荷泵LTC1911 41.低噪声电荷泵LTC3200/LTC3200-5 42.无电感的降压式DC-DC电源转换器LTC3251 43.双输出/低噪声/降压式电荷泵LTC3252 44.同步整流/升压式DC-DC电源转换器LTC3401 45.低功耗同步整流升压式DC-DC电源转换器LTC3402 46.同步整流降压式DC-DC电源转换器LTC3405 47.双路同步降压式DC-DC电源转换器LTC3407 48.高效率同步降压式DC-DC电源转换器LTC3416 49.微型2A升压式DC-DC电源转换器LTC3426 50.2A两相电流升压式DC-DC电源转换器LTC3428 51.单电感升/降压式DC-DC电源转换器LTC3440 52.大电流升/降压式DC-DC电源转换器LTC3442 53.1.4A同步升压式DC-DC电源转换器LTC3458 54.直流同步降压式DC-DC电源转换器LTC3703 55.双输出降压式同步DC-DC电源转换控制器LTC3736 56.降压式同步DC-DC电源转换控制器LTC3770

集成电路功能

M11B416256A 存储集成电路 M1418VVW 微处理集成电路 M2063SP 制式转换集成电路 M208 系统控制集成电路 M24C08 存储集成电路 M24C128-WMN6 存储集成电路 M27V201-200N6 中文字库集成电路 M28F101AVPAD 存储集成电路 M3004LAB1 红外遥控信号发射集成电路M32L1632512A 存储集成电路 M34300-012SP 微处理集成电路 M34300-628SP 微处理集成电路 M34300M4-012SP 微处理集成电路 M34300N4-011SP 微处理集成电路 M34300N4-012SP 微处理集成电路 M34300N4-555SP 微处理集成电路 M34300N4-567SP 微处理集成电路 M34300N4-584SP 微处理集成电路 M34300N4-587SP 微处理集成电路 M34300N4-628SP 微处理集成电路 M34300N4-629SP 微处理集成电路 M34300N4-657SP 微处理集成电路 M34302M8-612SP 微处理集成电路 M37100M8-616SP 微处理集成电路 M37102M8-503SP 微处理集成电路 M37103M4-750SP 微处理集成电路 M37201M6 微处理集成电路 M37204M8-852SP 微处理集成电路 M37210M2-609SP 微处理集成电路 M37210M3-010SP 微处理集成电路 M37210M3-550SP 微处理集成电路 M37210M3-603SP 微处理集成电路 M37210M3-800SP 微处理集成电路 M37210M3-901SP 微处理集成电路 M37210M3-902SP 微处理集成电路 M37210M4-650SP 微处理集成电路 M37210M4-688微处理集成电路 M37210M4-705SP 微处理集成电路 M37210M4-786SP 微处理集成电路 M37211M2-604SP 微处理集成电路 M37211M2-609SP 微处理集成电路 M37220M3 微处理集成电路 M37221 微处理集成电路 M37221M6-065SP 微处理集成电路

电压频率变换器的设计讲解

机械与电子工程学院 课程设计报告 课程名称模拟电子技术课程设计设计题目电压频率变换器 所学专业名称电气信息类 班级电类114班 学号********** 学生姓名王*金 指导教师汪* 2012年12月23日

机电学院模拟电子技术课程设计 任务书 设计名称:电压频率转换器 学生姓名:王*金指导教师:汪* 起止时间:自2012 年12 月10 日起至2012 年12 月25 日止 一、课程设计目的 1).熟悉集成电路及有关电子元器件的使用; 2).了解电压平频率转换器主体电路的组成及工作原理; 3).学习电路中基本电路的应用以及单稳态触发器等综合应用。 二、课程设计任务和基本要求 设计任务: 1).熟悉和应用比较器的构成及设计方法,尤其是迟滞比较器的应用。 2).熟悉和应用积分器的构成和设计方法,了解电容在其中的工作原理。 3).熟悉和简单应用二极管作电子开关的构成和设计方法。 4).熟悉迟滞比较器与积分器之间的波形转换。 5).熟悉掌握运用multisim画图、调试和仿真。 基本要求: 1).有明确的设计方案使操作简便易行。 2).设计一个将直流电压转换成给定频率的矩形波,包括:积分器;电压

