文档库 最新最全的文档下载
当前位置:文档库 › 近代物理学常识

近代物理学常识

近代物理学常识

恩施高中2017级高二物理一周一测(17)

近代物理常识

命题人:陈恩谱 审 题 人:刘振华 满 分:120分 考试时间:40分钟

一、光电效应

1、概念:在光(电磁波)的照射下,从物体表面逸出的 的现象称为光电效应,这种电子被称之为 。使电子脱离某种金属所做功的 ,叫做这种金属的逸出功,符号为W 0。

2、规律: 提出的“光子说”解释了光电效应的基本规律,光子的能量与频率的关系为 。 ①截止频率:当入射光子的能量 逸出功时,才能发生光电效应,即:0____W hv ,也就是入射光子的频率必须满足v ≥ ,取等号时的______0=ν即为该金属的截止频率(极限频率);

②光电子的最大初动能:_________km =E ,由此可知,对同一重金属,光电子的最大初动能随着入射光的频率增加而 ,随着入射光的强度的增加而 ,光电子从金属表面逸出时的动能应分布在 范围内。

3、实验:装置如右图,其中 为阴极,光照条件下发出光电子; 为阳极,吸收光电子,进而在电路中形成 ,即电流表的示数。

①当A 、K 未加电压时,电流表 示数;

②当加上如图所示 向电压时,随着电压的增大,光电流趋于一个饱和值,即 ;当电压进一步增大时,光电流 。

③当加上相反方向的电压( 向电压)时,光电流 ;当反向电压达到某一个值时,光电流减小为0,这个反向电压U c 叫做 ,即使最有可能到达阳极的光电子刚好不能到达阳极的反向电压,则关于U c 的动能定理方程为 。

【练习1】某同学用同一装置在甲、乙、丙光三种光的照射下得到了三条光电流与电压之间的关系曲线,如右图所示。则可判断出( )

A .甲光的频率大于乙光的频率

B .乙光的波长大于丙光的波长

C .乙光对应的截止频率大于丙光的截止频率

D .甲光对应的光电子最大初动能大于丙光的光电子最大初动能 二、原子结构

1、物理学史: 通过对 的研究,发现了电子,从而认识到原子是有内部结构的; 基于 实验中出现的少数α粒子发生 散射,提出了原子的核式结构模型; 在1913年把物理量取值分立(即量子化)的观念应用到原子系统,提出了自己的原子模型,很好的解释了氢原子的 。

2、波尔理论:

①原子的能量是量子化的,这些量子化的能量值叫做 ;原子能量最低的状态叫做 ,其他较高

的能量状态叫做 ;

②原子在不同能量状态之间可以发生 ,当原子从高能级E m 向低能级E n 跃迁时 光子,原子从低能级E n 向高能级E m 跃迁时 光子,辐射或吸收的光子频率必须满足 。 ③原子对电子能量的吸收:动能 两个能级之差的电子能量能被吸收,吸收的数值是 ,剩余的能量电子带走。 ④原子电离:电离态——电子脱离原子时速度也为零的状态,此时“原子—电子”系统能量值为E ∞= ;要使处于量子数为n 的原子电离,需要的能量至少是_____=-=?∞n E E E 。

【练习2】如图所示为氢原子的能级示意图。现用能量介于10eV —12.9eV 范围内的光子去照射一群处于基态的氢原子,则下列说法正确的是( ) A .照射光中只有一种频率的光子被吸收

B .照射光中有三种频率的光子被吸收

C .氢原子发射出三种不同频率的光

D .氢原子发射出六种不同频率的光

【练习3】用大量具有一定能量的电子轰击大量处于基态的氢原子,观测到了一定数目的光谱线。调高电子的能量再次进行观测,发现光谱线的数目比原来增加了5条。用△n 表示两次观测中最高激发态的量子数n 之差,E 表示调高后电子的能量。根据氢原子的能级图可以判断,△n 和E 的可能值为( ) A .△n =1,13.22 eV

D .△n =2,12.75 eV <

E <13.06 ev

三、原子核

1、原子核的符号:X A Z 中Z 是原子核的 数,它等于原子核内的 数;A 是原子核的 数,它等于原子核内的 ;常见粒子的符号:质子 ,中子 ,电子(β粒子) ,α粒子 ,氘核 ,氚核 。

2、物理学史:最早发现天然发射现象的是法国物理学家 ,居里夫妇随后发现了放射性元素钋Po 、

镭Ra ; 用α粒子轰击N 147原子核,发现了质子,核反应方程为 ; 用α粒子轰击Be 94原子核,发现了中子,核反应方程为 ;小居里夫妇用α粒子轰击Al

27

13原子核,发现了人工放射性同位素P 3015,核反应方程为 。

3、三种天然放射线的性质

α射线

β射线

γ射线 产生 α衰变:2n 1

0+2p 1

1→He 4

2 β衰变: .

