文档库 最新最全的文档下载
当前位置:文档库 › 某300MW凝汽式汽轮机机组热力系统设计说明书

某300MW凝汽式汽轮机机组热力系统设计说明书

某300MW凝汽式汽轮机机组热力系统设计说明书
某300MW凝汽式汽轮机机组热力系统设计说明书

目录

第1章绪论 (1)

1.1 热力系统简介 (1)

1.2 本设计热力系统简介 (1)

第2章基本热力系统确定 (3)

2.1 锅炉选型 (3)

2.2 汽轮机型号确定 (4)

2.3 原则性热力系统计算原始资料以及数据选取 (6)

2.4 全面性热力系统计算 (7)

第3章主蒸汽系统确定 (15)

3.1 主蒸汽系统的选择 (15)

3.2 主蒸汽系统设计时应注意的问题 (17)

3.3 本设计主蒸汽系统选择 (17)

第4章给水系统确定 (19)

4.1 给水系统概述 (19)

4.2 给水泵的选型 (19)

4.3 本设计选型 (22)

第5章凝结系统确定 (23)

5.1 凝结系统概述 (23)

5.2 凝结水系统组成 (23)

5.3 凝汽器结构与系统 (23)

5.4 抽汽设备确定 (26)

5.5 凝结水泵确定 (26)

第6章.回热加热系统确定 (28)

6.1 回热加热器型式 (28)

6.2 本设计回热加热系统确定 (33)

第7章.旁路系统的确定 (35)

7.1 旁路系统的型式及作用 (35)

7.2 本设计采用的旁路系统 (38)

第8章.辅助热力系统确定 (39)

8.1 工质损失简介 (39)

8.2 补充水引入系统 (39)

8.3 本设计补充水系统确定 (40)

第9章.轴封系统确定 (41)

9.1 轴封系统简介 (41)

9.2 本设计轴封系统的确定 (41)

致谢 (42)

参考文献 (43)

外文翻译原文 (44)

外文翻译译文 (49)

毕业设计任务书

毕业设计进度表

第1章绪论

1.1热力系统简介

发电厂的原则性热力系统就是以规定的符号表明工质在完成某种热力循环时所必须流经的各种热力设备之间的系统图。原则性热力系统具有以下特点:(1)只表示工质流过时状态参数发生变化的各种必须的热力设备,同类型同参数的设备再图上只表示1个;

(2)仅表明设备之间的主要联系,备用设备、管路和附属机构都不画出;

(3)除额定工况时所必须的附件(如定压运行除氧器进气管上的调节阀)外,一般附件均不表示。

原则性热力系统主要由下列各局部热力系统组成: 锅炉、汽轮机、主蒸汽及再热蒸汽管道和凝汽设备的链接系统,给水回热系统,除氧器系统,补充水系统,辅助设备系统及“废热”回收系统。凝汽式发电厂内若有多种单元机组,其原则性热力系统即为多个单元的组合。对于热电厂,无论是同种类型的供热机组还是不同类型的供热机组,全厂的对外供热的管道和设备是连在一起的,原则性热力系统较为复杂。

原则性热力系统实质上表明了工质的能量转换及热能利用的过程,反映了发电厂热功能量转换过程的技术完善程度和热经济性。拟定合理的原则性热力系统,是电厂设计和电厂节能工作的重要环节。

1.2本设计热力系统简介

某电力发电厂一期工程包括二套300MW燃煤汽轮发电机组及配套的辅机、附件。其中锅炉为国外引进的1025t/h“W”火焰煤粉炉;汽轮机为国产亚临界、一次中间再热300MW凝式汽轮机。机组采用一炉一机的单元制配置。

根据汽轮机制造厂推荐的机组的原则性热力系统,考虑与锅炉和全厂其它系统的配置要求,设计拟定了全厂的原则性热力系统。该系统共有八级不调节抽汽。其中第一、二、三级抽汽分别供三台高压加热器,第五、六、七、八级抽分别供四台低压加热器,第四级抽汽作为0.803MPa压力除氧器的加热汽源。

八级回热加热器(除除氧器外)均装设了疏水拎却器。以充分利用本级疏水热量来加热本级主凝结水。三级高压加热器均安装了内置式蒸汽冷却器,将三台高压加热器上端差分别减小为- 1.67℃、0℃、0℃。从而提高了系统的热经济性。

汽轮机的主凝结水由凝结水泵送出,依次流过轴封加热器、4台低压加热器,进入除氧器。然后由汽动给水泵升压,经三级高压加热器加热,最终给水温度达到272.8℃,进入锅炉。

三台高压加热器的疏水逐级自流至除氧器;四台低压加热器的疏水逐级自流至凝汽器。凝汽器为单轴双缸排汽反动凝汽。

汽轮机为亚临界压力、一次中间在热、单轴双缸双排汽反动凝汽式汽轮机。高中

压缸为双层合缸反流结构,即由高中压外缸、高压内缸和中压内缸组成。低压缸则是3层缸结构,由钢板焊接、对称分流布置。本机组有8级非调整抽汽,在第1~3级抽汽供3台高压加热器,第4级抽汽供除氧器、锅炉给水泵小汽轮机及辅助蒸汽用汽,第5~8级抽汽供4台低压加热器用汽。此外,中压联合汽门阀杆漏气接入第3级抽汽管道上,锅炉连续排污扩容器的扩容蒸汽和高压轴封漏气接入除氧器。除氧器为滑压运行,滑压范围是0.147~0.883MPa。

高低压加热器均设有内置式疏水冷却器,且高压加热器还没有内置式蒸汽冷器。加热器疏水采用逐级自流方式,最后流入凝汽器热井。凝结水系统设置有轴封加热器SG和除盐设备DE。凝结水精处理装置采用低压系统,凝结水经凝结水泵CP、除盐设备DE和凝升泵BP,流经轴封加热器SG、4个低压加热器进入除氧器。给水从给水箱经前置泵TP、主给水泵FP及3台高压加热器进入锅炉。压力最低的H7、H8低压加热器位于凝汽器喉部化学补充水

D从凝汽器补入。

ma

该机组在额定进汽参数、额定排汽压力、补水率为0%、回热系统正常投运的条件下,能发出额定功率300MW,进汽量为1000t/h,热耗率7993KW/(KW h)当阀门全开、超压5%(即VWO+5%OP)工况下,机组最大进汽量为1025 t/h,最大功率为329MW。

热力系统的汽水损失计有:全厂汽水损失10354kg/h锅炉排污损失1035kg/h (因排污率较小,未设计排污利用系统) 。

高压缸门杆漏气A 和B分别引人再热冷段管道和轴封加热器SG,中压缸门杆漏汽K引人3 号高压加热器,高压缸的轴封漏汽按压力不同,分别进人除氧器(L1、L)、均压箱(M1、M)和轴封加热器(N1、N.)。中压缸的轴封漏汽也按压力不同,分别引进均压箱(P)和轴封加热器(R)。低压缸的轴封用汽S来自均压箱,轴封排汽T 也引人轴封加热器。从高压缸的排汽管路抽出一股气流J,不经再热器而直接进中压缸,用于冷却中压缸转子叶根。

第2章基本热力系统确定

2.1锅炉选型

2.1.1锅炉的简介

锅炉是火力发电厂的三大主机中最基本的能量转换装备。其作用是使燃料在炉内燃烧放热,并将锅炉内工质由水加热成具有足够数量和一定品质(气温和气压)的过热蒸汽,供汽轮机使用。

表征锅炉设备基本特征的有:锅炉容量、蒸汽参数、燃烧方式、汽水流动方式和锅炉整体布置等方面。主要是锅炉容量和蒸汽参数。

锅炉容量:锅炉的容量用蒸发量表示,一般是指锅炉在额定蒸汽参数(压力、温度)、额定给水温度和使用设计燃料时,每小时的最大连续蒸发量。常用符号D e 表示,单位为t/h(或kg/s)。习惯上,电厂锅炉容量也用与之配套的汽轮发电机组的电功率表示。

蒸汽参数:锅炉的蒸汽参数是指锅炉出口处的蒸汽温度和蒸汽压力。蒸汽温度常用符号t表示,单位为℃或K;蒸汽压力常用符号p表示,单位为MPa。锅炉设计时所规定的蒸汽温度和压力称为额定蒸汽温度和额定蒸汽压力。

2.1.2电厂锅炉特性

表征锅炉设备基本特征的有:锅炉容量、蒸汽参数、燃烧方式、汽水流动方式和锅炉整体不知等方面。

电厂锅炉存在这样几个明显特点:电厂锅炉一般都是在蒸发量在400t/h以上、超高压以上压力的锅炉,且大都进行中间再热,即锅炉容量大、蒸汽参数高。大容量、高参数电厂锅炉热效率都很高,多稳定在90%以上。大型电厂锅炉为实现安全、经济运行、大都设置一套高度可靠的自动化控制装置—自动化程度高。

2.1.3一般电厂锅炉分类

可以从不同角度出发对锅炉进行分类:按烟气在锅炉流动的状况分:水管锅炉、锅壳锅炉、水火管组合式锅炉;按锅筒放置的方式分:立式锅炉、卧式锅炉;按用途分:生活锅炉、工业锅炉、电站锅炉、车船用锅炉;按介质分:蒸汽锅炉、热水锅炉、汽水两用锅炉、有机热载体锅炉;按安装方式分:快装锅炉、组装锅炉、散装锅炉;按燃料分:燃煤锅炉、燃油锅炉、燃气锅炉、余热锅炉、电加热锅炉、生物质锅炉;按水循环分:自然循环、强制循环、混合循环;按压力分:常压锅炉、低压锅炉、中压锅炉、高压锅炉、超高压锅炉;按锅炉数量分:单锅筒锅炉、双锅筒锅炉;按燃烧定在锅炉内部或外部分:内燃式锅炉、外燃式锅炉;按工质在蒸发系统的流动方式可分为自然循环锅炉、强制循环锅炉、直流锅炉等;按制造级别分

