文档库 最新最全的文档下载
当前位置:文档库 › 动量守恒定律与能量守恒的结合

动量守恒定律与能量守恒的结合

动量守恒定律与能量守恒的结合
动量守恒定律与能量守恒的结合

动量守恒定律与能量守恒的结合

例1、质量为M的小车置于光滑水平面上,小车的上表面由光滑的1/4圆弧和光滑平面组成,圆弧半径为R,车的右端固定有一不计质量的弹簧.现有一质量为m的滑块从圆弧最高处无初速下滑(如图),与弹簧相接触并压缩弹簧,求:

(1)弹簧具有的最大的弹性势能;

(2)当滑块与弹簧分离时小车的速度.

例2:如果例1中小车为固定的,其他条件不变,则

(1)弹簧具有的最大的弹性势能;

(2)当滑块与弹簧分离时滑块的速度.

例3. 如图,abc是光滑的轨道,其中ab是水平的,bc为与ab相切的位于竖直现面内的半圆,半径R=0.5m,质量m=0.2kg的小球A静止在轨道上,另一质量M=0.5kg,速度v0=10m/s的小球B与小球A正碰。已知相碰后小球A刚好能到达

最高点,求:

(1)球A在C点的速度

(2)A在b点时对轨道的压力大小

(3)碰撞结束时,小球A和B的速度

(沿竖直内轨道做圆周运动:在最高点是物体重力+轨道支持力为合力,充当向心力,刚好能通过最高点的意思为此时物体对轨道没有压力,轨道当然对物体也没有支持力,只有重力提供向心力)

例4、一质量M=0.8kg 的小物块,用长l=0.8m 的细绳悬挂在竖直平面内,处于静止状态。一质量m=0.2kg 的粘性小球以速度v 0=10m/s 水平射向物块,并与物块粘在一起,小球与物块相互作用时间极短可以忽略,不计空气阻力,重力加速度g 取10m/s 2。求:

(1)小球粘在物块上的瞬间,小球和物块共同速度的大小;

(2)小球和物块摆动过程中,细绳拉力的最大值;

(3)小球与物块可否在竖直平面内做完整的圆周运动?

(4)小球和物块摆动过程中所能达到的最大高度。

例5、如图所示,EF 为水平地面,D 点左侧是粗糙的、右侧是光滑的.一轻质弹簧右端与墙壁固定,左端与静止在D 点质量为1kg 的小物块A 连结,弹簧处于原长状态. 质量也为1kg 的物块B 在大小为 F=4N 的水平恒力作用下由 C 处从静止开始向右运动 , 已知物块B 与地面EO 段间的滑动摩擦力大小为1N ,物块B 运动到O 点与物块A 相碰一起向右运动(设碰撞时间极短),运动到D 点时撤去外力F. 已知 CO =4m ,OD =1m. 求

(1)物块B 与A 碰前瞬间B 的速度大小

(2)物块B 与A 碰后瞬间的B 速度大小

(3)撤去外力后:弹簧的最大弹性势能.

(4)撤去外力后:物块B 回到O 点的速度

(5)物块B 最终离O 点的距离

1、一个质量为m 的木块,从半径为R 、质量为M 的1/4光滑圆槽顶端由静止滑下。

v

①若槽被固定,木块从槽口滑出时的速度大小为多少?

②若槽可沿着光滑水平面自由滑动木块从槽口滑出时的速度大小为多少?

2、 如图,abc 是光滑的轨道,其中ab 是水平的,bc 为与ab 相切的,位于竖直平面内的半圆,半径R =0.30m ,质量m =0.20Kg 的小球A 静止在轨道上,另一质量M =0.60Kg ,速度V 0=5.5m/s 的小球B 与小球A 正碰,已知相碰后小球A 刚好可越过半圆的最高点C ,重力加速度g =10m/s 2,求:

(1)小球A 在最高点c 的速度

(2)小球A 在b 点的速度

(3)碰撞后瞬间,小球B 的速度大小和方向

3.在光滑的水平桌面上有质量分别为M=0.6kg 、m=0.2kg 的两个小球,中间夹着一个被压缩的弹性势能为p E =10.8J 的轻弹簧(弹簧与两球不相连),原来处于静止状态,突然释放弹簧,

θ 球m 脱离弹簧后滑向与水平面相切、半径为R=0.425m 的竖直放置的光滑半圆形轨道,如图,g=10m/s 2.求:

(1)求球m 脱离弹簧后瞬间的速度大小

(2)通过计算判断球m 能否运动到B 点,如果能,求在B 点时对轨道的压力大小

4.(2010广州二模)质量为m 的A 球和质量为3m 的B 球分别用长为L 的细线a 和b 悬挂在天花板下方,两球恰好相互接触,且离地面高度h=1/2L .用细线c 水平拉起A ,使a 偏离竖直方向060θ=,静止在如图所示的位置,b 能承受的最大拉力F m =3.5mg ,重力加速度为g ,现在剪断c . ①求A 与B 发生碰撞前瞬间的速度大小

②若A 与B 发生弹性碰撞,求碰后瞬间B 的速度大小

③判断b 是否会被拉断?如果不断,求B 上升的最大高度;

如果被拉断,求B 抛出的水平距离

解:(1)2cos a mg T mg θ

== (2)A B 发生弹性碰撞,动量守恒定,机械能守恒

mv0=mv1+3mv2 ………………①

?mv02= ?mv12+ ?×3mv22………②

①②l联立解得:v1=-? v0 (即A球反弹回去)v2=? v0

即碰后B

(3)碰撞结束时,B球受拉力F F-3mg=3mv22/l

∴F=3mg+3mv22/l=3.75mg

∵F>3.5mg ∴绳子会断,球做平抛运动

h=?gt2得平抛的水平距离x=v2

例6.如图,在光滑的水平桌面上,静放着一质量为980g的长方形匀质木块,现有一颗质量为20g的子弹以300m/s的水平速度沿其轴线射向木块,结果子弹留在木块中没有射出,和木块一起以共同的速度运动。已知木块的长度为10cm,子弹打进木块的深度为6cm。

设木块对子弹的阻力保持不变。

(1)求子弹和木块的共同速度以及它们在此过程中所增加的内能

(2)若子弹是以400m/s的水平速度从同一方向水平射向该木块,通过计算说明子弹能否射

穿该木块?

2.如图所示,A B C是光滑轨道,其中BC部分是半径为R的竖直放

置的半圆.一质量为M的小木块放在轨道水平部分,木块被水平飞来的质量为m的子弹射中,并滞留在木块中.若被击中的木块沿轨道能滑到最高点C,已知木块对C点的压力大小为(M+m)g,求:

(1)木块在C点的速度

(2)木块在B点的速度

(3)子弹打入木块前瞬间子弹的速度

2动量守恒定律的应用-四种模型

例2.如图所示,一根质量不计、长为1m,能承受最大拉力为14N的绳子,一端固定在天花板上,另一端系一质量为1kg的小球,整个装置处于静止状态,一颗质量为10g、水平速度为500m/s的子弹水平击穿小球后刚好将将绳子拉断,求子弹此时的速度为多少(g取10m/s2) 练2、一颗质量为m,速度为v0的子弹竖直向上射穿质量为M的木块后继续上升,子弹从射穿木块到再回到原木块处所经过的时间为T,那么当子弹射出木块后,木块上升的最大高度为多少 例3.如图所示,光滑水平轨道上放置长板A(上表面粗糙)和滑块C,滑块B置于A的左端,三者质量分别为m A=2 kg、m B=1 kg、m C=2 kg.开始时C静止,A、B一起以v0=5 m/s的速度匀速向右运动,A与C发生碰撞(时间极短)后C向右运动,经过一段时间,A、B再次达到共同速度一起向右运动,且恰好不再与C发生碰撞.求A与C碰撞后瞬间A的速度大小. 练3.质量为M的滑块静止在光滑的水平面上,滑块的光滑弧面底部与水平面相切,一个质量为m的小球以速度v0向滑块冲来,设小球不能越过滑块,求:小球到达最高点时的速度和小球达到的最大高度。 例4.如图,光滑水平直轨道上有三个质量均为m的物块A、B、的左侧固定一轻弹簧(弹簧左侧的挡板质量不计).设A以速度v0朝B运动,压缩弹簧;当A、B速度相等时,B与C恰好相碰并粘接在一起,然后继续运动.假设B和C碰撞过程时间极短,求从A开始压缩弹簧直至与弹黄分离的过程中, (1)整个系统损失的机械能; (2)弹簧被压缩到最短时的弹性势能.