实质 高速He 4

2粒子流

电荷 负电 速度 光速 电离作用 较强 贯穿能力

4、核反应:四大类型: 、 、重核裂变、 ;核反应遵循的基本规律是: 守恒, 守恒。

衰变规律:α衰变:He Y ____X 4

2A

Z +→,β衰变:e Y ____X 0

1A

Z -+→,两者均发生时,只有 衰变才引起

质量数的变化,但两者均会引起电荷数的变化。 衰变的快慢用 来描述,它是一个微观概率概念、宏观统计概念;某种放射性元素的质量为m 0,经过

时间t 后,该元素剩下的质量为m = ,已反应的质量为 ;元素的半衰期只与 有关,而与核外甚至整个原子分子状态 关,,因此元素的化合状态、温度、压强的变化 引起半衰期变化。 5、核能:爱因斯坦质能方程 指出,物质具有的能量和质量具有简单的正比关系;核反应过程中辐

射出(或吸收)能量时,就一定同时辐射出(或增加)了质量,即核反应中有 . △m ,辐射出(吸收)能

量由公式 算出;

核能计算中的一些单位之间的关系:J __________eV 1=,1MeV= eV ,1GeV= eV ,1u 对应 MeV 。具体计算核能时,若△m 以kg 为单位,如△m = x kg

,则△E

=

△m · ,若△m 以u 为单位,如△m = x u ,

则△E = 。

【练习4】天然放射性元素T h 23290(钍)经过一系列核衰变之后,变成Pb 208

82(铅)。下列论断中正确的是( )

A .铅核比钍核少23个中子

B .铅核比钍核少24个质子

C .衰变过程中共有4次α衰变和8次β衰变

D .衰变过程中共有6次α衰变和4次β衰变

【练习5】两个氘核聚变产生一个中子和氦核(氦的同位素).已知氘核的质量m D =2.013 60 u ,氦核的质量m He =3.015 0 u ,中子的质量m n

=1.008 7 u. 该聚变方程为 ,该过程释放的核能为 MeV

= J 。

大学物理学史试题

1、简述墨家在光学上的研究成就。 墨子是第一个进行光学实验,并对几何光学进行系统研究的科学家。墨子细致地观察了运动物体影像的变化规律,提出了“景不徙”的命题。墨子指出,光源如果不是点光源,由于从各点发射的光线产生重复照射,物体就会产生本影和副影;如果光源是点光源,则只有本影出现。墨子明确指出,光是直线传播的,物体通过小孔所形成的像是倒像。墨经》中论述了光的反射,包括平面镜、凹面镜、凸面镜的反射情况。 2、阿基米德对物理学的贡献有哪些? 力学: 1.系统总结并严格证明了杠杆定律,为静力学奠定了基础。此外,阿基米德利用这一原理设计制造了许多机械。 2、他在研究浮体的过程中发现了浮力定律,也就是有名的阿基米德定律。 天文学:1、他发明了用水利推动的星球仪,并用它模拟太阳、行星和月亮的运行及表演日食和月食现象; 2、他认为地球是圆球状的,并围绕着太阳旋转,这一观点比哥白尼的“日心地动 说”要早一千八百年。限于当时的条件,他并没有就这个问题做深入系统的研究。 3、伽利略的科学研究方法有何特点? 1.把实验与数学结合起来,既注意逻辑推理,又依靠实验检验,构成了一套完整的科学研究方法。(2)有意识地在实验中抛开一些次要因素,创造理想化的物理条件。既要力求使实验条件尽可能符合数学要求,以便获得超越这一实验本身的特殊条件的认识,又要设法改变实验测量的条件,使之易于测量。(3)用实验去验证理论。伽利略认为科学实验是为了证明理论概念(或观察规律)而去做的,不应该是盲目的、无计划的,而理论(数学)又必须服从实验判决。(4)把实验与理论联系起来。 4、说明牛顿三定律基本思想的历史渊源。(第三章) 牛顿第一定律的发现及总结 300多年前,伽利略对类似的实验进行了分析,认识到:运动物体受到的阻力越小,他的运动速度减小得就越慢,他运动的时间就越长。他还进一步通过进一步推理得出,在理想情况下,如果水平表面绝对光滑,物体受到的阻力为零,它的速度讲不会减慢,这是将以恒定不变的速度永远运动下去。 伽利略曾经专研过这个问题,牛顿曾经说过:“我是站在巨人的肩膀上才成功的。”这句话就是针对伽利略的。所以牛顿概括了前人的研究结果,总结出了著名的牛顿第一定律。 5、说明能量守恒原理建立的科学渊源。(第四章) 一、定律诞生的前提条件: 1、认识热的本质,伦福德和戴维的实验为热的运动说提供了有力的支持,成了建立能量转化与守恒定律的前奏。19世纪40年代以前,自然科学的发展为能量转化与守恒定律的建立奠定了基础: 2、力学方面,早已发现了机械运动在一定条件下的不灭性(动量守恒、“活力”守恒) 3、发现了各种“自然力”相互转化的现象 4、永动机不可能实现的历史教训,从反面提供了能量守恒的例证; 5、建立了能量的初步概念; 6、在一些特殊情况下接触到能量守恒与转化定律,如楞次定律、赫斯定律 7、蒸汽机的发明与不断改进。 二、迈尔的贡献 1842年发表了题为《热的力学的几点说明》的论文,叙述了普遍的“力”(即能)的转化与守恒的概念,所以一般都承认迈尔是建立热力学第一定律(即能量守恒定律)的第一人。 三、焦耳对热功当量的测定 焦耳对电和磁的研究很感兴趣。他通过测定热功当量为建立能量守恒定律提供了实验依据。焦耳通过实验得出结论:热功当量是一个普适常量,与作功的方式无关。他证实了自然界的能量是等量转换的,是不会被消灭的,哪里消耗了机械能或电磁能,