3

4

类:A 级、B 级、C 级、D 级、E 级(按制造锅炉的压力分);按出口蒸汽压力分为:低压锅炉(P 〈2.5MPa )、中压锅炉(22.5〈P 〈4.0MPa )、高压锅炉(4.0〈P=10MPa )、超高压锅炉(10〈P=13.7MPa )、亚临界锅炉(13.7〈P=16.7MPa )、超临界锅炉(P=22MPa )。

2.1.4电厂锅炉的安全经济指标

1.连续运行小时数=两次检修之间运行小时数

2.事故率=

+事故停用小时数总运行小时数事故停运小时数×100% 3.可用率=运行总小时数+备用总小时数统计期间总小时数

×100% 4.锅炉效率:锅炉每小时的有效利用热量(即水和蒸汽所吸收的热量)占输入锅炉全部热量的百分数,常用符号η表示,即η=

锅炉有效利用热量输入锅炉总热量×100% 事故率和可用率按一适当的周期来计算。我国通常以一年为一统计周期。连续

运行小时数越长,事故率越低,可用率越高,锅炉的安全可靠性就越高。

2.1.5本设计锅炉机组选用

(1)汽轮机形式:阳逻发电厂优化引进型N300-16.5/537/537

(2)蒸汽初参数:0p =16.65MPa, 0t =537℃; ?0p =0.31MPa, ?0t =1.4℃

(3)再热蒸汽参数:冷段压力2p =in rh p =3.61MPa,冷段温度in rh t =316.4℃,热段压

力out rh p =3.29Mpa

(4)热段温度rh t =537℃;?'rh p =0.07MPa, ?rh t =1.2℃

(5)排汽压力:2p =5.54kPa(0.00554MPa)

(6)抽汽及轴封参数见表2.2.给水泵出口压力pu p =20.81MPa,凝结水泵出口压

力为1.78MPa.机械(7)效率、发电机效率分别取为m η=0.99、g η=0.985

(8)汽动给水泵用汽数pu α为0.038

2.2汽轮机型号确定

2.2.1汽轮机原理

汽轮机是以蒸汽为工质的将热能转变为机械能的旋转式原动机。汽轮机设备是

火电厂的三大主要设备之一。在火力发电厂,锅炉将燃料的化学能转变为蒸汽的热能,汽轮机将蒸汽的热能转变为机械能,发电机将转轴的机械能转变为电能。

2.2.2汽轮机分类

1.按工作原理分

级是汽轮机中最基本的作功单元,它是由喷管叶栅和与它相配合的动叶栅组成的。蒸汽在汽轮机级中以不同方式进行能量转换,便形成不同的工作原理的汽轮机。

(1)冲动式汽轮机:主要由冲动级组成,蒸汽主要在喷管叶栅(或静叶栅)中膨胀,在动叶栅中只有少量膨胀。

(2)反动式汽轮机:主要由反动级组成,蒸汽在喷管叶栅(或静叶栅)和动叶栅中都进行膨胀,且膨胀程度大致相同。

2.按热力特性分

(1)凝汽式汽轮机:蒸汽在汽轮机内膨胀做功以后,除小部分轴封漏气外,全部进入凝汽器凝结成水的汽轮机。实际上为了提高汽轮机的热效率,减少汽轮机排汽缸的直径尺寸,将做过功的蒸汽从汽轮机内抽出来,送入回热加热器,用以加热锅炉给水,这种不调整抽汽式汽轮机,也统称为凝汽式汽轮机。

(2)背压式汽轮机:蒸汽进入汽轮机内部做功以后,以高于大气压力排除汽轮机,用于工业生产或民用采暖的汽轮机。

(3)抽汽背压式汽轮机:为了满足不同用户和生产过程的需要,从背压式汽轮机内部抽出部分压力较高的蒸汽用于工业生产,其余蒸汽继续做功后以较低的压力排除,供工业生产和居民采暖的汽轮机。

(4)抽汽凝汽式汽轮机:蒸汽进入汽轮机内部做过功以后,从中间某一级抽出来一部分,用于工业生产或民用采暖,其余排入凝汽器凝结成水的汽轮机,称为一次抽汽式或单抽式汽轮机。从不同的级间抽出两种不同压力的蒸汽,分别供给不同的用户或生产过程的汽轮机称为双抽式(二次抽汽式)汽轮机。

(5)多压式汽轮机:汽轮机进汽不止一个参数,在汽轮机的某中间级前又引入其他来源的蒸汽,与原来的蒸汽混合共同膨胀做功。

3.按汽轮机的进汽压力分

(1)低压汽轮机:主蒸汽压力为1.2~1.5MPa

(2)中压汽轮机:主蒸汽压力为2.0~4.0MPa

(3)高压汽轮机:主蒸汽压力为6.0~10.0MPa

(4)超高压汽轮机:主蒸汽压力为12.0~14.0MPa

(5)亚临界汽轮机:主蒸汽压力为16.0~18.0MPa

(6)超临界汽轮机:主蒸汽压力大于22.17MPa

(7)超超临界压力汽轮机:主蒸汽压力大于32MPa

2.2.3本设计选用汽轮机

5

6

根据任务书要求可得到汽轮机相关参数

汽轮机形式:N300-16.65/537/537

蒸汽初参数:0p =16.65MPa, 0t =537℃; ?0p =0.31MPa, ?0t =1.4℃;

再热蒸汽参数:冷段压力2p =in rh p =3.61MPa,冷段温度in rh t =316.4℃,热段压力

out rh

p =3.29MPa,热段温度rh t =537℃;?'rh p =0.07MPa, ?rh t =1.2℃; 排汽压力:2p =5.54kPa(0.00554MPa);

抽汽及轴封参数见表2.2.给水泵出口压力pu p =20.81MPa,凝结水泵出口压力为

1.78MPa.机械效率、发电机效率分别取为m η=0.99、g η=0.985。

汽动给水泵用汽数pu α为0.038。

本设计选用N300-16.65/537/537型号汽轮机。全机有两个缸:高中压部分采用

高中压合缸反流结构,对头布置,为双层缸;低压缸分为流结构,进汽部分为三层,通流部分为双层缸。高压缸内有一级冲动级(调节级)和12级反动式压力级,中压缸内有9列反动式压力级,低压缸内分流布置着14列反动式压力级.全机共有29个热力级,36个结构级。新蒸汽从汽轮机下部由主蒸汽管道进入2个高压主汽调节联合阀,由6个调节气阀经导汽管按一定的顺序从高压外缸的上半和下半分别进入高压缸的6个喷管室,通过各自的喷管组流向顺向布置的调节级,然后返流经过高压通流部分反向布置的12级反动级,经由高中压外缸下半排出后进入再热器。经过再热的蒸汽从汽轮机前部由再热主汽管进入2个中压再热调节联合阀,再经过2根中压导汽管将蒸汽从下部导入高中压外缸的中压缸,再经过中压通流部分后,经过一根连通管进入低压缸,蒸汽从中央流入,再从2个排汽口排入凝汽器。

2.3原则性热力系统计算原始资料以及常用数据选取

2.3.1回热加热系统参数

(1)机组各级回热抽汽参数见表2-4 表2-3 N300-16.65/537/537型双缸双排汽机组回热抽汽及轴封汽参数

项目 加热器编号 抽汽压力 抽汽温度 轴封汽量 轴封汽比焓

单位 MPa ℃

— kJ/kg 回热抽汽点、

轴封来汽点及轴封汽参数 H1 5.954 386.7 — — H2 3.61 316.4 — — H3 1.63 436.6 — — H4 0.803 337.4 高压汽门来0.013

3361 H5 0.341 237.4 — —

H6 0.134 145.0 — —

H7 0.0732 95.0 — —

H8 0.0256 64.97 — —

SG — — 中压缸来

0.013

3284 C 0.00554 34 — —

7

2.3.2整理原始资料

(1)根据已知参数p 、t 在h-s 图上画出汽轮机蒸汽膨胀过程线(见图2-4),得

到新汽焓0h 、各级抽汽焓j h 及排汽焓c h ,以及再热器蒸汽比焓升rh q 。也可以根

据p 、t 、查水蒸汽表得出上述焓

0h =3394.1kJ/kg,in rh

h =3015.8kJ/kg,out rh h =3534.8kJ/kg,rh q =3534.8-3015.8=519kJ/kg 根据水蒸气表查得各加热器出口水焓wj h 及有关疏水焓'j h 或d wj h ,将机组回热系统计

算点参数列于表2-4

图2-4亚临界压力300MW 双缸双排汽凝气式机组蒸汽膨胀过程线

2.4全面性热系统计算

2.4.1回热抽汽系数与凝气系数的计算

采用相对量方法进行计算。

(1)1号高压加热器(H1)

由H1的热平衡时求1α

1α(1h -1d

w h )h η=1w h -2w h

1α =12h 11(-)/-w

w d w h h h h η=(1195.2-1043.7)/0.98

3142.8-1079.5

=0.074925

8

H1的疏水系数1d α=1α=0.074952

(2)2号高压加热器(H2)

[2α(2h -2d w h )+1d α(1d w h -2d w h )]h η=2w h - 3w h

2α=23h 11222

( - )/-(-) - d d w w d w w d w h h h h h h ηα =(1043.7-857.7)/0.98-0.074925(1079.5-886)3015.8-886