比较器。 3).输入为直流电压0-10V。 4).输出为f=0-500Hz的矩形波。 5).按规定格式写出课程设计报告书。

机电学院模拟电子技术课程设计指导老师评价表

目录 摘要和关键词 (1) 第一章设计指标 (2) 1.1 设计指标 (2) ◆ 1.1.1设计内容 (2) ◆ 1.1.2设计要求 (2) 第二章系统设计原理及内容 (2) 2.1 设计思想 (2) 电压/频率转换器原理框 (2) 第三章电路各模块方案设计 (3) 3.1 积分器的设计方案 (3) 3.2比较器的设计方案 (4) ◆ 3.2.1电压比较器 (4) ◆ 3.2.2过零比较器 (5) 3.3单稳态触发器 (6) 3.4低通滤波器 (6) 3.5模块的整合 (7) ◆ 3.5.1 电压/频率 (7) ◆ 3.5.2 频率/电压 (7) 第四章结束语 (8) 4.1心得体会 (8) 元件清单 (9) 参考文献 (9)

电源转换器(开关电源)

东华大学电子课程设计 课题:12V-5V电源转换器(开关电源) 目录 一、设计任务与需求 (3) 二、总体方案选择 (4) 三、各模块电路设计分解 (7) 四、电路总图 (11)

五、所用元器件及购买清单 (12) 六、组装与调试 (12) 七、收获体会和建议 (16) 参考文献 (17) 附录A (17) 附录B (18)

一、设计需求与任务 1.1、设计背景:开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,广泛应用于各种电子设备、仪器及家电。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。开关电源又被称为高效能节能电源,内部电路工作在高频开关状态,自身消耗的能量极低,一般电源效率可达80%左右。 1.2、设计任务:12V-5V电源转换器(开关电源) (1)输入直流电压12V,输出直流电压5V (2)在额定负载下,输出电压跌落≤30mv (3)在额定负载下,输出纹波V ≤50mv opp (4)在额定负载下,输出尖峰电压V '≤200mv opp (5)功率转换效率η大于70% ≤1A) (6)带有过流保护(I

二、总体方案选择 2.1、PFM与PWM调制方法: 2.1.1、PWM 当输出直流电压偏离额定值时,反馈控制电路在保证开关管频率不变的情况下,自动改变调整管的导通时间,即改变脉冲电压的宽度,从而改变脉冲电压的占空比,使直流输出电压的偏移量在允许的范围内。这种方案称为脉冲宽度调制,简称PWM型开关电源。其反馈电路是脉宽调制电路。 2.1.2、PFM: 当输出直流电压超过额定值时,反馈控制电路在保证调整管的导通时间不变的情况下,自动改变调整管的开关频率(也就是改变脉冲电压的频率),从而改变电压的占空比,使输出直流电压稳定在允许范围内,这种方案称为脉冲频率调整,简称PFM型开关电源,其反馈电路为脉冲频率调整电路。 2.2、针对PFM主要有自激式与驱动式两种方案。 2.2.1自激式 正激式变压器开关电源,是指当变压器的初级线圈正在被直流脉冲电压激励时,变压器的次级线圈正好有功率输出。下图所示正激式变压器开关电源的简单工作原理图,其中Ui是开关电源的输入电压,T是开关变压器,K是控制开关,L是储能滤波电感,C是储能

