文档库 最新最全的文档下载
当前位置:文档库 › 2015年全国数据总结入门

2015年全国数据总结入门

1、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.
typedef struct node
{int data; struct node *lchild,*rchild;}node;
int N2,NL,NR,N0;
void count(node *t)
{if (t->lchild!=NULL) if (1)___ N2++; else NL++;
else if (2)___ NR++; else (3)__ ;
if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;
}
26.树的先序非递归算法。
void example(b)
btree *b;
{ btree *stack[20], *p;
int top;
if (b!=null)
{ top=1; stack[top]=b;
while (top>0)
{ p=stack[top]; top--;
printf(“%d”,p->data);
if (p->rchild!=null)
{(1)___; (2)___;
}
if (p->lchild!=null)
(3)___; (4)__;
}}}}

2、设有一组初始记录关键字为(45,80,48,40,22,78),要求构造一棵二叉排序树并给出构造过程。
3、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)
(1)A和D是合法序列,B和C 是非法序列。
(2)设被判定的操作序列已存入一维数组A中。
int Judge(char A[])
//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。
{i=0; //i为下标。
j=k=0; //j和k分别为I和字母O的的个数。
while(A[i]!=‘\0’) //当未到字符数组尾就作。
{switch(A[i])
{case‘I’: j++; break; //入栈次数增1。
case‘O’: k++; if(k>j){printf(“序列非法\n”);exit(0);}
}
i++; //不论A[i]是‘I’或‘O’,指针i均后移。}
if(j!=k) {printf(“序列非法\n”);return(false);}
else {printf(“序列合法\n”);return(true);}
}//算法结束。

4、设有一组初始记录关键字为(45,80,48,40,22,78),要求构造一棵二叉排序树并给出构造过程。
5、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。
#define MAX 100
typedef struct Node
{char info; struct Node *llink, *rlink; }TNODE;
char pred[MAX],inod[MAX];
main(int argc,int **argv)
{ TNODE *root;
if(argc<3) exit 0;
strcpy(pred,argv[1]); strcpy(inod,argv[2]);
root=restore(pred,inod,strlen(pred));
postorder(root);
}
TNODE *restore(char *ppos,char *ipos,int n)
{ TNODE *ptr; char *rpos; int k;
if(n<=0) return NULL;
ptr->info=(1)_______;
for((2)_______ ; rpos

=*ppos) break;
k=(3)_______;
ptr->llink=restore(ppos+1, (4)_______,k );
ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k);
return ptr;
}
postorder(TNODE*ptr)
{ if(ptr=NULL) return;
postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info);
}

6、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。
29. ① 试找出满足下列条件的二叉树
1)先序序列与后序序列相同 2)中序序列与后序序列相同
3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

7、对一般二叉树,仅根据一个先序、中序、后序遍历,不能确定另一个遍历序列。但对于满二叉树,任一结点的左右子树均含有数量相等的结点,根据此性质,可将任一遍历序列转为另一遍历序列(即任一遍历序列均可确定一棵二叉树)。
void PreToPost(ElemType pre[] ,post[],int l1,h1,l2,h2)
//将满二叉树的先序序列转为后序序列,l1,h1,l2,h2是序列初始和最后结点的下标。
{if(h1>=l1)
{post[h2]=pre[l1]; //根结点
half=(h1-l1)/2; //左或右子树的结点数
PreToPost(pre,post,l1+1,l1+half,l2,l2+half-1) //将左子树先序序列转为后序序列
PreToPost(pre,post,l1+half+1,h1,l2+half,h2-1) //将右子树先序序列转为后序序列
} }//PreToPost
32. .叶子结点只有在遍历中才能知道,这里使用中序递归遍历。设置前驱结点指针pre,初始为空。第一个叶子结点由指针head指向,遍历到叶子结点时,就将它前驱的rchild指针指向它,最后叶子结点的rchild为空。
LinkedList head,pre=null; //全局变量
LinkedList InOrder(BiTree bt)
//中序遍历二叉树bt,将叶子结点从左到右链成一个单链表,表头指针为head
{if(bt){InOrder(bt->lchild); //中序遍历左子树
if(bt->lchild==null && bt->rchild==null) //叶子结点
if(pre==null) {head=bt; pre=bt;} //处理第一个叶子结点
else{pre->rchild=bt; pre=bt; } //将叶子结点链入链表
InOrder(bt->rchild); //中序遍历左子树
pre->rchild=null; //设置链表尾
}
return(head); } //InOrder
时间复杂度为O(n),辅助变量使用head和pre,栈空间复杂度O(n)