?=0.082307 表2-4 N300-16.65/537/537型双缸双排汽机组回热系统计算点参数

项目 单位 H1

H2 H3 H4 H5 H6 H7 H8 SG C 加

汽 抽汽压力 MPa 5.954 3.61 1.63 0.803 0.341 0.134 0.0732 0.0256 — 0.0055 抽汽压损

% 6 6 6 6 6 6 6 6 — — 加热器汽

侧压力

MPa 5.597 3.39 1.53 0.755 0.321 0.126 0.0688 0.0241 0.095 — 抽汽焓

kJ/kg 3142.8 3015.8 3332.2 3134.4 2939.2 2763.5 2669.2 2517.6 — — 轴封汽焓

kJ/kg — — — 3361 — — — — 3284 — 饱和水温

℃ 271.1 240.8 199.3 168.1 135.9 106.2 89.5 64.2 98.2 34.7 饱和水焓

kJ/kg 1190.2 1040.8 849 710.7 571.5 445.3 374.8 268.5 411.5 145.5 被

水 加热器端差 ℃ -1.67 0 0 0 2.78 2.78 2.78 2.78 — 0 加热器出

口水温

℃ 272.8 240.8 199.3 168.1 133.1 103.4 86.7 61.4 — — 加热器水

侧压力

MPa 20.81 20.81 20.81 0.803 1.78 1.78 1.78 1.78 1.78 — 加热器出

口水焓

kJ/kg 1195.2 1043.7 857.7 710.7 560.7 434.7 364.4 258.5 — 145.5 疏

水 疏水冷却器端差 ℃ 8 8 8 — — — — — —

— 疏水冷却器

出口水温

248.8 207.3 179.5 — — — — — — — 疏水冷却 器

疏水焓 kJ/kg

1079.5 886 761.3 — — — — — — —

9

H2的疏水系数

12+ =0.074925 + 0.082307 = 0.157232d αα

再热蒸汽系数rh α

12= 1- - = 1 - 0.157232 = 0.842768 rh ααα

(3)3号高压加热器 (H3)

先计算给水泵的焓升?pu w h 。设除氧器的水位高度为20m ,则给水泵的进口压

力为in p ==200.0098 + 0.8030.940.98508 in p ??= MPa ,取给水的平均比容为

av υ=0.0011 3m /kg 、给水泵效率pu η=0.83,则

3pu 10(-)

pu

av out in w p p h υη?=

=3100.0011(20.81-0.98508)0.83

?=26.3(kJ/kg ) 由H3的热平衡式得

333223h 34[(-)+(-)][-(+)

d d d p u w d w w w w w h h h h h h h ααη=? 3α=34h 22333

[-(+)]/-(-)-pu d d w w w d w w d w h h h h h h h ηα? =

()[857.7-(710.7+26.3)]/0.98-0.157232886-761.33332.2-761.3

? =0.040280 H3的疏水系数

323+0.157232+0.040280=0.197512

d d ααα== (2)除氧器HD

第4段抽汽4α由除氧器加热蒸汽'4α和汽动给水泵用汽pu α2部分组成,即

'44+pu ααα=

由除氧器的物质平衡可知除氧器的进水系数为

'43s g 14

1---d αααα=

由于除氧器的进出口水量不等,4c α时未知数。为避免在最终的热平衡式中出现

2各未知数,可先不考虑加热器的效率h η,写出除氧器的热平衡式:∑吸热量=∑放热量,即

10

'

444113345

+++d w s g s g d w c w h h h h h αααα= 将4c α的关系代入,整理成以进水焓5w h 为基准,并考虑h η的热平衡式:吸热量

/h η=∑放热量,可得

'

45h 445335115(-)/(-)+(-)+(-)d w w w d w w s g s g w h h h h h h h h ηααα= 45h 335115'445(-)/-(-)-(-)-d w w d w w sg sg w w h h h h h h h h ηααα=

(710.7-560.7)/0.98-0.197512(761.3-560.7)-0.013(3361-560.7)3134.4-560.7

??=

0.02993= '4314

1---c d sg αααα==1-0.197512-0.013-0.029932=0.759556 '44+0.029932+0.038=0.067932pu ααα==

(5)5号低压加热器(H5)

直接由H5的热平衡式可得5α

'555h 456(-)(-)c w w

h h h h αηα= 456h 5'55(-)/0.759556(560.7-434.7)/0.980.041246-2939.2-517.5

c w w h h h h αηα?=

== H5的疏水系数 550.041246d αα==

(6)6号低压加热器(H6)

同理,有

'''666556h 467[(-)+(-)]=(-)

d c w w h h h h h h ααηα ''467h 5566'66(-h )/-(-)-c w w d h h h h h αηαα=

0.759556(434.7-364.4)/0.98-0.01246(571.5-445.5)2763.5-445.3

??=0.02125= (7)7号低压加热器(H7) '''777667h 478[(-)+(-)]=(-)

d c w w h h h h h ααηα 7α''478h 667'77(h -)/-(-)-c w w d h h h h h αηα=

0.759556(364.4-258.5)/0.98-0.062504(445.3-374.8)2669.2-374.8

??=0.03385= (8)8号低压加热器(H8)与轴封加热(SG )

11

为了计算方便,将H8与SG 作为一个整体考虑,采用2.39所示的热平衡范围来列出物质平衡和热平衡式。由热井的物质平衡式,可得

4728+---c pu c d sg αααααα=根据∑吸热量=∑放热量写出平衡式

''48882277+++(+)c sg sg d c pu c h h h h h αααααα=

将+c pu αα消去,并整理成以4c α吸热为基础以进水焓'c h 为基准的热平衡式,

'''''887722h 48[(-)+(-)+(-)]=(-)

c d c s g s g c c w c h h h h h h h h αααηα ''''48h 77228'8(-)/-(-)-(-)-c w c d c sg sg c c h h h h h h h h αηααα= 0.759556(2585-1455)/0.980.096357(3748-1455)-0.0014(3284-1455)2517.6-1445

???= 0.02575=

(9)凝汽系数c α的计算与物质平衡校核

由热井的物质平衡计算c α

4728----c c d s g p u αααααα

= 0.759556-0.096257-0.0014-0.0257550

.598044= 由汽轮机流通部分物质平衡来计算c α,以校核计算的准确性

8

1211-(++)c j sg sg αααα=∑

=1-(0.074925+0.082307+0.040280+0.067932+0.041246+0.021258+0.0338

53+0.025755+0.013+0.0014)=0.598044

2.4.2新汽量0D 计算及校核

根据抽汽做功不足多耗汽的公式来计算0D

82

00011D /(1--)c c j j sgj sgj D D Y Y βαα==∑∑

(1) 计算0c D

凝汽的比内功ic w 为

0-3394.1519-2357.6=1555.5i c r h c

w h q h =+=+ 330360036003000001010712.0038/h 1555.50.990.985

e c ic m g p D t w ηη--?=

?=?=?? (2)计算0D

12

各级抽汽做功不足系数j Y 如下:

11-3142.8519-2

357.60.838444

1

555.5r h c

ic h q h Y w ++=== 22+-3015.8+519-2357.6

===0.7567991555.5rh c ic

h q h Y w

33-3332.2-2357.6===0.6265511555.5

c

ic h h Y w 44-3134.4-2357.6===0.4993891555.5

c

ic h h Y w

55-2939.2-2357.6

===0.3738991555.5c ic

h h Y w

66-2763.5-2357.6

==0.2609451555.5c

ic

h h Y w =

77-2669.2-2357.6==0.2003211555.5

c

ic h h Y w =

88-2517.6-2357.6==0.102861

1555.5

c

ic h

h Y w =

1-3361-23

5

7.6==0.645066

155

5.5c sg ic h h Y w =sg1 21-3284-2357.6

==0.5955641555.5sg c

sg ic

h h Y w =

13

表2-5 j αj h 、j αj Y 和j D 的计算数据

j α j h j αj h j Y

j αj Y j D 1α=0.074925 1h =3142.8

11h α=235.4 1Y =0.838444 11Y α=0.62820 1D .=68.736447 2α=0.08237 2h =3015.8 22h α=248.221451 2Y =0.756799 22Y α=0.0622

90 2D =75.508719

3α=0.040280 3h =3332.2 33h α=134.221016 3Y =0.626551 33Y α=0.025237 3D =36.953008

4α=0.067932 4h =3134.4 44h α=212.926061 4Y =0.499389 44Y α=0.033925 4D =62.321046

5α=0.041246 5h =2939.2 55h α=121.230243 5Y =0.373899 55Y α=0.015422 5D =37.839219

6α=0.021258 6h =2763.5 66h α=58.746483 6Y =0.260945 66Y α=0.005547 6D =19.502161

7α=0.033853 7h =2669.2 77h α=90.360428 7Y =0.200321 77Y α=0.006781 7D =31.056856

8α=0.025755 8h =2517.6 88h α=64.840788 8Y =0.102861 88Y α=0.002649 8D =23.627724

c α=0.598044

c h =2357.6

c c h α=1409.9

48534 — — c D =548.64758 1sg α=0.013

1sg h =3361 11sg sg h α=43.693 1sg Y =0.645066 1sg α1sg Y =0.008386 1sg D =11.926244 sg2α=0.0014

2sg h =3284 sg22sg h α=4.5676 2sg Y =0.595564 sg2α2sg Y =0.000834 2sg D =1.284365 — — ∑h α= — ∑Y α=0.22 3892

0D =917.403369

于是,抽汽做功不足汽耗增加系数β为

82111=1/1--=

=1.2884811-0.223892

j j sgj sgj Y Y βαα∑∑() 则汽轮机新汽耗量0D 为

00D ==712.0038 1.288481=917.403368 c D β?/h t

(3) 功率校核

1kg 新汽比内功i w (其中∑j αj h 计算数据见表2-5)

82

i 011w -(++)th rh j j c c sgj sgj h q Y h Y αααα=+∑∑

14 3394.10.842768519-2624.259894

8=+? 据此,可的汽轮机发动机的功率'e p 为

'

e 0i p D /3600=917.4033681207.2366980.990.985/3600=300.000296m g w ηη=???M

W

计算误差

'

|-|

|300-300.000296|100%100%0.000099%300

e e e p p p ?=?=?=

误差非常小,在工程允许范围内,表示上述计算正确。

各汽水流量绝对值计算

2.4.3 各汽水流量绝对值计算

(1)由j 0D D j α=求出各处j D ,见表2-5

(2)全厂物质平衡

汽轮机总耗汽量 '

00=917.403369D D =/h t

锅炉蒸发量 '

0100.01b b D D D D D =+=+/h t

01.0101b D D ==926.669/h t

锅炉给水量(在最大工况下扣去过热器减温水de D )

-fw b bl de D D D D =+

锅炉连续排污量 0.01bl b D D ==9.2667/h t

补充水量 1ma bl D D D =+=78.0027/h t

2.4.4汽轮机热经济指标计算

1kg 新汽的比热耗0q

00-3394.10.842768519-1195.2=2636.295692rh rh fw q h q h α=+=+?(kJ/kg )

汽轮机绝对内效率i η

i 01207.236698

45.7929%

26

36.296592i w q η=== 汽轮发动机绝对电效率

0.4579290.990.98544

e i m g ηηηη==??= 汽轮发电机组热耗率q

36003600

8061.8252420.446549e

q η=== /()kW kW h ?