如何选择电源芯片

LDO线性降压芯片:原理相当于一个电阻分压来实现降压,能量损耗大,降下的电压转化成了热量,降压的压差和负载电流越大,芯片发热越明显。这类芯片的封装比较大,便于散热。 LDO线性降压芯片如:2596,L78系列等。 DC/DC降压芯片:在降压过程中能量损耗比较小,芯片发热不明显。芯片封装比较小,能实现PWM数字控制。 DC/DC降压芯片如:TPS5430/31,TPS75003,MAX1599/61,TPS61040/41 关于LDO电源 2007-08-31 13:39 以前经常看见,说什么芯片是LDO的,以为是某一公司的名号。现在才知道,LDO是low dropout regulator,意为低压差线性稳压器,是相对于传统的线性稳压器来说的。传统的线性稳压器,如78xx系列的芯片都要求输入电压要比输出电压高出2v~3V以上,否则就不能正常工作。但是在一些情况下,这样的条件显然是太苛刻了,如5v转3.3v,输入与输出的压差只有1.7v,显然是不满足条件的。针对这种情况,才有了LDO类的电源转换芯片。生产LDO芯片的公司很多,常见的有 ALPHA, Linear(LT), Micrel, National semiconductor,TI等。 什么是 LDO(低压降)稳压器? LDO 是一种线性稳压器。线性稳压器使用在其线性区域内运行的晶体管或 FET,从应用的输入电压中减去超额的电压,产生经过调节的输出电压。所谓压降电压,是指稳压器将输出电压维持在其额定值上下 100mV 之内所需的输入电压与输出电压差额的最小值。正输出电压的 LDO(低压降)稳压器通常使用功率晶体管(也称为传递设备)作为 PNP。这种晶体管允许饱和,所以稳压器可以有一个非常低的压降电压,通常为 200mV 左右;与之相比,使用 NPN 复合电源晶体管的传统线性稳压器的压降为 2V 左右。负输出 LDO 使用 NPN 作为它的传递设备,其运行模式与正输出 LDO 的 PNP设备类似。

电压频率和频率电压转换电路的设计

电压频率和频率电压转换电路的设计 图1 数字测量仪表电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。(2)F/V转换电路F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。它有通用运放F/V转换电路和集成F/V转换器两种类型。1、1设计要求设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。1、2 设计指标(1)输入为直流电压0- 10V,输出为f=0-500Hz的矩形波。 (2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。2 设计内容总体框图设计2.1 V/F转换电路的设计2、1、1 工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。 通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值。

矩形波的振荡频率2、1、2 模块功能积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。滞回比较器:用来输出矩形波,积分器得到的三角波可触发比较器自动翻转形成矩形波。稳压管:用来确定矩形波的幅值。 图2 总体框架图2、2 功能模块的设计2、2、1 积分电路工作原理积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。由于同相积分电路的共模输入分量大,积分误差大,应用场合少,所以不予论述,本课程设计用到的是反相积分电路。图3 积分器反相积分电路如图3 所示,电容器C 引入交流并联电压负反馈,运放工作在线性区。由于积分运算是对瞬时值而言的,所以各电流电压均采用瞬时值符号。由电路得因为“-”端是虚地,即U-=0,并且式中是积分前时刻电容C上的电压,称为电容端电压的初始值。所以把代入上式得当时若输入电压是图所示的阶跃电压,并假定,则t>=0时,由于,所以由此看出,当E为正值时,输出为反向积分,E对电容器恆流充电,其充电电流为E/R,故输出电压随线性变化。当向负值方向增大到集成运放反向饱和电压时,集成运放进入非线性工作状态,保持不变,图3所示。 如输入是方波,则输出将是三角波,波形关系如图4所示。当时间在0~期间时,电容放电当t=1时,当时间在~期间时,电容充电,其初始值所以当 t= 时,。