练4.如图所示,光滑水平面上有A 、B 、C 三个物块,其质量分别为m A =2.0 kg ,m B =m C =1.0 kg ,现用一轻弹簧将A 、B 两物块连接,并用力缓慢压缩弹簧使A 、B 两物块靠近,此过程外力做功108 J(弹簧仍处于弹性限度范围内),然后同时释放,弹簧开始逐渐变长,当弹簧刚好恢复原长时,C 恰好以4 m/s 的速度迎面与B 发生碰撞并瞬时粘连.求: (1)弹簧刚好恢复原长时(B 与C 碰撞前),A 和B 物块速度的大小; (2)当弹簧第二次被压缩时,弹簧具有的最大弹性势能. 1.静止在光滑水平地面上的平板小车C ,质量为m C =3kg ,物体A 、B 的质量为m A =m B =1kg ,分别以v A =4m/s 和v B =2m/s 的速度大小,从小车的两端相向地滑到车上.若它们在车上滑动时始终没有相碰,A 、B 两物体与车的动摩擦因数均为μ=.求: (1)小车的最终的速度; (2)小车至少多长(物体A 、B 的大小可以忽略). 2.如图,水平轨道AB 与半径为R=1.0 m 的竖直半圆形光滑轨道BC 相切于B 点.可视为质点的a 、b 两个小滑块质量m a =2m b =2 kg ,原来静止于水平轨道A 处,AB 长为L=3.2m ,两滑块在足够大的内力作用下突然分开,已知a 、b 两滑块分别沿AB 轨道向左右运动,v a = 4.5m/s ,b 滑块与水平面间动摩擦因数5.0=μ,g 取10m/s 2.则 (1)小滑块b 经过圆形轨道的B 点时对轨道的压力. (2)通过计算说明小滑块b 能否到达圆形轨道的最高点C . 附加题:如图,两块相同平板P 1、P 2置于光滑水平面上,质量均为 的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L .物体P 置 于P 1的最右端,质量为2m 且可看作质点.P 1与P 以共同速度v 0向 右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起.P 压缩弹簧后被弹回并停在A 点(弹簧始终在弹性限度内).P 与P 2之间的动摩擦因数为μ.求: (1)P 1、P 2刚碰完时的共同速度v 1和P 的最终速度v 2; (2)此过程中弹簧的最大压缩量x 和相应的弹性势能E p . O C B a b A B v A v B C

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高中物理-动量守恒常见模型练习

高中物理-动量守恒常见模型练习 一、弹性碰撞 1.如图,一条滑道由一段半径R =0.8 m 的14 圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2). (1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′; (2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因数 μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ; (2)小球A 与小球B 碰撞前的速度v 0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R,MN 为直径且与水 平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小. 2、爆炸 1、碰撞

§2 动量守恒定律及其应用

§2 动量守恒定律及其应用 教学目标: 1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题. 2.掌握应用动量守恒定律解决问题的一般步骤. 3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点: 动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点: 应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学方法: 1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤. 2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性. 3.讲练结合,计算机辅助教学 教学过程 一、动量守恒定律 1.动量守恒定律的内容 一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即:221 12211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件 ⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 3.动量守恒定律的表达形式 (1)221 12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和 1221v v m m ??-= 4.动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中

高考物理练习题库28(动量守恒定律的应用)