大学物理学知识总结

大学物理学知识总结 第一篇 力学基础 质点运动学 一、描述物体运动的三个必要条件 (1)参考系(坐标系):由于自然界物体的运动是绝对的,只能在相对的意义上讨论运动,因此,需要引入参考系,为定量描述物体的运动又必须在参考系上建立坐标系。 (2)物理模型:真实的物理世界是非常复杂的,在具体处理时必须分析各种因素对所涉及问题的影响,忽略次要因素,突出主要因素,提出理想化模型,质点和刚体是我们在物理学中遇到的最初的两个模型,以后我们还会遇到许多其他理想化模型。 质点适用的范围: 1.物体自身的线度l 远远小于物体运动的空间范围r 2.物体作平动 如果一个物体在运动时,上述两个条件一个也不满足,我们可以把这个物体看成是由许多个都能满足第一个条件的质点所组成,这就是所谓质点系的模型。 如果在所讨论的问题中,物体的形状及其在空间的方位取向是不能忽略的,而物体的细小形变是可以忽略不计的,则须引入刚体模型,刚体是各质元之间无相对位移的质点系。 (3)初始条件:指开始计时时刻物体的位置和速度,(或角位置、角速度)即运动物体的初始状态。在建立了物体的运动方程之后,若要想预知未来某个时刻物体的位置及其运动速度,还必须知道在某个已知时刻物体的运动状态,即初台条件。 二、描述质点运动和运动变化的物理量 (1)位置矢量:由坐标原点引向质点所在处的有向线段,通常用r 表示,简称位矢或矢径。 在直角坐标系中 zk yi xi r ++= 在自然坐标系中 )(s r r = 在平面极坐标系中 rr r = (2)位移:由超始位置指向终止位置的有向线段,就是位矢的增量,即 1 2r r r -=?

位移是矢量,只与始、末位置有关,与质点运动的轨迹及质点在其间往返的次数无关。 路程是质点在空间运动所经历的轨迹的长度,恒为正,用符号s ?表示。路程的大小与质点运动的轨迹开关有关,与质点在其往返的次数有关,故在一般情况下: s r ?≠? 但是在0→?t 时,有 ds dr = (3)速度v 与速率v : 平均速度 t r v ??= 平均速率 t s v ??= 平均速度的大小(平均速率) t s t r v ??≠ ??= 质点在t 时刻的瞬时速度 dt dr v = 质点在t 时刻的速度 dt ds v = 则 v dt ds dt dr v === 在直角坐标系中 k v j v i v k dt dz j dt dy i dt dx v z y x ++=++= 式中dt dz v dt dy v dt dx v z y x = == ,, ,分别称为速度在x 轴,y 轴,z 轴的分量。