变频器中的频率、电压、转速、电流、功率的关系

步电动机的转矩是电机的磁通与转子内流过电流之间相互作用而产生的,在额定频率下,如果电压一定而只降低频率,那么磁通就过大,磁回路饱和,严重时将烧毁电机。因此,频率与电压要成比例地改变,即改变频率的同时控制变频器输出电压,使电动机的磁通保持一定,避免弱磁和磁饱和现象的产生。这种控制方式多用于风机、泵类节能型变频器。 频率下降时电压V也成比例下降,这个问题已在回答4说明。V与f的比例关系是考虑了电机特性而预先决定的,通常在控制器的存储装置(ROM)中存有几种特性,可以用开关或标度盘进行选择。 频率下降时完全成比例地降低电压,那么由于交流阻抗变小而直流电阻不变,将造成在低速下产生地转矩有减小的倾向。因此,在低频时给定V/f,要使输出电压提高一些,以便获得一定地起动转矩,这种补偿称增强起动。可以采用各种方法实现,有自动进行的方法、选择V/f 模式或调整电位器等方法。 一、引言随着变频调速技术的发展,变频器调速已成为交流调速的主流,在化纤、纺织、钢铁、机械、造纸等行业得到广泛的应用。由于通用变频器一般采用V/f控制,即变压变频(VVVF)方式调速,因此,变频器在使用前正确地设定其压频比,对保证变频器的正常工作至关重要。变频器的压频比由变频器的基准电压与基准频率两项功能参数的比值决定,即基准电压/基准频率=压频比。基准电压与基准频率参数的设定,不仅与电动机的额定电压与额定频率有关(电机的压频比为电机的额定电压与额定频率之比),而且还必须考虑负载的机械特性。对于普通异步电机在一般调速应用时,其基准电压与基准频率按出厂值设定(基准电压380V,基准频率50Hz),即满足使用要求。但对于某些行业使用的较特殊的电机,就必须根据实际情况重新设定基准电压与基准频率的参数。由于变频器使用说明书以及有关书籍中没有对这两个参数作详细介绍,因此正确的设定该参数对于不少使用者来说,并非很

大电容数字显示测量电路的设计1

摘要:随着科技的发展,电子线路中也得到广泛的应用,而电容作为电子线路的重要器件也越来越来受到重视,它的容量大小对电路的性能有重要影响。本课题就是用数字显示的方式对电容进行测量。电容测量的基本原理是:把被测电容的大小通过电路转换成脉冲的宽度,主要由555定时器产生脉冲电路,将它送到74LS160计数器产生计数输出电路, 关键字:555多谐振荡器;计数器;译码器;锁存器;数字显示器; 一概述 该系统设计一个大电容数字显示测量电路,该电路的主要性能指标:1. 测量电容的不超过1999uF的电容;2. 数码管和二极管组成显示电路;3.显示数字N 与被测电容C的关系为:N=C/10;4. 正常工作条件下,接上被测电容后便可自动显示出数字,响应时间小于2s;5. 若被测电容超过1990μF,电路具有报警功能; 随着科学技术的飞速发展,大电容数字显示测量电路在电子领域的应用十分广泛,数字技术成为发展最快的技术之一。资料显示:以18个月为周期,数字电路器件的性能就要提高一倍。数字技术的普及推广,标志着信息化社会的到来。且具有以下优点: (1)结构简单、性能稳定、分析方便、抗干扰能力强。(2)在数字运算的基础上,可以进行逻辑运算与比较,应用广泛;随着电路中数字位数的增加,运算精度相应提高,可进行较高精度的运算。 二方案论证 方案Ⅰ:如果三角波输入给以被测电容器作为微分电容的微分电路,在电路参数选择适当的条件下,微分电路的输出幅度与Cx成正比,再经峰值检测电路或精密整流及滤波电路,可以得到与Cx成正比的直流电压Ux ,然后再进行A/D 转换送给数字显示器,便可实现所要求的函数关系。如图1所示 图1方案一 方案错误!未找到引用源。:电容充放电电路等可以把被测电容器的大小转换成脉冲的宽窄,即脉冲的宽度Tx与Cx成正比,只要把此脉冲与频率固定的方波(标准脉冲发生器产生的脉冲)相与,便得到计数脉冲,将它送给计数器,锁存器,译码器和数字显示器。如果标准脉冲的频率等参数选择合适,便可实现题中要求的函数关系式。如图2所示