汽轮发电机组汽耗率d

08061.825242

3.0580112636.

296592q d q === /()

k W k W h ?

第3章主蒸汽再热蒸汽系统确定

3.1主蒸汽系统的选择

主蒸汽系统包括从锅炉过热器出口联箱至汽轮机进口主汽阀的主蒸汽管道、阀门、疏水装置及通往新汽设备的蒸汽支管所组成的系统。对于装有中间再热式机组的发电厂,还包括从汽轮机高压缸排气至锅炉再热器进口联箱的再热冷段管道、阀门及从再热器出口联箱至汽轮机中压缸进口阀门的再热热段管道、阀门。

发电厂主蒸汽系统具有输送工质流量大、参数高、管道长且要求金属材料质量高的特点,它对发电厂运行的安全、可靠、经济性影响很大,所以对主蒸汽系统的基本要求就是系统力求简单,安全、可靠性好,运行调度灵活,投资少,运行费用低,便于维修、安装和扩建。

3.1.1单母管制系统(又称集中母管制系统)

如图3-1(a)所示,其特点是发电厂所有锅炉的蒸汽先引至一根蒸汽母管集中后,再由该母管引至汽轮机和各用汽处。

3-1 火电厂主蒸汽系统

单母管上用两个串联的分段阀,将母管分成两个以上区段,它起着减小事故范围的作用,同时也便于分段阀和母管本身检修而不影响其他部分正常运行,提高了系统运行的可靠性。正常运行时,分段阀处于开启状态,单母管处于运行状态。显然,该分段阀应采用闸阀。

该系统的优点是系统比较简单,布置方便。但运行调度还不够灵活,缺乏机动

15

性。当任一锅炉或与母管相连的任一阀门发生事故,或单母管分段检修时,与该母管相连的设备都要停止运行。因此这种系统通常用于锅炉和汽轮机台数不匹配,而热负荷又必须确保可靠供应的热电厂以及单机容量为6MW以下的电厂。

3.1.2切换母管制

如图3-1(b)所示,其特点为每台锅炉与其相对应的汽轮机组成一个单元,正常时机炉成单元运行,各单元之间装有母管,每一单元与母管相连处装有三个切换阀门。它们的作用是当某单元锅炉发生事故或检修时,可以通过这三个切换阀门由母管引来邻炉蒸汽,使该单元的汽轮机继续运行,也不影响从母管引出的其他用汽设备。

为了便于母管检修或电厂扩建不致影响原有机组正常运行,机炉台数较多时,也可以考虑用两个串联的关断阀将母管分段。母管管径一般是按通过一台锅炉的蒸发量来确定,通常处于热备用状态;若分配锅炉负荷时,则应投入运行。

该系统的优点是可充分利用锅炉的富余容量,切换运行,既有较高的运行灵活性,又有足够的运行可靠性,同时还可以实现较优的经济运行。该系统的不足之处在于系统较复杂,阀门多,发生事故的可能性较大;管道长,金属耗量大,投资高。所以,该系统适宜装有高压供热式机组的发电厂和中、小型发电厂采用。

3.1.3单元制系统

如图3-1(c)所示,其特点是每台锅炉与相对应的汽轮机组成一个独立单元,各单元间无母管横向联系,单元内各用汽设备的新蒸汽支管均引自机炉之间的主汽管。

单元制系统的优点是系统简单、管道短、阀门少,故能节省大量高级耐热合金钢;事故仅限于本单元内,全厂安全可靠性高;控制系统按单元设计制造,运行操作少,易于实现集中控制;工质压力损失少,散热小,热经济性高;维护工作量少,费用低;无母管,便于布置,主厂房土建费用少。其缺点是单元之间不能切换。单元内任一与主汽管相连的主要设备或附件发生事故,都将导致整个单元系统停止运行,缺乏灵活调度和负荷经济分配的条件;负荷变动时对锅炉燃烧的调整要求高;机炉必须同时检修,相互制约。因此,对参数高、要求大口径高级耐热合金钢管的机组,且主蒸汽管道系统投资占有较大比例时,应首先考虑采用单元制系统。如装有高压凝汽式机组的发电厂,可采用单元制系统;对装有中间再热凝汽式机组或中间再热供热式机组的发电厂,应采用单元制系统。

16

3.2主蒸汽系统设计时应注意的问题

3.2.1高、中压主汽阀和高压缸排汽逆止阀

高参数大容量机组,尤其是再热机组的蒸汽流量很大。汽轮机自动主汽阀一般配置两个,也有配置四个高压主汽阀的,高压调速汽阀一般都配置四个,再热后的中压自动主汽阀与相应的调速汽阀合并为中压联合汽阀,一般也配置两个或四个。它们均靠汽轮机调速系统的高压油控制其自动关闭;新蒸汽管道上配置一电动隔离阀作严密隔绝蒸汽用。高压缸排气管上为防止机组甩负荷时,再热管道内的蒸汽倒流入汽轮机,通常设置有逆止阀。当汽轮机排气逆止阀以及各回热抽气管道上的逆止阀也在气动或液动机构作用下迅速关闭,从而保护汽轮机不至超速。

3.2.2温度偏差及其对策

随着机组容量增大,炉膛宽度加大,烟气流量、温度分布不均造成两侧汽温偏差增大,这样就要求管道系统应有混温措施。国际电工协会规定,最大允许汽温偏差持久性为15℃,瞬时性为42℃。由于汽轮机的主蒸汽、再热蒸汽均为双侧进汽,因此再热机组的主蒸汽、再热蒸汽系统以单管、双管及混合管系统居多,少数也有四管及其混合管系统的。

3.2.3主蒸汽及再热蒸汽压损及管径优化

主蒸汽、再热蒸汽压损增大,将会降低机组的热经济性,多耗燃料。蒸汽压损与管径和管道附件有直接的关系。所以设计规程明确提出对第一台新设计的汽轮机组,其主蒸汽、再热蒸汽等管道的管径及管路根数,应经优化计算确定。管径优化计算包括管子壁厚计算、压降计算和费用计算三部分。

3.3本设计的主蒸汽系统选择

由于本设计采用一次中间再热高参数凝汽式电厂,故选用单元制系统。机组主蒸汽及高、低温在热蒸汽系统采用单管、双管混合系统,管道从过热器的出口联箱的两侧引出,在机头处汇集成一根管,到高压缸前分成两根支管分别进入高压缸左右侧主汽阀和调节阀,在汽轮机入口前设压力平衡联通管。

热再热蒸汽管道从再热器的出口联箱的两侧引出,平行接到汽轮机前,分别接入中压缸左右侧再热主汽阀,在汽轮机入口前设压力平衡连通管。

热再热蒸汽管道从再热器的出口联箱的两侧引出,平行接到汽轮机前,分别接入中压缸左右再热主汽阀调节阀,在汽轮机入口前设压力平衡连通管。冷再热蒸汽管道从高压缸的两个排气口引出,在机头处汇成一根总管,到锅炉前再分成两根支管分别接入再热器进口联箱。既减少由于锅炉两侧热偏差和管道布置差异所引起的蒸汽温度和压力偏差,有利于机组的安全运行,同时还可以选择合适的管道规格,

17

节省管道投资。过热器出口及再热器进、出口管道上设有水压试验隔离装置,锅炉侧管系可做隔离水压试验。

主蒸汽、再热蒸汽压损增大,将会降低机组的热经济性,多耗燃料。蒸汽压损与管径和管道附件有直接的关系。为了减小蒸汽的流动阻力损失,在主汽阀前的主蒸汽管道上只设置了堵板阀,

高压缸排汽管道上为了防止机组甩负荷时,再热管道内的蒸汽倒流入汽轮机,设置了气动止回阀。当汽轮机甩负荷时,高、中压自动主汽阀在高压油作用下瞬间关闭(0.1~0.3s),高压缸排气止回阀以及各回热抽汽官道上的逆止阀也在气动机构作用下迅速关闭,从而保证汽轮机不至超速。

系统内的各种汽阀(包括主汽阀、调节阀、止回阀、疏水阀、安全阀)控制可靠、开启灵活、关闭严密,是保证系统正常工作的最基本条件。

18

张吉培300MW汽轮机热力系统方案

N300MW汽轮机组热力系统分析- TMCR 专科生毕业设计开题报告 2011 年 09 月 24 日

摘要 节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行

经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法—— 常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统 目录 N300MW汽轮机组热力系统分析- TMCR (1) 专科生毕业设计开题报告 (1) 摘要 (4) 关键词 (4) 第一章绪论 (9) 1.1 毕业设计的目的 (9) 1.2国外研究综述 (9) 第二章 300MW汽轮机组的结构与性能 (11) 2.1汽轮机工作的基本原理 (11) 第三章热力系统的设计 (14) 3.1主、再热蒸汽系统 (14) 3.1.1主蒸汽系统 (15) 3.1.2再热蒸汽系统 (15) 3.2主给水系统 (16) 3.2.1除氧器 (16) 3.2.2高压加热器 (16) 3.2.3其他 (17) 3.3凝结水系统 (17) 3.3.1凝结水用户 (17) 3.3.2凝结水泵及轴封加热器 (18) 3.4抽汽及加热器疏水系统 (18) 3.5轴封系统 (19) 3.6高压抗燃油系统 (20) 3.6.1磁性过滤器 (20) 3.6.2自循环滤油系统 (21) 3.7润滑油系统 (21) 3.8本体疏水系统 (21) 3.9发电机水冷系统 (22)

