文档库 最新最全的文档下载
当前位置:文档库 › 基于DEM的数字地形分析

基于DEM的数字地形分析

基于DEM的数字地形分析
基于DEM的数字地形分析

GIS的核心之一:数字地形分析

第9章 DEM 与数字地形分析 数字地面模型于1958年提出,特别是基于DEM 的GIS 空间分析方法的出现,使传统的地形分析方法产生了革命性的变化,数字地形分析方法逐步形成和完善。目前,基于DEM 的数字地形分析已经成为GIS 空间分析中最具特色的部分,在测绘、遥感及资源调查、环境保护、城市规划、灾害防治及地学研究各方面发挥越来越重要的作用。本章首先介绍了数字高程模型的基本概念和建立步骤,然后从基本坡面因子、特征地形因子、水文因子和可视域等方面简述数字地形分析的主要内容和研究方法。 9.1 基本概念 9.1.1 数字高程模型 数字高程模型(Digital Elevation Model ,简称DEM )是通过有限的地形高程数据实现对地形曲面的数字化模拟(即地形表面形态的数字化表示),它是对二维地理空间上具有连续变化特征地理现象的模型化表达和过程模拟。由于高程数据常常采用绝对高程(即从大地水准面起算的高度),DEM 也常常称为DTM (Digital Terrain Model )。“Terrain”一词的含义比较广泛,不同专业背景对“Terrain”的理解也不一样,因此DTM 趋向于表达比DEM 更为广泛的内容。 从研究对象与应用范畴角度出发,DEM 可以归纳为狭义和广义两种定义。从狭义角度定义,DEM 是区域表面海拔高程的数字化表达。这种定义将描述的范畴集中地限制在“地表”、“海拔高程”及“数字化表达”内,观念较为明确。从广义角度定义,DEM 是地理空间中地理对象表面海拔高度的数字化表达。这是随着DEM 的应用不断向海底、地下岩层以及某些不可见的地理现象(如空中的等气压面等)延伸,而提出的更广义的概念。该定义将描述对象不再限定在“地表面”,因而具有更大的包容性,有海底DEM 、下伏岩层DEM 、大气等压面DEM 等。 数学意义上的数字高程模型是定义在二维空间上的连续函数),(y x f H =。由于连续函数的无限性,DEM 通常是将有限的采样点用某种规则连接成一系列的曲面或平面片来逼近原始曲面,因此DEM 的数学定义为区域D 的采样点或内插点Pj 按某种规则ζ连接成的面片M 的集合: } ,,1,,1,),,()({m i n j D H y x P P M DEM j j j j j i ==∈==ζ (9.1) DEM 按照其结构,可分为规则格网DEM 、TIN 、基于点的DEM 和基于等高线的DEM 等。由于规则格网结构简单,算法设计明了,在实际运用中被广泛采用。本书中的DEM 仅指规则格网DEM 。 9.1.2 数字地形分析 数字地形分析(Digital Terrain Analysis, DTA ),是指在数字高程模型上进行地形属性计算和特征提取的数字信息处理技术。DTA 技术是各种与地形因素相关空间模拟技术的基础。 地形属性根据地形要素的关系特征和计算特征,可以归纳为地形曲面参数(parameters )、地形形态特征(features )、地形统计特征(statistics )和复合地形属性(compound attributes )。

arcgis生成DEM+利用dem做地形分析

在arcgis中中,进行如下操作: 1、创建TIN 打开3d analyst模块,利用creat /modify TIN---creat TIN from features命令(height source 选择高程字段),先将等高线转为TIN; 2、从TIN中创建栅格表面 打开3d analyst模块,利用convert---TIN to raster命令(attribute选择elevation,cell size自定义,若为大比例尺数据可以选择5或10,可以参考相关研究文献),生成栅格表面,即DEM; (备注:矢量化的等高线必须比研究区的范围大些,创建TIN并生成Raster后,再用研究区边界来裁切,这样的DEM数据才能满足精度要求) 3、地形因子分析 打开3d analyst模块,利用surface analysis---slope命令,生成坡度数据; 打开3d analyst模块,利用surface analysis---aspect命令,生成坡向数据; 打spatial analyst模块,利用neighborhood tatistics命令进行邻域分析,先将statistic type设为最大值,输出栅格为A,再将statistic type设为最小值,输出栅格为B,利用raster calculator 生成地形起伏度数据,公式为[A]-[B]; 以上的地形数据,可以根据需要进行reclassfy重分类处理,分类标准参考相关文献,就可以获取所需的地形因子统计数据。 制图时,用view---layout view,添加比例尺、指北针、图例,就可以整饰出图