8、设有一组初始记录关键字为(45,80,48,40,22,78),要求构造一棵二叉排序树并给出构造过程。
9、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。
void quickpass(int r[], int s, int t)
{
int i=s, j=t, x=r[s];
while(iwhile (ix) j=j-1; if (iwhile (i}
r[i]=x;
}

10、后序遍历最后

访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。
typedef struct
{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问
}stack;
stack s[],s1[];//栈,容量够大
BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。
{top=0; bt=ROOT;
while(bt!=null ||top>0)
{while(bt!=null && bt!=p && bt!=q) //结点入栈
{s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下
if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点
{for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存
if(bt==q) //找到q 结点。
for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配
{pp=s[i].t;
for (j=top1;j>0;j--)
if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}

while(top!=0 && s[top].tag==1) top--; //退栈
if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历
}//结束while(bt!=null ||top>0)
return(null);//q、p无公共祖先
}//结束Ancestor

11、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。
29. ① 试找出满足下列条件的二叉树
1)先序序列与后序序列相同 2)中序序列与后序序列相同
3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

12、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分)
13、#define maxsize 栈空间容量

void InOutS(int s[maxsize])
//s是元素为整数的栈,本算法进行入栈和退栈操作。
{int top=0; //top为栈顶指针,定义top=0时为栈空。
for(i=1; i<=n; i++) //n个整数序列作处理。
{scanf(“%d”,&x); //从键盘读入整数序列。
if(x!=-1) // 读入的整数不等于-1时入栈。
if(top==maxsize-1){printf(“栈满\n”);exit(0);}
else s[++top]=x; //x入栈。


else //读入的整数等于-1时退栈。
{if(top==0){printf(“栈空\n”);exit(0);}
else printf(“出栈元素是%d\n”,s[top--]);}
}
}//算法结

14、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。
#include
typedef char datatype;
typedef struct node{
datatype data;
struct node * next;
} listnode;
typedef listnode* linklist;
/*--------------------------------------------*/
/* 删除单链表中重复的结点 */
/*--------------------------------------------*/
linklist deletelist(linklist head)
{ listnode *p,*s,*q;
p=head->next;
while(p)
{s=p;
q=p->next;
while(q)
if(q->data==p->data)
{s->next=q->next;free(q);
q=s->next;}
else
{ s=q; /*找与P结点值相同的结点*/
q=q->next;
}
p=p->next;
}
return head;
}

15、 连通图的生成树包括图中的全部n个顶点和足以使图连通的n-1条边,最小生成树是边上权值之和最小的生成树。故可按权值从大到小对边进行排序,然后从大到小将边删除。每删除一条当前权值最大的边后,就去测试图是否仍连通,若不再连通,则将该边恢复。若仍连通,继续向下删;直到剩n-1条边为止。
void SpnTree (AdjList g)
//用“破圈法”求解带权连通无向图的一棵最小代价生成树。
{typedef struct {int i,j,w}node; //设顶点信息就是顶点编号,权是整型数
node edge[];
scanf( "%d%d",&e,&n) ; //输入边数和顶点数。
for (i=1;i<=e;i++) //输入e条边:顶点,权值。
scanf("%d%d%d" ,&edge[i].i ,&edge[i].j ,&edge[i].w);
for (i=2;i<=e;i++) //按边上的权值大小,对边进行逆序排序。
{edge[0]=edge[i]; j=i-1;
while (edge[j].wedge[j+1]=edge[0]; }//for
k=1; eg=e;
while (eg>=n) //破圈,直到边数e=n-1.
{if (connect(k)) //删除第k条边若仍连通。
{edge[k].w=0; eg--; }//测试下一条边edge[k],权值置0表示该边被删除
k++; //下条边
}//while
}//算法结束。
connect()是测试图是否连通的函数,可用图的遍历实现,