汽轮机操作规程

枣庄薛能天然气有限公司70000Nm3/h焦炉煤气制液化天然气项目 汽轮机操作规程 编制: 审核: 批准: 山东潍焦集团 2015年3月

目录 一、岗位工作的任务及意义 (1) 二、工艺过程概述 (1) 1、汽轮机的工作原理 (1) 2、汽轮机的结构及型号概述 (1) 3、汽轮机规格及主要参数 (1) 4、汽轮机组的工艺流程 (2) 三、启动前的准备工作 (3) 四、汽轮机启动 (4) 五、汽轮机的停机 (9) 1、正常停车 (9) 2、紧急停车 (9) 四、事故预防及处理 (10) 六、安全注意事项 (11)

一、岗位工作的任务及意义 汽轮机岗位的任务:从合成工段产出和焦化二公司配送的中压蒸汽(压力为3.53MPa,温度为435℃)在汽轮机机体内经过中压低压气室将蒸汽内能化为叶轮的机械能为制冷剂压缩机提供动力。 二、工艺过程概述 1、汽轮机的工作原理 汽轮机是能将蒸汽内能转化为机械能的回转式机械,来自外界的蒸汽进入汽轮机后,依次经过一系列环形配置的喷嘴和动叶,将蒸汽的内能转化为汽轮机转子旋转的机械能。 2、汽轮机的结构及型号概述 1)汽轮机结构概述 N13-3.53型离心汽轮机由本汽轮机为单缸凝汽式汽轮机,本体主要由转子部分和静子部分组成。转子部分包括整锻转子、叶片、危急遮断器、盘车齿轮、联轴器等;静子部分包括汽缸、主汽门、蒸汽室、喷嘴组、调节级护套、隔板、汽封、轴承、轴承座、调节汽阀、盘车装置、公用底盘等。 2 3、汽轮机规格及主要参数 1)汽轮机设计工况: 第1 页共11 页受控文件,未经允许严禁拷贝

2 4、汽轮机组的工艺流程 1)汽体流程: 上游来的蒸汽绝大部分由主气门先后经过中、低压气室将本身内能化为机械能。而其温度也随之下降,此时经膨胀箱内扩容后,蒸汽由疏水膨胀箱顶部进入凝汽器顶部,凝结的疏水引入凝汽器底部进入凝汽器与冷却水换热降温凝结为水,汇集到底部的集水器由凝结水泵打回进一步循环利用。很少一部分进入射汽抽气器作为动力源,或者进入密封系统作为前后轴端的密封气体。 2)润滑油流程概述: 与制冷剂压缩机共用一个润滑油站,设有一主一副两台蜗杆油泵,当油压低于0.15Mpa

汽轮机说明书

中国长江动力公司(集团) 文件代号Q3053C-SM 2011年3 月日

产品型号及名称C7.5-3.8/1.0抽汽凝汽式汽轮机文件代号Q3053C-SM 文件名称使用说明书 编制单位汽轮机研究所 编制 校对 审核 会签 标准化审查 批准

目录 1前言--------------------------------- 2 2主要技术数据------------------------- 2 3产品技术性能说明和主要技术条件------- 3 4产品主要结构------------------------- 3 5安装说明----------------------------- 5 6运行和维护--------------------------- 17 7附录:汽轮机用油规范----------------- 25

1前言 C7.5-3.8/1.0型汽轮机系中温中压、单缸、冲动、抽汽凝汽式汽轮机,具有一级工业调整抽汽。额定功率为7500kW,工业抽汽额定压力为 1.0MPa,额定抽汽量为9.5t/h。本汽轮机与发电机、锅炉及其他附属设备成套,安装于企业自备电站或热电厂,同时供热和供电。机组的电负荷和热负荷,可按用户需要分别进行调节。同时,亦允许在纯凝汽工况下,带负荷7500kW长期运行。本机系热电联供机组,具有较高的热效率和经济性。机组结构简单紧凑,布置合理,操作简便,运行安全可靠。 2主要技术数据 2.1 汽轮机型式中温中压、单缸、冲动、抽汽凝汽式 2.2 汽轮机型号C7.5- 3.8/1.0 型 2.3 新蒸汽压力 3.8(2.03.0+-)MPa 2.4 新蒸汽温度390(1020+-)℃ 2.5 额定功率7500kW 最大功率9000kW 2.6 额定转速3000r/min 2.7 额定进汽量46t/h 2.8 最大进汽量50t/h 2.9 额定抽汽参数压力 1.0 MPa 温度272.3℃ 流量9.5 t/h 2.10 最大抽汽量15t/h

凝汽器安装使用说明书

330MW汽轮机组 双流程凝汽器安装使用说明书 NC17A.80.01SY 2006年7月

一、设计数据 凝汽器压力: 5.2 KPa 凝汽量: 675 t/h 冷却水进口温度: 21℃ 冷却背率: 54 冷却水量: 36112 t/h 冷却水管内流速: 2.2 m/s 流程数: 2 清洁系数: 0.9 冷却面积: 螺旋管19000 m 2 冷却管数: 16112 根 冷却管长: 12410mm 二、对外接口规格 循环水入口管径: Φ1820 mm 循环水出口管径: Φ1820 mm 空气排出口管径: Φ273 mm 凝结水出口管径: Φ630 mm 三、凝汽器主要部件重量 凝汽器尺寸: 17338x8300x12960mm 无水凝汽器总重: 306 t 凝汽器运行时水重: 265 t 汽室中全部充水时水重: 700 t 管子重: 84.73 t 共 17 页 第 1 页 凝汽器安装使用说明书 N C 17A.80.01S Y 北 京 重型电机厂 实 施 批 准 编 制 校 对 审 核 标准化审查 图 样 标 记

水室比后水室高)。 管板与壳体通过一过渡段连接在一起,过渡段长为:300 mm(见图HR155.80.01.90-1、HR155.80.01.100-1)。 每块隔板下面用三根圆钢支撑,隔板与管子间用工字钢及一对斜铁连接,以便于调整隔板安装尺寸。隔板底部在同一平面上(见图NC17A.80.01-1)。隔板间用三根钢管连接,隔板边与壳体侧板相焊,每一列隔板用三根圆钢拉焊住,圆钢两端与管板过渡段相焊(见图HR155.80.01.01-1)。 壳体与热井通过垫板直接相连,热井分左右两半制造。在热井中有工字钢、支撑圆管加强,刚度很好。热井底板上开有三个方孔,与凝结水出口装置相连。 凝结水出口装置上部设有网格板,可防止杂物进入凝结水管道,也可防止人进入热井后从此掉下。 在空冷区上方设置挡板,阻止汽气混合物直接进入空冷区。空气挡板两边与隔板密封焊。每列管束在其中三块挡板上开有方孔,用三根方管拼联成抽气管,以抽出不凝结气体及空气(见图HR155.80.01.120-1)。 弧形半球形水室具有水流均匀、不易产生涡流、冷却水管充水合理、换热效果良好的特点。水室侧板用25mm厚的钢板,水室法兰用60 mm厚的16MnR,与管板和壳体螺栓连接,衬O型橡胶圈作密封垫,保证水室的密封性。前水室中设水室隔板及进出水管,其中进水管在下部,出水管在侧部。在水室上有人孔,以便检修。为防止检修时人不小心掉入循环水管,在进出水管加设了一道网板,网板由不锈钢组成,既可保证安全,又不增加水阻。水室上有放气口、排水孔、手孔以及温度、压力测点(见图HR155.80.01.15-1、HR155.80.01.95-1、HR155.80.01.105-1、HR155.80.01.200-1)。水室壁涂环氧保护层,并有牺牲阳极保护,牺牲阳极保护的安装位置参照(HR155.80.01.10-1)执行。 在凝汽器最上一排管子之上300 mm处设有8个真空测点,测量点是在两块间隔30 mm的板,从板中间的接头上引出φ14×3的管至接颈八个测真空处进行真空测量。 凝汽器热井位于汽机房下,装于弹簧和底板上(见图HR155.80.01.06-1)。弹簧根据汽机允许力进行设计,考虑到弹簧摩擦角产生的水平力,78个弹簧采用一半左旋一半右旋,以使力平衡。 为防止运行时凝汽器移动,造成凝汽器、低压缸不同心,对低压缸不利。热井底板上焊固定板,使底板与弹簧基础上埋入的钢板贴合,这样凝汽器只能上下移动(见图HR155.80.01.205-1)。 五、安装程序 (1)在底板(HR155.80.01.205-1序1 N17.80.01.416)定位后,在底板上安装弹簧支座板(HR68.80.01.39-1序1 N17.80.01.222)、弹簧,并调节弹簧位置,使处于标高之下。 (2)吊起凝汽器热井,安装热井底部的弹簧支座板(见图N17.80.01.111-1)

汽轮机课程设计(中压缸)

题目:600MW超临界汽轮机通流部分设计 (中压缸) 学生姓名:丁艳平 院(系)名称:能源与动力工程 班级: 热能与动力工程03-03班 指导教师:谭欣星 2006 年11 月

能源与动力工程学院 课程设计任务书 热能动力工程专业036503班 课程名称汽轮机原理 题目600MW超临界汽轮机通流部分设计(中压缸)任务起止日期:2006年11 月13 日~ 2006年12 月4 日 学生姓名丁艳平2006年12月4日指导教师谭欣星2006年11月5日教研室主任年月日院长年月日

能源与动力工程学院 2. 此任务书最迟必须在课程设计开始前三天下达给学生。

600MW超临界汽轮机通流部分设计(中压缸) 摘要 本文根是根据给定的设计条件,确定通流部分的几何尺寸,以求获得较高的相对内效率。 设计原则是保证运行时具有较高的经济性;在不同的工况下工作均有高的可靠性;同时在满足经济性和可靠性要求的同时,考虑了汽轮机的结构紧凑,系统简单,布置合理,成本低廉,安装与维修方便,心以及零件的通用化和系列化等因素。 主要设计过程是:分析与确定汽轮机热力设计的基本参数,选择汽轮机的型式,配汽机构形式,通流部分及有关参数;拟定汽轮机近似热力过程曲线,并进行热经济性的初步计算;根据通流部分形状和回热抽汽点的要求,确定中压级组的级数并进行各级比焓降的分配,对各级进行详细的热力计算,确定汽轮机实际热力过程曲线,根据热力计算结果,修正各回热汽点压力以符合热力过程曲线的要求,并修正回热系统的热平衡计算,汽轮机热力计算结果。