高考物理练习题库28(动量守恒定律的应用) 1.相向运动的A 、B 两辆小车相撞后,一同沿A 原来的方向前进,这是由于( ).【0.5】 (A)A 车的质量一定大于B 车的质量 (B)A 车的速度一定大于B 车的速度 (C)A 车的动量一定大于B 车的动量 (D)A 车的动能一定大于B 车的动能量 答案:C 2.一个静止的质量为m 的不稳定原子核,当它完成一次α衰变.以速度v 发射出一个质量为m α的α粒子后,其剩余部分的速度等于( ).【0.5】 (A)v m m α- (B)-v (C)v m -m m αα (D)v m -m m α α- 答案:D 3.在两个物体碰撞前后,下列说法中可以成立的是( ).【1】 (A)作用后的总机械能比作用前小,但总动量守恒 (B)作用前后总动量均为零,但总动能守恒 (C)作用前后总动能为零,而总动量不为零 (D)作用前后总动景守恒,而系统内各物体的动量增量的总和不为零 答案:AB 4.在光滑的水平面上有两个质量均为m 的小球A 和B,B 球静止,A 球以速度v 和B 球发生碰撞,碰后两球交换速度.则A 、B 球动量的改变量Δp A 、Δp B 和A 、B 系统的总动量的改变Δp 为( ).【1】 (A)△p A =mv,△p B =-mv,△p=2mv (B)△p A ,△p B =-mv,Δp=0 (C)Δp A =0,Δp B =mv,Δp=mv (D)△p A =-mv,Δp B =mv,Δp=0 答案:D 5.向空中发射一物体,不计空气阻力,当此物体的速度恰好沿水平方向时,物体炸裂成a 、b 两块,若质量较大的a 块的速度方向仍沿原来的方向,则( ).【1】 (A)b 的速度方向一定与原来速度方向相同 (B)在炸裂过程中,a 、b 受到的爆炸力的冲量一定相同 (C)从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大 (D)a 、b 一定同时到达水平地面 答案:D 6.大小相同质量不等的A 、B 两球,在光滑水平面上作直线运动,发生正碰撞后分开.已知碰撞前A 的动量p A =20㎏·m/s,B 的动量p B =-30㎏·m/s,碰撞后A 的动量p A =-4㎏·m/s,则:【2】 (1)碰撞后B 的动量p B =_____㎏·m/s. (2)碰撞过程中A 受到的冲量=______N·s. (3)若碰撞时间为0.01s,则B 受到的平均冲力大小为_____N. 答案:(1)-6(2)-24(3)2400 7在光滑的水平面上有A 、B 两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为p A =5㎏·m/s,p B =7㎏·m/s,如图所示.若两球发生正碰,则碰后两球的动量增量Δp A 、Δp B 可能是( ).【2】 (A)Δp A =3㎏·m/s,Δp B =3㎏·m/s (B)Δp A =-3㎏·m/s,Δp B =3㎏·m/s

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

动量守恒定律中的典型模型

动量守恒定律中的典型模型 1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。 例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。设木块对子弹的阻力F恒定。求: (1)子弹穿过木块的过程中木块的位移 (2)若木块固定在传送带上,使木块随传送带始终以恒定速度u

3、弹簧木块模型 例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。则( ) A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量 不守恒 B .当两物块相距最近时,甲物块的速率为零 C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0 D .甲物块的速率可能达到5m/s 例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? 例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m. (1)求弹簧第一次最短时的弹性势能 (2)何时B 的速度最大,最大速度是多少? 4、碰撞、爆炸、反冲 Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零) (1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ② 222211222211'2 1'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,② 2 220212121B B A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-= ,

高中物理动量守恒定律及其应用

动量守恒定律及其应用 教学目标: 1.掌握动量守恒定律的内容及使用条件,知道应用动量守恒定律解决问题时应注意的问题. 2.掌握应用动量守恒定律解决问题的一般步骤. 3.会应用动量定恒定律分析、解决碰撞、爆炸等物体相互作用的问题. 教学重点: 动量守恒定律的正确应用;熟练掌握应用动量守恒定律解决有关力学问题的正确步骤. 教学难点: 应用动量守恒定律时守恒条件的判断,包括动量守恒定律的“五性”:①条件性;②整体性;③矢量性;④相对性;⑤同时性. 教学方法: 1.学生通过阅读、对比、讨论,总结出动量守恒定律的解题步骤. 2.学生通过实例分析,结合碰撞、爆炸等问题的特点,明确动量守恒定律的矢量性、同时性和相对性. 3.讲练结合,计算机辅助教学 教学过程 一、动量守恒定律 1.动量守恒定律的内容 一个系统不受外力或者受外力之和为零,这个系统的总动量保持不变。 即:221 12211v m v m v m v m '+'=+ 2.动量守恒定律成立的条件 (1)系统不受外力或者所受外力之和为零; (2)系统受外力,但外力远小于内力,可以忽略不计; (3)系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 (4)全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 3.动量守恒定律的表达形式