16、4、 void LinkList_reverse(Linklist &L)
//链表的就地逆置;为简化算法,假设表长大于2
{
p=L->next;q=p->next;s=q->next;p->next=NULL;
while(s->next)
{
q->next=p;p=q;
q=s;s=s->next; //把L的元素逐个插入新表表头
}
q->next=p;s->next=q;L->next=s;
}//LinkList_reverse

17、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个

简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧)
有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。
void Print(int v,int start ) //输出从顶点start开始的回路。
{for(i=1;i<=n;i++)
if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。
{printf(“%d”,v);
if(i==start) printf(“\n”); else Print(i,start);break;}//if
}//Print
void dfs(int v)
{visited[v]=1;
for(j=1;j<=n;j++ )
if (g[v][j]!=0) //存在边(v,j)
if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if
else {cycle=1; Print(j,j);}
visited[v]=2;
}//dfs
void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。
{for (i=1;i<=n;i++) visited[i]=0;
for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i);
}//find_cycle

18、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。
51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

19、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。
typedef struct
{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问
}stack;
stack s[],s1[];//栈,容量够大
BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。
{top=0; bt=ROOT;
while(bt!=null ||top>0)
{while(bt!=null && bt!=p && bt!=q) //结点入栈
{s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下
if(bt==p) //不失一般性,假定p在q的左侧,遇结点p

时,栈中元素均为p的祖先结点
{for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存
if(bt==q) //找到q 结点。
for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配
{pp=s[i].t;
for (j=top1;j>0;j--)
if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}

while(top!=0 && s[top].tag==1) top--; //退栈
if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历
}//结束while(bt!=null ||top>0)
return(null);//q、p无公共祖先
}//结束Ancestor

20、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。
#define MAX 100
typedef struct Node
{char info; struct Node *llink, *rlink; }TNODE;
char pred[MAX],inod[MAX];
main(int argc,int **argv)
{ TNODE *root;
if(argc<3) exit 0;
strcpy(pred,argv[1]); strcpy(inod,argv[2]);
root=restore(pred,inod,strlen(pred));
postorder(root);
}
TNODE *restore(char *ppos,char *ipos,int n)
{ TNODE *ptr; char *rpos; int k;
if(n<=0) return NULL;
ptr->info=(1)_______;
for((2)_______ ; rposk=(3)_______;
ptr->llink=restore(ppos+1, (4)_______,k );
ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k);
return ptr;
}
postorder(TNODE*ptr)
{ if(ptr=NULL) return;
postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info);
}

21、若第n件物品能放入背包,则问题变为能否再从n-1件物品中选出若干件放入背包(这时背包可放入物品的重量变为s-w[n])。若第n件物品不能放入背包,则考虑从n-1件物品选若干件放入背包(这时背包可放入物品仍为s)。若最终s=0,则有一解;否则,若s<0或虽然s>0但物品数n<1,则无解。
(1)s-w[n],n-1 //Knap(s-w[n],n-1)=true
(2)s,n-1 // Knap←Knap(s,n-1)

22、 将顶点放在两个集合V1和V2。对每个顶点,检查其和邻接点是否在同一个集合中,如是,则为非二部图。为此,用整数1和2表示两个集合。再用一队列结构存放图中访问的顶点。
int BPGraph (AdjMatrix g)
//判断以邻接矩阵表示的图g是否是二部图。
{int s[]; //顶点向量,元素值表示其属于那个集合(值1和2表示两个集合)
int Q[];//Q为队列,元素为图的顶点,这里设顶点信息就是顶点编号。
int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组
for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合
Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1
while(f{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号
if (!visited[v])
{visited[v]=1; //确

保对每一个顶点,都要检查与其邻接点不应在一个集合中
for (j=1,j<=n;j++)
if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列
else if (s[j]==s[v]) return(0);} //非二部图
}//if (!visited[v])
}//while
return(1); }//是二部图
[算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。