目录 摘要 (1) 第一章:汽轮机热力计算的基本参数 (2) 第二章:汽轮机蒸汽流量的初步计算 (3) 第三章:通流部分选型 (9) 第四章::压力级比焓降分配及级数确定 (10) 第五章:汽轮机级的热力计算 (14) 第六章;高中压缸结构概述 (17) 第七章:600MW汽轮机热力系统 (19) 第八章:总结 (20) 参考文献 (23)

最详细汽轮机岗位操作规程

最详细汽轮机岗位操作规程 1、岗位职责、范围 1.1岗位任务: 本岗位主要是接受干熄焦锅炉来的高压蒸汽进行发电,发电后的背压汽供热用户使用。并确保本岗位生产、安全、环保、质量、节能等各项工作符合要求。 1.2职责范围: 1.2.1负责本岗位重要环境因素的控制。 1.2.2在值班长领导下,负责本岗位的生产操作及设备维护。 1.2.3岗位员工应熟悉本岗位设备的构造及工作原理。 1.2.4掌握正常运行和开、停车操作。 1.2.5发现异常情况,能采取应急措施处理。同时汇报值班长或车间生产主任。 1.2.6搞好本岗位责任区的环境卫生。 2、巡回检查路线及检查内容 2.1巡检路线: 为保证安全生产,及时发现问题,避免事故发生,本岗位操作工每小时按下述路线进行巡回检查一次。 汽轮机、发电机→汽封加热器、滤油器→冷油器、空冷器。 2.2巡检内容: 2.2.1检查推力瓦、1、2、3、4瓦温度,发电机进出口风温。 2.2.2检查汽封加热器压力、滤油器前后压差、油箱油位。 2.2.3冷油器进、出口油温,空冷器进、出口温度。 3、工艺流程、生产原理简述及主要设备构造原理 3.1工艺流程 自干熄焦锅炉来的蒸汽经电动主汽门、自动主汽门、高压调节阀进入汽轮机,经一个双列复速级和三个压力级做功,做功后的背压汽供热用户使用。机组的调节用油及润滑油均由主油泵供给。高压油分为两部分:一部分经逆止阀后再分为三路:第一路去保安系统,第二路经冷油器后又分为二股,一股通往注油器,作为喷射压力油,一股经三通逆止 阀、润滑油压调整阀、滤油器去润滑系统,第三路经错油门去油动机;另一部分至压力变换器,并分出一小支经节流孔至脉冲油路。 3.2工作原理 由主蒸汽母管送来蒸汽进入汽轮机,蒸汽在喷嘴内降压增速后,进入汽轮机动叶片,带动汽轮机转动,由动能变成机械能,汽轮机带动发电机,由机械能再转化为电能,向电网输电。 4、工艺指标及技术要求 4.1工艺指标 额定进汽量:42.7 t/h 额定转速时振动值:≤0.03 mm(全振幅) 临界转速时振动值:≤0.15 mm(全振幅) 额定进汽压力: 3.43 +0.196 -0.294MPa(绝对) 额定排汽压力:0.785 +0.196 -0.294MPa(绝对) 额定进汽温度:435 +10-15℃ 额定工况排汽温度:282 ℃ 额定转速:3000 r/min 临界转速:1870r/min

汽轮机使用说明书

N30-3.43/435型汽轮机使用说明书 1、用途及应用范围 N30-3.43/435型汽轮机系单缸、中温中压、冲动、凝汽式汽轮机。额定功率30MW,与汽轮发电机配套,装于热电站中,可作为电网频率为50HZ地区城市照明和工业动力用电。 其特点是结构简单紧凑、操作方便、安全可靠。汽轮机不能用以拖动变速旋转机械。 2、主要技术数据 2.1 额定功率:30MW 2.1 最大功率:33MW 2.3 转速:3000r/min 2.4 转向:从机头看为顺时针方向 2.5 转子临界转速:1622.97r/min 2.6 蒸汽参数: 压力: 3.43MPa 温度:435℃ 冷却水温:27℃(最高33℃) 排汽压力(额定工况):0.0086MPa 2.7 回热抽汽:4级(分别在3、6、8、11级后) 2.8给水加热:2GJ+1CY+1DJ 2.9 工况: 工 况 项 目进汽量抽汽量排汽量冷却水温电功率汽耗Go Gc Ge Ne t/h t/h t/h ℃kW Kg/kw·h 额定工况131.0 0.0 102.77 27 30007.1 4.366 夏季凝汽工况135.5 0.0 107.98 33 30029.4 4.512 最大凝汽工况145.0 0.0 114.14 27 33055.7 4.387 最大供热工况143.5 20.0 93.51 27 30049.2 4.776 70%额定负荷工况93.0 0.0 73.93 27 21013.9 4.426 50%额定负荷工况69.5 0.0 56.47 27 15009.0 4.631 高加切除工况122.0 0.0 107.8 27 30032.7 4.062 2.10 各段汽封漏汽流量 前汽封后汽封

汽轮机安装方案全解

目录 一、概述。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2 二、编制依据。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 三、施工准备。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 四、汽轮机安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4 五、调节保安系统安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 六、发电机安装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 七、质量保证措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 八、安全文明施工。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 九、环境保护措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 十、环境因素、危险辨识评价记录表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 一、概述

1、汽轮机主要技术参数 本汽轮机由洛阳中重发电设备有限责任公司制造,单缸、低压冲动空气冷却式汽轮机发电机,用于中广核青海太阳能热发电技术试验项目汽轮发电机组土建、安装及调试项目,以提供电力供应。 1.1主汽门前蒸汽参数及其允许变化范围: 正常: 2.6MPa/ 375℃ 最高: 2.8MPa/ 380℃ 最低: 2.4MPa/375℃ 1.2汽轮机额定功率:1500KW 1.3汽轮机额定转速:5600r/min 1.4汽轮机临界转速:3359r/min 1.5汽轮机旋转方向:顺气流方向看,汽轮机的转向为顺时针方向。 1.6排汽压力:在额定负荷时:(绝)0.015Mpa 1.7汽机本体主要件重量: 汽轮机全量25.1 t 转子 1.122 t 汽轮机上半重量(即检修时最大起重量): 3.1 t 1.8汽轮机本体外形尺寸(mm): 长×宽×高4451×3770×2715 1.9汽轮机中心高(距运转平台):1050mm。 2、调节系统参数 2.1 汽轮机在稳定负荷及连续运转情况下,转速变化的不均匀度为4.5+0.5%。 2.2 汽轮机调整器调速范围,能将正常运行转速作-4%--6%的改变。 2.3汽轮机突然抛全负荷时,最大升速不超过危急遮断器的动作转速。 2.4调节系统的迟缓率小于0.5% 。 2.5危急遮断器的动作转速6104~6216r/min,危急遮断器动作至主汽门关闭。 2.6汽轮机转子轴向位移小于0.7mm。 2.7润滑系统油压力0.0588~0.0784MPa。 3、汽机结构说明

汽轮机组热力系统..

第二节汽轮机组热力系统 汽轮机组热力系统主要是由新蒸汽管道及其疏水系统、汽轮机本体疏水系统、汽封系统、主凝结水系统、回热加热系统、真空抽气系统、循环水系统等组成。 一、新蒸汽管道及其疏水系统 由锅炉到汽轮机的全部新蒸汽管道,称为发电厂的新蒸汽管道,其中从隔离汽门到汽轮机的这一段管道成为汽轮机的进汽管道。在汽轮机的进汽管道上通常还连接有供给汽动油泵、抽气器和汽轮机端部轴封等处新蒸汽的管道,汽轮机的进汽管道和这些分支管道以及它们的疏水管构成了汽轮机的新蒸汽管道及其疏水系统。3)在机组启动和低负荷运行时,为了保证除氧器的用汽,必须装设有饱和蒸汽或新蒸汽经减压后供除氧器用的备用汽源。 5)在机组启动、停止和正常运行中,要及时地迅速地把新蒸汽管道及其分支管路中的疏水排走,否则将会引起用汽设备和管道发生故障。这些疏水是: ①隔离汽门前、后的疏水和汽轮机进汽管道疏水。这两处疏水在机组启动暖管和停机时,都是排向地沟的,正常运行中经疏水器可疏至疏水扩容器或疏水箱。 ②汽动油泵用汽排汽管路的凝结水。由于废汽是排入大气的,它的凝结水接触了大气,水质较差,且在机组启、停时才用,运行时间不长,故一般都排入地沟。 ③汽轮机本体疏水。我们通常把汽轮机高压缸疏水、抽汽口疏水、低压缸疏水、抽汽管路上逆止门前后疏水以及轴封管路疏水等,统称为汽轮机本体疏水。这些疏水,由于压力的不同,而引向不同的容器中。高压疏水一般都是汇集在疏水膨胀箱内,在疏水膨胀箱内进行扩容,扩容后的蒸汽由导汽管送至凝汽器的喉部,而凝结水则由注水器(水力喷射器)送入凝汽器的热水井中。低压疏水可直接排入凝汽器。 6)一般中、低压汽轮机的自动主汽门前必须装设汽水分离器。汽水分离器的作用是分离蒸汽中所含的水分,提高进入汽轮机的蒸汽品质。21-1.5型机组的汽水分离器是与隔离汽门装置在一起的,N3-24型机组的汽水分离器是和自动主汽门装置在一起的。 二、凝结水管道系统 蒸汽器热水井中的凝结水,由凝结水泵升压,经过抽气器的冷却器、轴封加热器、低压加热器,然后进入除氧器,其间的所有设备和管道组成了凝结水系统。 凝结水系统的任务是不间断地把凝汽器内的凝结水排出和使主抽气器能够正常地工作,从而保证凝汽器所必须的真空,并尽量收回凝结水,以减少工质损失。 2)汽轮机组在启动和低负荷运行时,为了保证有足够的凝结水量通过抽器冷却器,以保证抽气器的冷却和维持凝汽器热水井水位,在抽气器后的主凝结水管道上装设了一根在循环管,使一部分凝结水可以在凝汽器到抽气器这一段管路内循环。再循环水量的多少,由再循环管上的再循环门来调节。 3)汽轮机在第一次启动及大修后启动时,凝汽器内还无水,这时首先应通过专设的补充水管向凝汽器充水,一般电厂都补充化学软水。机组启动运转正常后,应化验凝结水水质是否合格,若不合格则应通过放水管将凝结水

汽轮机课程设计---23MW凝汽式汽轮机热力设计.