(1)221 12211v m v m v m v m '+'=+,即p 1+p 2=p 1/+p 2/, (2)Δp 1+Δp 2=0,Δp 1= -Δp 2 和1 221v v m m ??-= 4.动量守恒定律的重要意义 从现代物理学的理论高度来认识,动量守恒定律是物理学中最基本的普适原理之一。(另一个最基本的普适原理就是能量守恒定律。)从科学实践的角度来看,迄今为止,人们尚未发现动量守恒定律有任何例外。相反,每当在实验中观察到似乎是违反动量守恒定律的现象时,物理学家们就会提出新的假设来补救,最后总是以有新的发现而胜利告终。例如静止的原子核发生β衰变放出电子时,按动量守恒,反冲核应该沿电子的反方向运动。但云室照片显示,两者径迹不在一条直线上。为解释这一反常现象,1930年泡利提出了中微子假说。由于中微子既不带电又几乎无质量,在实验中极难测量,直到1956年人们才首次证明了中微子的存在。(2000年高考综合题23 ②就是根据这一历史事实设计的)。又如人们发现,两个运动着的带电粒子在电磁相互作用下动量似乎也是不守恒的。这时物理学家把动量的概念推广到了电磁场,把电磁场的动量也考虑进去,总动量就又守恒了。 5.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象.在分析相互作用的物体总动量是否守恒时,通常把这些被研究的物体总称为系统.对于比较复杂的物理过程,要采用程序法对全过程进行分段分析,要明确在哪些阶段中,哪些物体发生相互作用,从而确定所研究的系统是由哪些物体组成的。 (2)要对各阶段所选系统内的物体进行受力分析,弄清哪些是系统内部物体之间相互作用的内力,哪些是系统外物体对系统内物体作用的外力.在受力分析的基础上根据动量守恒定律条件,判断能否应用动量守恒。 (3)明确所研究的相互作用过程,确定过程的始、末状态,即系统内各个物体的初 动量和末动量的量值或表达式。 注意:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)确定好正方向建立动量守恒方程求解。 二、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认 为系统的动量守恒。碰撞又分弹性碰撞、非弹性 碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

动量守恒定律及其应用习题(附答案)

动量守恒定律及其应用习题(附答案) 1. 如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动.两球质量关系为m B =2m A ,规定向右为正方向,A 、B 两球的动量均为6kg·m/s,运动中两球发生碰撞,碰撞后A 球的动量增量为-4kg·m/s,则(A) A.左方是A 球,碰撞后A 、B 两球速度大小之比为2:5 B.左方是A 球,碰撞后A 、B 两球速度大小之比为1:10 C.右方是A 球,碰撞后A 、B 两球速度大小之比为2:5 D.右方是A 球,碰撞后A 、B 两球速度大小之比为1:10 2. 有一则“守株待兔”的古代寓言,设兔子的头部受到大小等于自身重量的打击时,即可致死.假若兔子与树桩作用时间大约为s 2.0,则若要被撞死,兔子奔跑的速度至少为()/102s m g = ( C ) A.s m /1 B.s m /5.1 C.s m /2 D.s m /5.2 3. 向空中抛出一手榴弹,不计空气阻力,当手榴弹的速度恰好是水平方向时,炸裂成a 、b 两块,若质量较大的a 块速度方向仍沿原来的方向,则( CD ) A.质量较小的b 块的速度方向一定与原速度方向相反 B.从炸裂到落地这段时间内,a 飞行的水平距离一定比b 的大 C.a 、b 两块一定同时落到水平地面a D.在炸裂过程中,a 、b 两块受到的爆炸力的冲量大小一定相等 4. 两木块A 、B 质量之比为2∶1,在水平地面上滑行时与地面间的动摩擦因数相同,则A 、B 在开始滑行到停止运动的过程中,滑行的时间之比和距离之比( AD ) A.初动能相同时分别为1∶2和1∶2 B.初动能相同时分别为1∶2和1∶4 C.初动量相同时分别为1∶2和1∶2 D.初动量相同时分别为1∶2和1∶4 5. 在我们日常的体育课当中,体育老师讲解篮球的接触技巧时,经常这样模拟:当接迎面飞来的篮球,手接触到球以后,两臂随球后引至胸前把球接住.这样做的目的是( D ) A.减小篮球的冲量 B.减小篮球的动量变化 C.增大篮球的动量变化 D.减小篮球的动量变化率 6.在光滑的水平面上,有A 、B 两个小球向右沿同一直线运动,取向右为正方向,两球的动量分别为m/s kg 5A ?=P ,m/s kg 7B ?=P ,如图所示.若两球发生正碰,则碰后两球的动量增量A P ?、B P ?可能是( B ) A.m/s kg 3A ?=?P ,m/s kg 3B ?=?P B.m/s kg 3A ?-=?P ,m/s kg 3B ?=?P C.m/s kg 3A ?=?P ,m/s kg 3B ?-=?P D.m/s kg 10A ?-=?P ,m/s kg 10B ?=?P 7. 材料不同的两个长方体,上下粘结在一起组成一个滑块,静止在光滑的水平面上.质量为m 的子弹以速度0v 水平射入滑块,若射击上层,子弹的深度为d 1;若射击下层,子弹的深度为d 2,如图所示.已知d 1>d 2.这两种情况相比较( B ) A.子弹射入上层过程中,子弹对滑块做功较多 B.子弹射人上层过程中,滑块通过的距离较大 C.子弹射入下层过程中,滑块受到的冲量较大 D.子弹射入下层过程中,滑块的加速度较小 8. 如图所示,质量相同的两个小物体A 、B 处于同一高度。现使A 沿固定的光滑斜面无初速地自由下滑,而使B 无初速地自由下落,最后A 、B 都运动到同一水平地面上。不计空气阻力。则在上述过程中,A 、B 两物体( BD ) A.所受重力的冲量相同 B.所受重力做的功相同 C.所受合力的冲量相同 D.所受合力做的功相同