DEM地形信息提取对比研究_以坡度为例

第33卷第5期 2008年9月 测绘科学 Science of Surveying and M app ing Vol .33No .5 Sep. 作者简介:姜栋(19792),女,山东青岛人,在读硕士,地图制图与地理信息系统专业,研究方向:GI S 与遥感应用。E 2mail:dandili on1017@1631com 收稿日期:2007204228 基金项目:北京市教委科技重点项目(编号:05531830);北京自然科学基金资助项目(基金号:6032003);北京市属市管高等学校人才强教计划资助项目,PHR (I HLB ) D E M 地形信息提取对比研究 ———以坡度为例 姜 栋① ,赵文吉① ,朱红春② ,张有全 ① (①首都师范大学三维信息获取与应用教育部共建实验室,北京 100037;②山东科技大学地科学院,山东青岛 266510) 【摘 要】由于DE M 数据本身多尺度因素,加之地形、地貌特征具有宏观性与区域分异性的特点,直接的信息提 取往往很难达到预期的目的。利用DE M 制作坡度图高效、省力,但其精度有很大的不确定性,同时DE M 制作过程中的误差传播、转移对坡度信息的影响缺少系统的判断依据。选取位于陕北黄土高原上的两个不同地区作为实验样区,在不同DE M 生产的基础上,以高精度的1∶10000DE M 为准值,通过对1∶5万和1∶1万DE M 提取定量地形要素的叠合、比较与统计分析,探讨具有不同地貌类型的区域1∶5万DE M 提取地形信息的精度及其统计意义上的数量百分比关系。【关键词】数字高程模型;坡度;精度【中图分类号】P282 【文献标识码】A 【文章编号】1009-2307(2008)05-0177-03DO I:1013771/j 1issn 1100922307120081051063 1 引言 近年来,DE M 数据生产和分析方法方面取得了巨大进步,但是从不同地形复杂度、不同空间分辨率及不同比例尺的DE M 提取地形信息,特别是地面坡度的精度研究几乎与坡度及DE M 在各领域的广泛应用严重脱节。1∶5万地形图因自身的制图综合和DE M 生产过程中产生的误差,使得基于1∶5万地形图的DE M 对实际地面的描述和模拟产生了极大的误差,利用此DE M 提取的地面坡度势必会使栅格单元内的实际地形复杂度及坡度组成均一化,由此提取的坡度无法真实反映实地地形地貌。研究DE M 提取地面坡度的精度,探求不同空间尺度坡度提取结果的精度对比,并能够得到由低分辨率到高分辨率提取结果的转换关系,实现误差纠正,为广大用户提供基于DE M 提取地面坡度的应用适宜性与结果可信性的基本判别标准、换算标准,十分必要,且相当紧迫。 前人在DE M 的建立、地形信息的提取及地形信息精度方面的研究取得了显著成果。111 地形信息提取及提取精度分析研究方面 一些地形因子可以基于DE M 求取。前人从不同角度进行地形因子方面的研究表明:地形因子的求取可以有多种算法、方法。 坡度和坡向是进行地形特征分析和可视化的基本因子,也是研究集水单元的重要因子。结合其他因子,坡度和坡向可以在各个领域得到广泛应用。Fl orinsky (1998)不仅对坡度、坡向的算法精度作了系统分析,而且进行了平面曲率和剖面曲率方面的分析。提取坡度、坡向的精度依赖于DE M 数据精度、计算方法和DE M 分辨率及地形复杂度。前人研究成果表明:高精度的DE M 能提取精度相对高的坡 度、坡向数据。坡度、坡向数据精度随DE M 分辨率的增大而降低;坡度、坡向与DE M 高程值的标准偏差和平均高程之间呈线性相关。在其他条件相同情况下,坡度的减小在地形复杂地区较单一地形快。汤国安基于不同比例尺的DE M 地形因子精度方面研究表明,1∶50000比例尺DE M 所提取的坡度、地面曲率及沟壑密度均比1∶10000DE M 小,通过对不同比例尺DE M 提取地面坡度精度的研究还建立了 黄土丘陵区1∶50000与1:10000DE M 的坡度转换对比[1,13] 。112 D E M 建立与D E M 精度分析研究方面 DE M 的建立,一般利用同比例尺地形图数字化获取高程与平面数据,然后选择合适的内插方法构建TI N ,再内插 TI N 得到不同栅格分辨率的规则格网DE M [2] 。前人在DE M 建立方面的研究表明:数字化获取的数据与野外实测数据有较大的误差,地形图数字化过程中产生的误差影响DE M 的精度,不同的数据模型、不同的内插算法、不同的空间采样方法及不同的栅格分辨率均对DE M 及其应用精度有不同程度的影响[2]。Suhut (1972)很有深度地揭示了在DE M 建立过程中不同内插技术和数字化过程中可能产生的误差。王光霞等人近来在DE M 精度评估方法的研究与实践方面做出了创新性的成果[3,4]。 2 研究区概况 本次研究在实验样区的选择上,遵循科学性、典型性、数据的可获取性和完整性以及实用性的原则,选取位于陕北的黄土高原上的两个不同区域作为实验样区,它们分别属于典型的黄土丘陵沟壑区和黄土丘陵地形区。 样区一位于陕西省无定河中游左岸,属于典型的黄土丘陵沟壑区代表流域。样区内土壤侵蚀极为剧烈,土地类型复杂,自分水岭至沟底可分为梁峁坡、沟谷坡和沟谷底三部分。梁峁坡坡面较完整,顶部较平坦,坡度多在5°以下,坡长10m 220m;梁峁坡上部,坡度多在20°以下,坡长20m 230m;梁峁坡中下部地形比较复杂,坡度在20°230°之间,坡长15m 220m 。 样区二位于咸阳地区西北角,泾河上游右岸,地形属黄土高原沟壑区,是陕北高原的一部分。样区自然特点是:塬高、沟深、坡陡,水土流失以塬面周边的重力侵蚀为主。按其地形分为:塬面、沟坡、沟谷、河谷(川道)四种类型。其中塬面宽阔平坦,一般在5°以下,是农业生产基地;沟坡多为旧式台田,部分为耕地或牧草地,坡度为10°230°;河谷均呈“V ”字型,坡度为40°270°,陡峭破碎,侵蚀剧烈;河谷分布在泾、黑、南三河沿岸,坡度平缓,水