23、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。
当n=1时,只有一个根结点,由中序序列和后序序列可以确定这棵二叉树。
设当n=m-1时结论成立,现证明当n=m时结论成立。
设中序序列为S1,S2,…,Sm,后序序列是P1,P2,…,Pm。因后序序列最后一个元素Pm是根,则在中序序列中可找到与Pm相等的结点(设二叉树中各结点互不相同)Si(1≤i≤m),因中序序列是由中序遍历而得,所以Si是根结点,S1,S2,…,Si-1是左子树的中序序列,而Si+1,Si+2,…,Sm是右子树的中序序列。
若i=1,则S1是根,这时二叉树的左子树为空,右子树的结点数是m-1,则{S2,S3,…,Sm}和{P1,P2,…,Pm-1}可以唯一确定右子树,从而也确定了二叉树。
若i=m,则Sm是根,这时二叉树的右子树为空,左子树的结点数是m-1,则{S1,S2,…,Sm-1}和{P1,P2,…,Pm-1}唯一确定左子树,从而也确定了二叉树。
最后,当1可唯一确定二叉树的左子树,由{Si+1,Si+2,…,Sm}和
{Pi,Pi+1,…,Pm-1}可唯一确定二叉树的右子树 。

24、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。
当n=1时,只有一个根结点,由中序序列和后序序列可以确定这棵二叉树。
设当n=m-1时结论成立,现证明当n=m时结论成立。
设中序序列为S1,S2,…,Sm,后序序列是P1,P2,…,Pm。因后序序列最后一个元素Pm是根,则在中序序列中可找到与Pm相等的结点(设二叉树中各结点互不相同)Si(1≤i≤m),因中序序列是由中序遍历而得,所以Si是根结点,S1,S2,…,Si-1是左子树的中序序列,而Si+1,Si+2,…,Sm是右子树的中序序列。
若i=1,则S1是根,这时二叉树的左子树为空,右子树的结点数是m-1,则{S2,S3,…,Sm}和{P1,P2,…,Pm-1}可以唯一确定右子树,从而也确定了二叉树。
若i=m,则Sm是根,这时二叉树的右子树为空,左子树的结点数是m-1,则{S1,S2,…,Sm-1}和{P1,P2,…,Pm-1}唯一确定左子树,从而也确定了二叉树。
最后,当1

。由于后序遍历是“左子树—右子树—根结点”,所以{P1,P2,…,Pi-1}和{Pi,Pi+1,…Pm-1}是二叉树的左子树和右子树的后序遍历序列。因而由{S1,S2,…,Si-1}和{P1,P2,…,Pi-1}
可唯一确定二叉树的左子树,由{Si+1,Si+2,…,Sm}和
{Pi,Pi+1,…,Pm-1}可唯一确定二叉树的右子树 。

25、因为后序遍历栈中保留当前结点的祖先的信息,用一变量保存栈的最高栈顶指针,每当退栈时,栈顶指针高于保存最高栈顶指针的值时,则将该栈倒入辅助栈中,辅助栈始终保存最长路径长度上的结点,直至后序遍历完毕,则辅助栈中内容即为所求。
void LongestPath(BiTree bt)//求二叉树中的第一条最长路径长度
{BiTree p=bt,l[],s[]; //l, s是栈,元素是二叉树结点指针,l中保留当前最长路径中的结点
int i,top=0,tag[],longest=0;
while(p || top>0)
{ while(p) {s[++top]=p;tag[top]=0; p=p->Lc;} //沿左分枝向下
if(tag[top]==1) //当前结点的右分枝已遍历
{if(!s[top]->Lc && !s[top]->Rc) //只有到叶子结点时,才查看路径长度
if(top>longest) {for(i=1;i<=top;i++) l[i]=s[i]; longest=top; top--;}
//保留当前最长路径到l栈,记住最高栈顶指针,退栈
}
else if(top>0) {tag[top]=1; p=s[top].Rc;} //沿右子分枝向下
}//while(p!=null||top>0)
}//结束LongestPath

26、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.
typedef struct node
{int data; struct node *lchild,*rchild;}node;
int N2,NL,NR,N0;
void count(node *t)
{if (t->lchild!=NULL) if (1)___ N2++; else NL++;
else if (2)___ NR++; else (3)__ ;
if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;
}
26.树的先序非递归算法。
void example(b)
btree *b;
{ btree *stack[20], *p;
int top;
if (b!=null)
{ top=1; stack[top]=b;
while (top>0)
{ p=stack[top]; top--;
printf(“%d”,p->data);
if (p->rchild!=null)
{(1)___; (2)___;
}
if (p->lchild!=null)
(3)___; (4)__;
}}}}


相关文档
相关文档 最新文档