高考物理动量守恒定律的应用技巧(很有用)及练习题

高考物理动量守恒定律的应用技巧(很有用)及练习题 一、高考物理精讲专题动量守恒定律的应用 1.足够长的水平传送带右侧有一段与传送带上表面相切的 1 4 光滑圆弧轨道,质量为M =2kg 的小木盒从离圆弧底端h =0.8m 处由静止释放,滑上传送带后作减速运动,1s 后恰好与传送带保持共速。传送带始终以速度大小v 逆时针运行,木盒与传送带之间的动摩擦因数为μ=0.2,木盒与传送带保持相对静止后,先后相隔T =5s ,以v 0=10m/s 的速度在传送带左端向右推出两个完全相同的光滑小球,小球的质量m =1kg .第1个球与木盒相遇后,球立即进入盒中并与盒保持相对静止,第2个球出发后历时△t =0.5s 与木盒相遇。取g =10m/s 2,求: (1)传送带运动的速度大小v ,以及木盒与第一个小球相碰后瞬间两者共同运动速度大小v 1; (2)第1个球出发后经过多长时间与木盒相遇; (3)从木盒与第1个球相遇至与第2个球相遇的过程中,由于木盒与传送带间的摩擦而产生的热量。 【答案】(1)v =2m/s ;v 1=2m/s (2)t 0=1s (3)24J Q = 【解析】 【详解】 (1)设木盒下滑到弧面底端速度为v ',对木盒从弧面下滑的过程由动能定理得 21 2 Mgh Mv = ' 依题意,木箱滑上传送带后做减速运动,由运动学公式有:v v at ='-' 对箱在带上由牛顿第二定律有:Mg Ma μ= 代入数据联立解得传送带的速度v =2m/s 设第1个球与木盒相遇,根据动量守恒定律得 ()01mv Mv m M v -=+ 代入数据,解得v 1=2m/s (2)设第1个球与木盒的相遇点离传送带左端的距离为s ,第1个球经过t 0与木盒相遇,则00 s t v = 设第1个球进入木盒后两者共同运动的加速度为a ,根据牛顿第二定律有 ()()m M g m M a μ+=+ 得:2 2m/s a g μ==

【物理】 物理动量守恒定律专题练习(及答案)

【物理】 物理动量守恒定律专题练习(及答案) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求:

动量守恒定律及应用练习题

动量守恒定律习题课 教学目标:掌握应用动量守恒定律解题的方法和步骤 能综合运用动量定理和动量守恒定律求解有关问题教学重点:熟练掌握应用动量守恒定律解决有关力学问题的正确步骤教学难点:守恒条件的判断,系统和过程的选择,力和运动的分析教学方法:讨论,总结;讲练结合 【讲授新课】 1、“合二为一”问题:两个速度不同的物体,经过相互作 用,最后达到共同速度。 例1、甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行驶,速度均为6m/s.甲车上有质量为m=1kg的小球若干个,甲和他的车及所带小球的总质量为M1=50kg,乙和他的车总质量为M2=30kg。现为避免相撞,甲不断地将小球以相对地面16.5m/s的水平速度抛向乙,且被乙接住。假设某一次甲将小球抛出且被乙接住后刚好可保证两车不致相撞,试求此时: (1)两车的速度各为多少?(2)甲总共抛出了多少个小球? 分析与解:甲、乙两小孩依在抛球的时候是“一分为二”的过程,接球的过程是“合二为一”的过程。 (1)甲、乙两小孩及两车组成的系统总动量沿甲车的运动方向,甲不断抛球、乙接球后,当甲和小车与乙和小车具有共同速度时,可保证刚好不撞。设共同速度为V,则: M1V1-M2V1=(M1+M2)V (2)这一过程中乙小孩及时的动量变化为:△P=30×6-30×(- 1.5)=225(kg·m/s) 每一个小球被乙接收后,到最终的动量弯化为△P1=16.5×1- 1.5×1=15(kg·m/s) 故小球个数为 2、“一分为二”问题:两个物体以共同的初速度运动,由于 相互作用而分开后以不同的速度运动。 例2、人和冰车的总质量为M,另有一个质量为m的坚固木箱,开始时人坐在冰车上静止在光滑水平冰面上,某一时刻人将原来静止在冰面上的木箱以速度V推向前方弹性挡板,木箱与档板碰撞后又反向弹 回,设木箱与挡板碰撞过程中没有机械能的损失,人接到木箱后又以速度V推向挡板,如此反复多次,试求人推多少次木箱后将不可能再