常用电源芯片大全

常用电源芯片大全 第1章DC-DC电源转换器/基准电压源1.1 DC-DC电源转换器 1.低噪声电荷泵DC-DC电源转换器AAT3113/AAT3114 2.低功耗开关型DC-DC电源转换器ADP3000 3.高效3A开关稳压器AP1501 4.高效率无电感DC-DC电源转换器FAN5660 5.小功率极性反转电源转换器ICL7660 6.高效率DC-DC电源转换控制器IRU3037 7.高性能降压式DC-DC电源转换器ISL6420 8.单片降压式开关稳压器L4960 9.大功率开关稳压器L4970A 10.1.5A降压式开关稳压器L4971 11.2A高效率单片开关稳压器L4978 12.1A高效率升压/降压式DC-DC电源转换器L5970 13.1.5A降压式DC-DC电源转换器LM1572 14.高效率1A降压单片开关稳压器LM1575/LM2575/LM2575HV 15.3A降压单片开关稳压器LM2576/LM2576HV 16.可调升压开关稳压器LM2577 17.3A降压开关稳压器LM2596

18.高效率5A开关稳压器LM2678 19.升压式DC-DC电源转换器LM2703/LM2704 20.电流模式升压式电源转换器LM2733 21.低噪声升压式电源转换器LM2750 22.小型75V降压式稳压器LM5007 23.低功耗升/降压式DC-DC电源转换器LT1073 24.升压式DC-DC电源转换器LT1615 25.隔离式开关稳压器LT1725 26.低功耗升压电荷泵LT1751 27.大电流高频降压式DC-DC电源转换器LT1765 28.大电流升压转换器LT1935 29.高效升压式电荷泵LT1937 30.高压输入降压式电源转换器LT1956 31.1.5A升压式电源转换器LT1961 32.高压升/降压式电源转换器LT3433 33.单片3A升压式DC-DC电源转换器LT3436 34.通用升压式DC-DC电源转换器LT3460 35.高效率低功耗升压式电源转换器LT3464 36.1.1A升压式DC-DC电源转换器LT3467 37.大电流高效率升压式DC-DC电源转换器LT3782 38.微型低功耗电源转换器LTC1754 39.1.5A单片同步降压式稳压器LTC1875

电压频率转换电路

2 电压/频率转换电路 电压/频率转换即V/F 转换,是将一定的输入电压信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。针对煤矿的特殊要求,我们只分析如何将电压转换成200~1000Hz的频率信号。 实现V/F 转换有很多的集成芯片可以利用,其中LM331是一款性能价格比较高的芯片,由美国NS公司生产,是一种目前十分常用的电压/频率转换器,还可用作精密频率电压转换器、A/D转换器、线性频率调制解调、长时间积分器及其他相关器件。由于LM331采用了新的温度补偿能隙基准电路,在整个工作温度范围内和低到4.0V电源电压下都有极高的精度。LM331的动态范围宽,可达100dB;线性度好,最大非线性失真小于0.01% ,工作频率低到1Hz时尚有较好的线性;变换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V 等变换电路,并且容易保证转换精度。LM331可采用双电源或单电源供电,可工作在4.0~40V 之间,输出可高达40V,而且可以防止Vs短路。图2是由LM331组成的典型的电压/频率变换器。 其输出频率与电路参数的关系为: Fout= Vin·Rs/(2.09·R1·Rt·Ct) 可见,在参数Rs、R1、Rt、Ct确定后,输出脉冲频率Fout与输入电压Vin成正比,从而实现了电压-频率的线性变换。改变式中Rs的值,可调节电路的转换增益,即V和F之间的线性比例关系。将1~5V 的电压转换成200~1000Hz的频率信号,电路参数理论值为R =18kΩ,Ct=0.022uF,R1=100kΩ,Rs=16.5528kΩ,由于元器件与标称值存在误差,在

电压频率和频率电压转换电路的设计

模电设计课程设计报告 题目:电压/频率变换器 姓名: 班级: 学号: 指导老师: 2011年 1 月12 日

1 绪论 (1)电压/频率转换即v/f转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。 如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。 图1 数字测量仪表 电压/频率电路是一种模/数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。 (2)F/V转换电路 F/V转换电路的任务是把频率变化信号转换成按比例变化的电压信号。这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。它有通用运放F/V转换电路和集成F/V转换器两种类型。 1.1设计要求 设计一个将直流电压转换成给定频率的矩形波的电路,要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。 1.2 设计指标 (1)输入为直流电压0-10V,输出为f=0-500Hz的矩形波。 (2)输入ui是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。 2 设计内容总体框图设计 2.1 V/F转换电路的设计 2.1.1 工作原理及过程 积分器和滞回比较器首尾相接形成正反馈闭环系统,如图 2所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。由于采用集成运放组成的积分电路,因此可以实现