物理学史

复习资料---物理学史 1.伽利略的理想斜面试验推翻了亚里士多德的错误结论(力是维持物体运动的原因),得出了力是物体运动变化的原因的正确结论。 2.惠更斯研究单摆振动现象发现单摆周期公式,伽利略首次发现了单摆的等时性。 3.焦耳研究了电流的热效应,得出了焦耳定律:Q=I2 Rt 4.开尔文创立了热力学温标,把—273℃作为零度温标,也叫绝对温标。百分温标(摄氏温标)和热力学温标的分度间隔是相等的。 5.库伦利用扭秤实验精确研究发现库仑定律:静电荷之间的相互作用力与电量成正比,与距离平方成反比,静电力常量:9.0×109 6.麦克斯韦在理论上预言了电磁波的实现,同时发现了电磁波在真空中传播速度跟光速相等。牛顿(英):牛顿三定律和万有引力定律,光的色散,光的微粒说 7.卡文迪许(英):利用卡文迪许扭秤首测万有引力恒量6.67×10-11 8.库仑(法):库仑定律,利用库仑扭秤测定静电力常量 9.奥斯特(丹麦):发现电流周围存在磁场 10.安培(法):磁体的分子电流假说,电流间的相互作用 11.法拉第(英):研究电磁感应(磁生电)现象,法拉第电磁感应定律,法拉第首先引入了虚拟的电场线,后发现了电磁感应现象,实现了“转磁为电”的理想 12.楞次(俄):楞次定律 13.麦克斯韦(英):电磁场理论,光的电磁说 14.赫兹(德):发现电磁波 15.惠更斯(荷兰):光的波动说 16.托马斯·扬(英):光的双缝干涉实验 17.爱因斯坦(德、美):用光子说解释光电效应现象,质能方程 18.汤姆生(英):发现电子 19.卢瑟福(英):α粒子散射实验,原子的核式结构模型,发现质子 20.玻尔(丹麦):关于原子模型的三个假设,氢光谱理论 21.贝克勒尔(法):发现天然放射现象 22.皮埃尔·居里(法)和玛丽·居里(法):发现放射性元素钋、镭 23.查德威克(英):发现中子 24.约里奥·居里(法)和伊丽芙·居里(法):发现人工放射性同位素

初中物理学知识点

注意:当导体平行于磁感线运动时或当导体放入磁场中不运动时,都不会产生感应电流。 ⑵感应电流的方向与磁场的方向、导体切割磁感线运动的方向有关。 ⑶发电机是利用电磁感应原理制成的,它将机械能大部分转化为电能,少部分转化为内能。交流发电机的线圈在磁场中转动时,所产生感应电流的方向随时间发生周期性变化,这种电流叫做交流电。我国使用的交流电的频率为50Hz,电流方向每秒钟改变100次。 ⑷电能的传输过程:(变压器也是利用电磁感应来改变交流电电压的)发电厂→升压变电站→高压输电线(可减少输电时电能的损失)→降压变电站→用电户。 8、电磁波 ⑴电磁波是在空间传播的周期性变化的电磁场。麦克斯韦建立理论,赫兹实验证明存在。 ⑵电磁波的特性:能在真空中传播,任何频率的波速均为c=3.0×108 m/s。金属容器能屏蔽电磁波。 ⑶电磁波谱。若按波长从小到大依次排列(即频率由高到低)有:γ射线、X射线、紫外线、可见光(紫、靛、蓝、绿、黄、橙、红)、红外线、微波、无线电波。 ⑷不同频率电磁波有不同的应用(X光透视机、紫外线消毒柜、微波炉、收音机);防止电磁污染。 9、信息 ⑴信息是各种事物发出的有意义的消息。人类特有的三种信息是:语言、符号和图像。⑵