DEM分析及景观分析

实现平台:ArcGIS 9.3和Fragstats3.3,实验源数据为ASCII数据:srtm3和水流方向数据FlowDir,在ArcMap中将ASCII数据转换为栅格数据,保存为DEM 和FlowDir: 1.基本地形参数 坡度Sl ope 实现流程: 1)在Arc Map 中加载DEM数据; 2)以DEM为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】→ 【Surface】→【Slope】工具,在窗口中设置相应的输出路径,并将输出 单位为Degree,其它为默认值,得到Slope图层。 坡向Aspect 实现流程: 1)在Arc Map 中加载DEM数据; 2)以DEM为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】 →【Surface】→【Aspect】工具,设置相应的输出路径,得到Aspect 图层。 坡度变率SOS 1)在ArcMap中,加载已经生成的Slope数据; 2)以Slope为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】 →【Surface】→【Slope】工具,在窗口中设置相应的输出路径,并将 输出单位为Degree,其它为默认值,得到SOS图层。 坡向变率SOA(纠正结果) 1)在ArcGIS中加载Aspect数据; 2)以Aspect作为输入数据,执行【ArcToolBox】→【Spatial Analyst Tools】→【Surface】→【Slope】,得到SOA;

曲率Curvature 全曲率Curvature All 平面曲率Plan Curvature 平面曲率Plan Curvature 实现流程: 1)在ArcGIS中加载测试数据DEM; 2)以DEM作为输入数据,打开【Arc Tool Box】→【Spatial Analyst Tools】→【Surface】→【Curvature】; 3)在曲率对话框中设置相应的曲率、剖面曲率和平面曲率的输出路径及名称,其余为默认值。 坡长Sl opeLength 上游坡长UpstreamSlopeLength 实现流程: 1)在Arc Map 中加载FlowDir数据; 2)以执行FlowDir作为输入数据,执行【Arc Tool Box】→【Spatial Analyst Tools】→【Hydrology】→【Flow Length】; 3)对话框Direction of Measurement选项选择Upstream 来求上游波长, 设置相应的输出路径,保存为Upstr_Len。 下游坡长DownstreamSlopeLength 实现流程: 1)在Arc Map 中加载FlowDir数据; 2)以执行FlowDir作为输入数据,执行【Arc Tool Box】→【Spatial Analyst Tools】→【Hydrology】→【Flow Length】; 3)对话框Direction of Measurement选项选择Downstream 来求下游坡 长,设置相应的输出路径。