第一章 23MW凝汽式汽轮机设计任务书 1.1 设计题目: 23MW凝汽式汽轮机热力设计 1.2 设计任务及内容 根据给定条件完成汽轮机各级尺寸的确定及级效率和内功率的计算。在保证运行安全的基础上,力求达到结构紧凑、系统简单、布置合理、使用经济性高。 汽轮机设计的主要内容: 1.确定汽轮机型式及配汽方式; 2.拟定热力过程及原则性热力系统,进行汽耗量于热经济性的初步计算; 3.确定调节级型式、比焓降、叶型及尺寸等; 4.确定压力级级数,进行比焓降分配; 5.各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与 整机实际热力过程曲线; 6.整机校核,汇总计算表格。 1.3 设计原始资料 额定功率:23MW 设计功率:18.4MW 新汽压力:3.43MP a 新汽温度:435℃ 排汽压力:0.005MP a 冷却水温:22℃ 机组转速:3000r/min 回热抽汽级数:5 给水温度:168℃ 1.4 设计要求 1.严格遵守作息时间,在规定地点认真完成设计,设计共计两周; 2.完成设计说明书一份,要求过程完整,数据准确; 3.完成通流部分纵剖面图一张(A0图) 4.计算结果以表格汇总。

第二章多极汽轮机热力计算 2.1 近似热力过程曲线的拟定 一、进排汽机构及连接管道的各项损失 蒸汽流过个阀门及连接管道时,会产生节流损失和压力损失。表2-1列出了这些损失通常选取范围。 表2-1 汽轮机各阀门及连接管道中节流损失和压力估取范围 图2-1 进排汽机构损失的热力过程曲线

二、汽轮机近似热力过程曲线的拟定 根据经验,对一般非中间再热凝汽式汽轮机可近似地按图2-2所示方法拟定近似 热力过程曲线。 由已知的新汽参数p 0、t 0,可得汽轮机进汽状态点0,并查得初比焓h 0=3304.2kj/kg 。由前所得,设进汽机构的节流损失ΔP 0=0.04 P 0=0.1372 MPa 得到调节级前压力P 0'= P 0 - ΔP 0=3.2928MPa ,并确定调节级前蒸汽状态点1。过1点作等比熵线向下交于P x 线于2点,查得h 2t =2152.1kj/kg ,整机的理想比焓降 ()'0 23304.221201184.2mac t t h h h ?=-=-=3304.2-2128=1176 kj/kg 。由上估计进汽量后得到的相对内效率 ηri =83.1%,有效比焓降Δht mac =(Δht mac )' ηri =1176×0.831=977.3kj/kg ,排汽比 焓03304.2986.3282317.872mac z t h h h =-?=-=3304.2-977.3=2326.9 kj/kg ,在h-s 图上得排汽点Z 。用直线连接1、Z 两点,在中间'3点处沿等压线下移21~25 kj/kg 得3点,用光滑连接1、3、Z 点,得该机设计工况下的近似热力过程曲线,如图2-2所示。 图2-2 12MW 凝汽式汽轮机近似热力过程曲线

冷凝式汽轮机运行操作规程分析

冷凝式汽轮发电机组 运行操作规程淄博泓铭动力设备有限公司

一、适用范围:本操作法适用于750KW-3000KW冷凝式汽轮机。 二、启动前的准备工作: 1、仔细检查汽轮机、发电机及各辅助设备,肯定安装(或检修)工作已全部结束。 2、准备好各种仪器、仪表及工具,并做好与主控室、锅炉、电气的联系工作。 3、都油系统进行下列检查: 1)油管路及油系统内所有设备处于完好状态,油系统无漏油现象。 2)油箱内油位正常,油质良好、无积水。 3)冷油器的进出油门开启,并应有防止误操作的措施。 4)油箱及冷油器的放油门关闭严密。 5)为清洗管路在每一轴前所加的临时滤网或堵板在启动前必须拆 除。 4、对汽水系统进行下列检查: 1)主汽门应关闭。 2)汽轮机全部疏水门应开启。 3)通往汽封蒸汽管道阀门应关闭。 4)冷油器进水门关闭,出水门开启。 5、检查机组滑销系统,应保证汽机本体能自由膨胀,在冷态下侧量各膨胀间隙并记录。各蒸汽管路应能自由膨胀。 6、检查所有仪表、保安信号装置。 7、各项检查合格后,通知锅炉分厂供汽暖管。 三、暖管(到隔离阀前)

1.隔离阀前主蒸汽管路到汽轮油泵蒸汽管路、抽汽器蒸汽管路同时 暖管,逐渐提升管道压到0.1961—0.294Mpa(表)。暖管20-30分钟后,按每分增加0.0981—0.147Mpa(表)速度,将压力提升到正常压力,汽温提升速度应不超过5℃/min。 2.暖管过程中,当发现阀门冒汽时,应检查关严隔离阀及旁路门, 严防暖管时蒸汽漏入汽缸。 3.管道压力升到正常压力时,应逐渐将隔离阀前的总汽门开大,直 至全开。 4.在升压过程中,应根据压力升高程度适当关小直流疏水门,并检 查管道膨涨和吊支情况 四、启动电动油泵进行盘车,在静态下对调节保安系统和保护装置进行检查。 1.使电动油泵油压符合要求,润滑油压保持在0.05—0.10Mpa 2.检查油路系统各管道是否严密,确定无漏油之处。 3.检查轴承回油口,确定各轴承均有油流过。 4.手动盘车,测听声音。 5.在做调节保安系统测试时,会有蒸汽窜入,为防止转子弯曲,试 验中要不断进行盘车。 6.检查合格后,将保安系统挂闸。 7.开启主汽门1/3行程后,分别使各保安装置工作,检查主汽门调 节气阀是否快速关闭。 8.一切正常后,将各保安系统挂闸,接通高压油路。 9.将同步器摇到下限位置。

汽轮机课程设计说明书..

课程设计说明书 题目:12M W凝汽式汽轮机热力设计 2014年6月28 日

一、题目 12MW凝汽式汽轮机热力设计 二、目的与意义 汽轮机原理课程设计是培养学生综合运用所学的汽轮机知识,训练学生的实际应用能力、理论和实践相结合能力的一个重要环节。通过该课程设计的训练,学生应该能够全面掌握汽轮机的热力设计方法、汽轮机基本结构和零部件组成,系统地总结、巩固并应用《汽轮机原理》课程中已学过的理论知识,达到理论和实际相结合的目的。 重点掌握汽轮机热力设计的方法、步骤。 三、要求(包括原始数据、技术参数、设计要求、图纸量、工作量要求等) 主要技术参数: 额定功率:12MW ;设计功率:10.5MW ; ;新汽温度:435℃; 新汽压力:3.43MP a ;冷却水温:20℃; 排汽压力:0.0060MP a 给水温度:160℃;机组转速:3000r/min ; 主要内容: 1、确定汽轮机型式及配汽方式 2、拟定热力过程及原则性热力系统,进行汽耗量与热经济性的初步计算 3、确定调节级形式、比焓降、叶型及尺寸等 4、确定压力级级数,进行比焓降分配 5、各级详细热力计算,确定各级通流部分的几何尺寸、相对内效率、内功率与整机实 际热力过程曲线 6、整机校核,汇总计算表格 要求: 1、严格遵守作息时间,在规定地点认真完成设计;设计共计二周。 2、按照统一格式要求,完成设计说明书一份,要求过程完整,数据准确。 3、完成通流部分纵剖面图一张(一号图) 4、计算结果以表格汇总

四、工作内容、进度安排 1、通流部分热力设计计算(9天) (1)熟悉主要参数及设计内容、过程等 (2)熟悉机组型式,选择配汽方式 (3)蒸汽流量的估算 (4)原则性热力系统、整机热力过程拟定及热经济性的初步计算 (5)调节级选型及详细热力计算 (6)压力级级数的确定及焓降分配 (7)压力级的详细热力计算 (8)整机的效率、功率校核 2、结构设计(1天) 进行通流部分和进出口结构的设计 3、绘制汽轮机通流部分纵剖面图一张(一号图)(2天) 4、编写课程设计说明书(2天) 五、主要参考文献 《汽轮机课程设计参考资料》.冯慧雯 .水利电力出版社.1992 《汽轮机原理》(第一版).康松、杨建明编.中国电力出版社.2000.9 《汽轮机原理》(第一版).康松、申士一、庞立云、庄贺庆合编.水利电力出版社.1992.6 《300MW火力发电机组丛书——汽轮机设备及系统》(第一版).吴季兰主编.中国电力出版社.1998.8 指导教师下达时间 2014 年6月 15 日 指导教师签字:_______________ 审核意见 系(教研室)主任(签字)