模电课程设计(电压频率转换电路)

模拟电路课程设计报告设计课题:电压—频率转换电路 专业班级: 学生姓名: 学号: 指导教师: 设计时间:

题目电压—频率转换电路 一、设计任务与要求 1.将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。 2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。 (提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.) 二、方案设计与论证 用集成运放构成的电压—频率转换电路,将直流电压转换成频率与其数值成正比的输出电压,其输出为矩形波。 方案一、采用电荷平衡式电路 输入电压→积分器→滞回比较器→输入 原理图:

方案二、采用复位式电路 输入电压→积分器→单限比较器→输出 原理图: 通过对两种转换电路进行比较分析,我选择方案一来实现电压—频率的转换。方案一的电路图简单,操作起来更容易,器件少,价钱也更便宜,且方案一的线性误差小,精度高,实验结果更准确,所以我选择方案一。 三、单元电路设计与参数计算 1、电源部分:

图1 电源原理图 单相交流电经过电源变压器、单相桥式整流电路、滤波电路和稳压电路转换成稳定的直流电压。 直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。变压器副边电压通过整流电路从交流电压转换为直流电压,即将正弦波电压转换为单一方向的脉冲电压。 为了减少电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。 交流电压通过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或者负载变化时,其平均值也将随之变化。稳压电路的功能是使输出直流电压基本不受电网电压波动和负载变化的影响,从而获得足够高的稳定性。 取值为: 变压器:规格220V~15V 整流芯片:LM7812、LM7912 整流用的二极管:1N4007 电解电容:3300uf C2、C3:0.1uf C4、C5:0.47uf C7、C8:220uf 发光二极管上的R:1KΩ 2、电压—频率转换部分: ○1积分器:

频率电压转换电路设计讲解

淮海工学院 课程设计报告书 课程名称:模拟电子技术课程设计 题目:频率/电压转换电路的设计系(院):电子工程学院 学期:12-13-1 专业班级:电子112 姓名:孙开峰 学号:2011120658

1、概述 本设计实验要求对比较器、F/V变换器LM331、反相器和反相加法器的主要性能和应用有所了解,要能掌握其使用方法。同时要了解它们的设计原理。 本设计实验要求我们要灵活运用所学知识,对设计电路的理论值进行计算得到理论数据,在与实验结果进行比较。 1.1 主要设计要求 当正弦波信号的频率fi在200Hz~2kHz范围内变化时,对应输出的直流电压Vi在1~5V范围内线形变化; 正弦波信号源采用函数波形发生器的输出; 采用±12V电源供电. 1.2 设计方法 设计总体框图如下,可供选择的方案有两种,它们是: ○1用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比. ○2直接应用F/V变换器LM331,其输出与输入的脉冲信号重复频率成正比. 2、设计过程 2.1 函数信号发生器ICL8038芯片介绍 2.1.1 ICL8038作用 ICL 8038 是一种具有多种波形输出的精密振荡集成电路, 只需调整个别的外部元件就能产生从 0.001HZ~300kHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调频信号输入端, 所以可以用来对低频信号进行频率调制。 2.1.2 ICL8038管脚介绍