最新物理动量守恒定律练习

最新物理动量守恒定律练习 一、高考物理精讲专题动量守恒定律 1.如图所示,质量为M=1kg 上表面为一段圆弧的大滑块放在水平面上,圆弧面的最底端刚好与水平面相切于水平面上的B 点,B 点左侧水平面粗糙、右侧水平面光滑,质量为m=0.5kg 的小物块放在水平而上的A 点,现给小物块一个向右的水平初速度v 0=4m/s ,小物块刚好能滑到圆弧面上最高点C 点,已知圆弧所对的圆心角为53°,A 、B 两点间的距离为L=1m ,小物块与水平面间的动摩擦因数为μ=0.2,重力加速度为g=10m/s 2.求: (1)圆弧所对圆的半径R ; (2)若AB 间水平面光滑,将大滑块固定,小物块仍以v 0=4m/s 的初速度向右运动,则小物块从C 点抛出后,经多长时间落地? 【答案】(1)1m (2)4282 25 t s = 【解析】 【分析】 根据动能定理得小物块在B 点时的速度大小;物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒和系统机械能守恒求出圆弧所对圆的半径;,根据机械能守恒求出物块冲上圆弧面的速度,物块从C 抛出后,根据运动的合成与分解求落地时间; 【详解】 解:(1)设小物块在B 点时的速度大小为1v ,根据动能定理得:22011122 mgL mv mv μ= - 设小物块在B 点时的速度大小为2v ,物块从B 点滑到圆弧面上最高点C 点的过程,小物块与大滑块组成的系统水平方向动量守恒,根据动量守恒则有:12()mv m M v =+ 根据系统机械能守恒有:22 01211()(cos53)22 mv m M v mg R R =++- 联立解得:1R m = (2)若整个水平面光滑,物块以0v 的速度冲上圆弧面,根据机械能守恒有: 22 00311(cos53)22 mv mv mg R R =+- 解得:322/v m s = 物块从C 抛出后,在竖直方向的分速度为:38 sin 532/5 y v v m s =?= 这时离体面的高度为:cos530.4h R R m =-?=

13.1动量守恒定律及其应用

第十三章动量近代物理初步[选修3-5] 一、三年高考考点统计与分析 (1)从近三年高考试题考点分布可以看出,高考对本章内容的考查重点有动量、动量守恒定律、弹性碰撞与非弹性碰撞、原子的核式结构、玻尔理论、氢原子的能级和光谱、天然放射性现象及核能的计算等, (2)出题的形式多为选择题、填空题,对动量守恒定律及其应用的考查,以计算题形式出现的情况较多, 二、2014年高考考情预测 (1)动量守恒定律及其应用、原子核式结构、玻尔理论、原子核的衰变、核反应方程的书写及质能方程的应用是本章高考考查的热点, (2)原子结构与原子核部分高考命题难度不大,大多直接考查理解和记忆,考查细节等,体现时代气息,用新名词包装试题;动量作为选考的地区,以实验和计算题出现的可能性较大,动量作为必考的地区,在高考中会出现一些综合计算题,但难度不会太大, [备课札记] 第十三章动量近代物理初步[选修3-5] [学习目标定位] 考纲下载考情上线