330MW汽轮机主要热力系统

2. 热力系统 2.1 330MW汽轮机本体抽汽及疏水系统 2.1.1 抽汽系统的作用 汽轮机有七级非调节抽汽,一、二、三、四级抽汽分别供四台低压加热器,五级抽汽供汽至除氧器及辅助蒸汽用汽系统,六、七级抽汽供两台高压加热器及一台外置式蒸汽冷却器(六级抽汽经蒸汽冷却器至六号高加)。 抽汽系统具有以下作用: a)加热给水、凝结水以提高循环热效率。 b)提高给水、凝结水温度,降低给水和锅炉管壁之间金属的温度差,减少热冲击。 c)在除氧器内通过加热除氧,除去给水中的氧气和其它不凝结气体。 d)提供辅助蒸汽汽源。 2.1.2 抽汽系统介绍 一段抽汽是从低压缸第4级后引出,穿经凝汽器至#1低压加热器的抽汽管道; 二段抽汽是从低压缸第3级后引出,穿经凝汽器至#2低压加热器的抽汽管道; 三段抽汽是从低压缸第2级后引出,穿经凝汽器至#3低压加热器的抽汽管道; 四段抽汽是从中压缸排汽口引出,至#4低压加热器的抽汽管道; 二、三、四级抽汽管道各装设一个电动隔离阀和一个气动逆止阀。气动逆止阀布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 五段抽汽是从中压缸第9级后引出,至五级抽汽总管,然后再由总管上引出两路,分别接至除氧器和辅助蒸汽系统; 在五段抽汽至除氧器管道上装设一个电动隔离阀和两个串联的气动逆止阀。装设两个逆止阀是因为除氧器还接有其他汽源,在机组启动、低负荷运行、甩负荷或停机时,其它汽源的蒸汽有可能窜入五段抽汽管道,造成汽机超速的危险性较大。串联装设两个气动逆止阀可起到双重保护作用。

五段抽汽至辅助蒸汽联箱管道上装设一个电动隔离阀和一个气动逆止阀,气动逆止阀亦布置在电动隔离阀之后。电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 正常运行时,除氧器加热蒸汽来自于五段抽汽。辅助蒸汽系统来汽作为启动和备用加热蒸汽。 六段抽汽是从中压缸第5级后引出,先经#6高加外置式蒸汽冷却器(副#6高加)冷却后再至#6高压加热器;六级抽汽管道上各装设一个电动闸阀和两个气动逆止阀。 七段抽汽是从再热冷段引出一路至#7高压加热器的抽汽管道,装设一个电动闸阀和一个气动逆止阀,电动隔离阀作为防止汽机进水的一级保护,气动逆止阀作为汽机的超速保护并兼作防止汽机进水的二级保护。 电动隔离阀和气动逆止阀的布置位置一般尽量靠近汽机抽汽口,以减少在汽机甩负荷时阀前抽汽管道上贮存的蒸汽能量,有利于防止汽机超速。 本系统四台低加、两台高加及六号高加外置式蒸汽冷却器均为立式加热器。七台立式加热器从扩建端至固定端按编号从1号至7号再至蒸汽冷却器顺列布置。七台加热器均布置在A—B框架内,其水室中心线距B排柱中心线6.9米。 除氧器及给水箱布置在运转层12.00米层。 汽轮机各抽汽管道连接储有大量饱和水的各级加热器和除氧器。汽轮机一旦跳闸,其内部压力将衰减,各加热器和除氧器内饱和水将闪蒸,使蒸汽返回汽轮机;此外,五级抽汽管道支管上还接有备用汽源——辅助蒸汽,遇到工况变化或误操作,外来蒸汽将通过五级抽汽管道进入汽轮机;还有,各抽汽管道内滞留的蒸汽也可能因汽轮机内部压力降低返回汽轮机;各种返回汽轮机的蒸汽有可能造成汽轮机超速。 为防止上述蒸汽的返回,除一级抽汽外,其它各级抽汽管道上均串联安装有电动隔离阀和气动逆止阀。一旦汽机跳闸,气动逆止阀和电动隔离阀都关闭。 由于汽轮机上有许多抽汽口,而有可能有水的地方离各抽汽口又很近,各抽汽管道上还接有储水容器——高、低压加热器和除氧器,汽轮机负荷突然变化、给水或凝结水管束破裂以及其他设备故障,误操作等因素,可组合

小汽轮机说明书

TGQ06/7-1型锅炉给水泵汽轮机使用说明书 8QG22·SM·01-2003 北京电力设备总厂 2003.12

目录 一汽轮机概述4二汽轮机技术规范5三汽轮机本体结构7四汽轮机系统14第一节汽水系统14 第二节油系统16第三节调速控制系统19第四节保护装置21五汽轮机安装26六汽轮机运行及维护43第一节调速系统的静态试验43第二节汽轮机超速试验44第三节汽动泵组启动与停机45第四节汽轮机运行中的维护47

一.汽轮机概述 本汽轮机为300MW汽轮发电机组锅炉给水泵驱动汽轮机。每台机组配备两台50%容量的汽轮机驱动给水泵和一台50%容量的电动机驱动给水泵。正常运行时,两台汽动泵投入,一台电动泵作为起动或备用给水泵。 本汽轮机目前可与SULZER的HPTmK200-320-5S型也可与WEIR或KSB相应型号的锅炉给水泵配套。用叠片式挠性联轴器联接,为了满足运行的需要,汽轮机配有两种进汽汽源。正常运行时采用主机中压缸排汽即主机四段抽汽,低负荷或高负荷时采用主蒸汽,低压调节汽门和高压调节汽门由同一个油动机通过提板式配汽机构控制。在给水泵透平的起动过程中,高压蒸汽一直打开到接近40%主机额定负荷。15%主机额定负荷时开始打开低压主汽门前逆止阀,使低压汽进入;在15%~40%主机额定负荷范围内,高压汽与低压汽同时进入;在40%主机额定负荷以上时,全部进入低压汽;在60%主机额定负荷以下时可为单泵运行;在60%主机额定负荷以上时为双泵运行。 在低压主汽门前必须装有一只逆止阀,当高压进汽时防止高压汽串入主汽轮机。当主机四段抽汽压力升高到能顶开逆止阀后,低压汽进入汽轮机,配汽机构自动地逐渐将高压汽切断。该逆止阀应与主机抽汽门联动。 本汽轮机轴封及疏水系统与主机轴封系统、汽水系统相连,汽轮机布置在12.6米运行层,排汽由后汽缸的下缸排汽口通过排汽管道引入主凝汽器,排汽管道上装有一真空碟阀,以便在汽动给水泵停运时,切断本汽轮机与主凝汽器之间的联系,而不影响主凝汽器的真空。 本汽轮机采用数字电液控制系统(MEH),MEH接受4~20mA锅炉给水信号和来自油动机LVDT的位移反馈信号,MEH产生的控制信号作用于电液伺服阀,使电液伺服阀开启或关闭,进而控制油动机的行程,最终实现低压调速汽门和高压调速汽门开度的调节,以控制进入汽轮机的蒸汽量。 本汽轮机的润滑油系统采用两台同容量的交流油泵,一台运行,一台备用,供给汽轮机和主给水泵的润滑用油,另外还有一台直流油泵,在事故情况下供给汽轮机和主给水泵的润滑用油。 为了便于电站系统设计和现场运行,两台50%容量的汽动给水泵组设计成镜面对称布置。高压主汽门,低压主汽门,本体汽水管路和本体油管路分别布置在两台汽轮机的同一侧。 本汽轮机有较宽的连续运行转速范围,除能满足主给水泵提供锅炉的额定给水量外,还留有充分的调节裕度,因而能广泛地为各种运行方式提供最大限度的可能性。 二.汽轮机技术规范 1.汽轮机型号,名称和型式 (1)型号:TGQ06/7-1 (2)名称:300MW汽轮发电机组锅炉给水泵驱动汽轮机 (3)型式:单缸,双汽源,新汽内切换,变转速,变功率,冲动,凝汽式,下排汽2.最大连续功率:6MW

汽轮机安装施工方案

汽轮机工艺安装施工方案 姓名: 班级: 指导老师:

目录 一、编制说明..................................................................... 错误!未定义书签。 二、工程概况..................................................................... 错误!未定义书签。 三、汽轮机的基本工作原理 (9) 四、汽轮机安装施工工序 (10) 五、施工进度计划 (29) 六、主要劳动力和机具计划 (29) 七、质量保障措施 (30) 八、安全措施 (30) 九、质量管理目标 (32)

一、编制说明: 本施工方案主要针对汽轮机组的安装而编制,编制依据如下: 1.制造厂提供的本体图纸及说明书; 2.<电力建设施工及验收技术规范—汽轮机组篇>(DL5011-92)3.<机械设备安装工程施工及验收通用规范> (CB 50231-98)。 二、工程概况: 1.工程简介: 建设单位青岛金海热电有限公司位于山东省青岛市城阳区,为区内唯一一家热电联产企业。锅炉制造厂家为无锡华光锅炉股份有限公司,一期工程的第一阶段主要由两台UG—75/5.3—M26型循环硫化床锅炉及C12—4.90/0.98-13型抽汽式汽轮机组构成. 2.主要工程量:

3.汽轮机结构、性能及主要参数: C12—4.90/0.981-13型汽轮机为抽汽式,功率12MW,与QF—J6—2型发电机组成汽轮机发电机组。 1).结构及性能: 汽轮机转子由一级复速级和十三级压力级组成,除末两级叶片为扭叶片外,其余压力级叶片均为新型直叶片。其中第四级压力级采用可调通流面积的旋转隔板结构。 转向导叶环在顶部和底部与汽缸之间采用“工”形键固定,在拆导叶环体时必须先拆去“工”形键后方可起吊。 装于前汽缸上端蒸气室内的配汽机构是提板式调节汽阀,借助机械杠杆与调速器油动机相连,调节汽阀的结构为群阀提板式,由六只汽门组成。在汽轮机前轴承座的前端装有测速装置,在座内有油泵组,危急遮断装置,轴向位移发送器,推力轴承前轴承及调节系统的一些有关部套。前轴承座与前汽缸用“猫爪”相连,在横向和垂直方向均有定位的膨胀滑键,以保证轴承座在膨胀时中心不致变动。在前座架上装有热胀传感器,以反映汽轮机静子部分的热膨胀情况。 汽轮机通过一副刚性联轴器与发电机相连,转子盘车装置装于后轴承盖上,由电动机驱动,通过涡轮蜗杆副及齿轮减速达到所需要的盘车速度。当转子的转速高于盘车速度时,盘车装置能自动退出工作位置。在无电源

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

相关文档
相关文档 最新文档