基于DEM的皖西南地区地貌类型分析

基于DEM的皖西南地区地貌类型分析 摘要:地貌作为地理信息的重要贡献组成要素,它决定着自然地理单元的形成和地面物质与能量的再分配。该研究利用GIS图像处理技术方法,通过对皖西南地区数字高程模型数据进行处理,提取了研究区有关坡度、坡向、地形起伏度等的地貌特征要素,并进行定位表达与特征统计分析,结果获得了对本区地貌特征的定位与定量化的总体认识,为研究区的农业规划、水土流失、土壤侵蚀、地质灾害等研究提供了新的空间信息基础平台。 关键词:皖西南地区(Southwest Anhui);地貌形态;地理信息系统(GIS); 数字高程模型(DEM) 引言 安庆市作为皖西南中心城市,安徽省“皖江开发”的重点城市之一,长江沿岸著名的港口城市,将作为研究皖西南地貌类型的重点,本篇论文就是基于安庆市地貌类型研究皖西南地貌类型。地貌作为地理信息的重要贡献组成要素,通过海拔、坡度、坡向、起伏度等特征组合构成形态与分布多样的地表景观,并对区域生态环境与资源的地域优势种类分布、利用方式和利用程度等具有主导作用]1[。而地貌学的发展,也逐渐从以往的定性描述转入数理定量分析研究阶段]2[。但按传统研究方法,由于地貌数据庞大、计算繁琐使定量地貌研究发展缓慢,而今随着计算机与空间技术的迅猛发展,特别是具有强大的空间数据获取与管理、分析、计算等功能的3S技术的应用,为地貌定量研究提供了有力的技术支持。 GIS数字地形分析是以数字高程模型为主的产生式分析,数字高程模型(简称DEM)表示区域D上的三维向量有限序列,用函数的形式描述为: Vi=(Xi,Yi,Ei)(i=1,2,…,n) 式中,Xi、Yi是平面坐标;Ei是(Xi,Yi)对应点的高程。DEM是GIS进行地形分析的基础数据。利用DEM数据可快速地进行各种地形因子的提取,主要包括坡度、坡向、粗糙度等的计算和通视分析、地形特征提取、水系特征提取、水文分析、道路分析等]3[。它记录了精确的空间三维定位信息.利用DEM为基本的数据依托进行地形要素的提取与分析,无疑是获取所需地表信息的有效手段。

DEM分析与可视化

一.软件平台ArcGIS或MapGIS(软件测试部分): (1)数据处理:拓扑构建、误差校正、地图投影 (2)数据管理:属性表创建、属性表关联、图形与属性数据挂接、属性表导出 (3)空间分析:查询检索、叠加分析、缓冲区分析 (4)数字高程模型:GRID及TIN模型创建,DEM分析(包括坡度、坡向、粗糙度、可视性、洪水淹没、流域地貌等分析)(5)数据转换:ArcGIS、MapGIS、MapInfo、AutoCAD等数据间格式转换 实验四基于ArcGIS的DEM分析与可视化 一、实验目的 1、掌握利用ArcGIS三维分析模块进行创建表面的基本方法 2、掌握地形特征信息的提取方法,能利用ArcGIS软件基于DEM对山脊线和山谷线的提取,显示粗糙度 3、掌握三维场景中表面及矢量要素的立体显示其原理与方法,熟练掌握ArcGIS软件表面及矢量要素杂场景中的三维显示及其叠加显示 4、熟练掌握ArcScene三维场景中要素、表面的多种可视化方法。 二、主要实验器材(软硬件、实验数据等) 计算机硬件:性能较高的PC;计算机软件:ArcGIS9.3软件;实验数据:《ArcGIS地理信息系统空间分析实验教程》随书光盘或其他中 三、实验内容与要求 1、地形特征信息提取 实验数据:dem 要求:利用所给区域DEM数据,提取该区域山脊线、山谷线栅格数据层。 具体操作: 1.打开arcmap,添加dem数据,点击DEM数据,打开Arctoolbox,使用Spatial Analysis tools\Surface Analysis\Aspect工具,提取DEM的坡向数据层,命名为A。 2.点击数据层A,使用Spatial Analysis tools\Surface Analysis\Slope工具,提取数据层A的坡度数据,命名为SOA1。(地面坡向变率,是指在地表的坡向提取基础之上,进行对坡向变化率值的二次提取,亦即坡向之坡度(Slope of Aspect, SOA)。它可以很好的反映等高线弯曲程度。) 3.求取原始DEM数据层的最大高程值,记为H;使用空间分析工具集中的栅格计算器(Raster Calculator),公式为(H—DEM),得到与原来地形相反的数据层,即反地形DEM 数据。记为“-DEM”。 4.基于“-DEM”数据,使用Spatial Analysis tools\Surface Analysis\Aspect工具,提取-DEM的坡向数据层,命名为-A。。 5. 点击数据层-A,使用Spatial Analysis tools\Surface Analysis\Slope工具,提取反地形的坡向变率,记为SOA2。 6.使用空间分析工具集中的栅格计算器(Raster Calculator),公式为SOA=(([SOA1]+[SOA2])-Abs([SOA1]+[SOA2]))/2,这样就可以求出没有误差的DEM的坡向变

相关文档
相关文档 最新文档