1.动量、动量守恒定律及其应用(Ⅱ) 2.弹性碰撞和非弹性碰撞(Ⅰ) 3.光电效应(Ⅰ) 4.爱因斯坦的光电效应方程(Ⅰ) 5.氢原子光谱(Ⅰ) 6.氢原子的能级结构、能级公式(Ⅰ) 7.原子核的组成、放射性、原子核的衰 变、半衰期(Ⅰ) 8.放射性同位素(Ⅰ) 9.核力、核反应方程(Ⅰ) 10.结合能、质量亏损(Ⅰ) 11.裂变反应和聚变反应、裂变反应堆 (Ⅰ) 12.射线的危害和防护(Ⅰ) 13.实验十六:验证动量守恒定律 高考 地位 高考对本章知识点考查频率较高的是动量 守恒定律、光电效应、原子的能级结构及 跃迁、核反应方程及核能计算,题型较全面, 选择题、填空题、计算题均有,其中动量守 恒定理的应用出计算题的可能性较大, 考点 布设 1.动量守恒定律的应用,与能量守恒定律结 合,解决碰撞、打击、反冲、滑块摩擦等问 题, 2.探究和验证动量守恒定律, 3.光电效应、原子能级及能级跃迁、衰变 及核反应方程, 4.裂变反应、聚变反应的应用,射线的危 害和应用知识与现代科技相联系的信息题 是近几年高考的热点, 第1单元动量守恒定律及其应用 动量动量变化量动量守恒定律[想一想] 如图13-1-1所示,质量为M的物体静止在光滑的水平面上,质量为m的小球以初速度v0水平向右碰撞物体M,结果小球以大小为v1的速度被水平反弹,物体M的速度为v2,取向右为正方向,则物体M动量的变化量为多少?小球m的动量变化量为多少?m和M组成的系统动量守恒吗?若守恒,请写出其表达式, 图13-1-1 [提示]物体M动量的变化量为M v2,m动量的变化量为-(m v1+m v0),因m和M组成的系统合外力为零,故此系统动量守恒,表达式为:m v0=M v2-m v1, [记一记]

动量守恒定律的综合应用练习及答案

1.如图所示,以质量m=1kg的小物块(可视为质点),放置在质量为M=4kg的长木板,左侧长木板放置在光滑的水平地面上,初始时长木板与木块一起,以水平速度v?=2m/s向左匀速运动。在长木板的左侧上方固定着一个障碍物A,当物块运动到障碍物A处时与A发生弹性碰撞(碰撞时间极短,无机械能损失),而长木板可继续向左运动,重力加速度g=10m/s2。 (1)设长木板足够长,求物块与障碍物第1次碰撞后,物块与长木板速度相同时的共同速率 1.2m/s (2)设长木板足够长,物块与障碍物发生第1次碰撞后,物块儿向右运动能到达的最大距离,s=0.4m,求物块与长木板间的动摩擦因数以及此过程中长木板运动的加速度的大小.1.25m/s2 (3)要使物块不会从长木板上滑落,长木板至少为多长?2m 2.如图所示为一根直杆弯曲成斜面和平面连接在一起的轨道,转折点为C,斜面部分倾角为30度,平面部分足够长,滑块A,B放在斜面上,开始时A,B之间的距离为1米,B与C的距离为0.6米,现将A B同时由静止释放.已知A 、B与轨道的动摩擦因数分别为√3/5和√3/2 ,A、B质量均为m,g取10m/s2,设最大静摩擦力等于滑动摩擦力,A、B发生碰撞时为弹性碰撞。物体A,B可以看作是质点,不计在斜面与平面转弯处的机械能损失,则 (1)经过多长时间滑块A,B第1次发生碰撞. 1s (2)滑块B停在水平轨道上的位置与C点儿的距离是多少?m 10 3 3.如图所示,光滑的轨道固定在竖直平面内,其O点左边为水平轨道,O点右边的曲面轨道高度h等于0.45米,左右两段轨道在O点平滑连接.质量m=0.10kg的小滑块a由静止开始从曲面轨道的顶端沿轨道下滑,到达水平段后与处于静止状态的质量M=0.30kg的小滑块b发生碰撞,碰撞后现小滑块a恰好停止运动,取重力加速度g=10m/s2,求 (1)小滑块a通过O点时的速度大小3m/s (2)碰撞后小滑块b的速度大小1m/s (3)碰撞后碰撞过程中小滑块a、b组成的系统损失的机械能。0.3J A B C b c h o

相关文档
相关文档 最新文档