图2 ICL8038 表1 引脚功能介绍

2.2 比较器的设计 过零比较器 过零比较器被用于检测一个输入值是否是零。原理是利用比较器对两个输入电压进行比较。两个输入电压一个是参考电压Vr ,一个是待测电压Vu 。一般Vr 从正相输入端接入,Vu 从反相输入端接入。根据比较输入电压的结果输出正向或反向饱和电压。当参考电压已知时就可以得出待测电压的测量结果,参考电压为零时即为过零比较器。 用比较器构造的过零比较器存在一定的测量误差。当两个输入端的电压差与开环放大倍数之积小于输出阈值时探测器都会给出零值。例如,开环放大倍数为106,输出阈值为6v 时若两输入级电压差小于6微伏探测器输出零。这也可以被认为是测量的不确定度。 2.3 F/V 变换电路的设计 2.3.1 F/V 变换器的简单介绍 LM331是美国NS 公司生产的性能价格比较高的集成芯片,可用作精密频率电压转换器、A/ D 转换器、线性频率调制解调、长时间积分器及其他相关器件。LM331 采用了新的温度补偿能隙基准电路, 在整个工作温度范围内和低到 4.0V 电源电压下都有极高的精度。LM331 的动态范围宽, 可达 100dB ; 线性度好, 最大非线性失真小于 0.01% ,工作频率低到0.1Hz 时尚有较好的线性;变换精度高,数字分辨率可达12位; 外接电路简单,只需接入几个外部元件就可方便构成 V/F 或 F/V 等变换电路,并且容易保证转换精度。 2.3.2 LM331 器件管脚图及管脚功能 VI + — A +V CC —V EE Vo 图3 过零比较器

ADS1115 超小型,低功耗,16双牛逼的 模拟-数字转换器中文资料

?特点 ?应用 ?描述 ?订购信息 ?绝对最大额定值 ?电气特性 ?引脚配置 ?时序要求 ?概览 ?快速入门指南 ?复用器 ?模拟输入 ?满量程输入 ?数据格式 ?走样 ?操作模式 ?复位和上电 ?低功耗税骑自行车 ?COMPARATOR(ADS1114/15只) ?转换就绪PIN(ADS1114 / 5只)

?SMBus报警反应 ?I2C接口 ?I2C地址选择 ?I2C广播呼叫 ?I2C速度模式 ?从属模式操作 ?接收模式 ?传输模式 ?写/读寄存器 ?寄存器 ?指针寄存器 ?转换寄存器 ?CONFIG寄存器 ?lo_thresh与Hi_thresh寄存器?应用信息 ?基本连接 ?连接多个设备 ?GPIO端口通信 ?单端输入 ?低侧电流监视器

- ADS111 3 ADS111 月4 ADS1115 www.ti.co 米SBAS444A 2009年5月- 2009年8月修订 超小型,低功耗,16双牛逼的模拟-数字转换器 检查样品:ADS1113 ADS1114 ADS1115 特点 ?超小型QFN封装:2毫米×1.5毫米×0.4毫米 ?宽电源电压范围:2.0V至5.5V ?低消耗电流:连续模式:只有150 μ单次模式:自动关闭 ?可编程数据速率:8SPS到860SPS ?内部低漂移电压基准 ?内部振荡器 ?内部PGA ?我2C?接口:引脚可选择的地址 ?四个单端或两个差分输入(ADS1115) ?可编程比较器(ADS1114和ADS1115) ?工作温度:-40°C至+140°C时 应用 ?便携式仪表 ?消费品 ?电池监控 ?温度测量 ?工厂自动化和过程控制 描述 ADS1113,ADS1114和ADS1115是高精度模拟到数字转换器(ADC)号决议第16位,超小型,无铅QFN-10封装或MSOP-10封装中提供。的ADS1113/4/5设计精度,功耗和易于记住的实施。ADS1113/4/5功能板载参考和振荡器。数据传输通过一个I 2 C兼容串行接口,四个I 2 C 从地址。ADS1113/4/5操作范围从2.0V至5.5V单电源供电。 ADS1113/4/5可以执行转换速率高达每秒860个样本(SPS)。板载PGA的ADS1114和ADS1115提供从电源的输入范围为±256mV的低,允许大型和小型的信号进行高分辨率测量。ADS1115还设有一个输入多路复用器(MUX),提供两个差分或四个单端输入。 ADS1113/4/5工作在连续转换模式或单拍模式,自动权力转换后,大大降低了空闲期间的电流消耗。被指定的ADS1113/4/5从-40°C至+125°C。

相关文档
相关文档 最新文档