五次巨大的变革;语言的诞生、文字的诞生、印刷术的诞生、电磁波的应用、计算机技术的应用。 ⑶传播工具:手语、烽火台、驿马、电报(莫尔斯)、电话(贝尔)、移动电话、广播、电视、互联网等. 10、现代通信——信息高速公路 ⑴卫星通信:利用微波(大致沿直线传播)传递信号。系统由空间部分(通信卫星——三颗互成120°的同步卫星,就可以几乎覆盖全球)和地面部分(通信地面站)两部分构成。 ⑵光纤通信:利用激光在光纤中传递信号.光纤的内壁具有使光发生反射的特性(类似于平面镜). ⑶互联网是一个全球性的网络,它拥有丰富的信息资源,应用广泛.如发送电子邮件、远程教育等。 信息产业发展的必然趋势——传递信息所用的电磁波频率越高,在相同时间内传递的信息就越多,信息之路就越宽! 【能量】 一、能量、能的转化和转移 1、自然界存在不同形式的能:机械能(声能),内能,电磁能(光能),核能,化学能(生物质能),潮汐能等. 2、能量可以从一个物体转移到另一个物体,不同形式的能量都可以互相转化。

物理学史在大学物理教学中的作用

物理学史在大学物理教学中的作用 摘要:近些年,随着科学技术的快速发展,大学物理的实用价值被越来越多的人所认识,特别是物理学中所蕴含的历史内容,使人们对物理学做了新的定位。将物理学史融入到大学物理教学中,不仅可以培养大学生的科学、理性思维,同时还能够提升大学生的科学素养。 关键词:物理学史;大学物理教学;渗透;作用 物理学是自然科学重要的分支。随着物理教师对物理学史认知的加深,会恰当地将物理学史融入到物理教学中,使教学资源得以优化,同时还可引导学生从哲学的角度思考物理问题,激发学生对大学物理的学习兴趣。 一、物理学史的概念及其特点 (一)物理学史的概念 物理学史是从社会历史发展的角度研究物理学中的各种问题。人类对自然界中所呈现出来的各种物理现象的认识是过程性的,而物理学史的基本研究任务就是对物理理论、物理定律以及物理学的研究方法加以描述,将与物理学研究有关的自然科学、思维科学、人文科学等相互渗透,使物理学成为一门综合性学科。 (二)物理学史的特点 物理学史再现了人类探索物理世界的过程,属于综合性学科,是人类探索自然科学的历程。其中所涵盖的内容包括物理现象、物理规律的探索,科学家的思维方式以及物理学的研究方法等等,记述的任何一个物理研究成果都具有阶段性和连贯性特点,都是多个研究成果的汇集。一个物理研究成果往往要经历几年、几十年,甚至一个多世纪才会有突破性进展,足见物理学研究是一个漫长而艰辛的过程。研究者要经历无数次的深入探索,还要运用正确的认识论和方法论,不仅要继承和借鉴前人的结果,还要辩证地思考,才能够获得研究成果。可见,物理学史将人类探索物理世界的过程呈现出来,对引导学生运用正确的学习方法学习物理知识具有指导意义[1]。 二、物理学史在大学物理教学中的渗透 大学物理教学将物理学史渗入其中,赋予了物理知识以生命意义。大学物理教学围绕着教材展开,虽然物理学知识丰富,但是教师要能够将物理知识有效地

高考物理专题物理学史知识点难题汇编含答案

高考物理专题物理学史知识点难题汇编含答案 一、选择题 1.万有引力的发现实现了物理学史上第一次大统一:“地上物理学”和“天上物理学”的统一.它表明天体运动和地面上物体的运动遵从相同的规律.牛顿发现万有引力定律的过程中将行星的椭圆轨道简化为圆轨道,还应用到了其他的规律和结论.下面的规律和结论没有被用到的是( ) A.开普勒的研究成果 B.卡文迪许通过扭秤实验得出的引力常量 C.牛顿第二定律 D.牛顿第三定律 2.在物理学的发展过程中,许多物理学家都做出了重要的贡献,他们也创造出了许多物理学研究方法。下列关于物理学史与物理学研究方法的叙述中正确的是() A.物理学中所有物理量都是采用比值法定义的 B.元电荷、点电荷都是理想化模型 C.奥斯特首先发现了电磁感应现象 D.法拉第最早提出了“电场”的概念 3.电闪雷鸣是自然界常见的现象,古人认为那是“天神之火”,是天神对罪恶的惩罚,下面哪位科学家()冒着生命危险在美国费城进行了著名的风筝实验,把天电引了下来,才使人类摆脱了对雷电现象的迷信。 A.库仑 B.安培 C.富兰克林 D.伏打 4.在物理学发展过程中,许多科学家做出了贡献,下列说法正确的是() A.自然界的电荷只有两种,美国科学家密立根将其命名为正电荷和负电荷,美国物理学家富兰克林通过油滴实验比较精确地测定了电荷量e的数值 B.卡文迪许用扭秤实验测定了引力常量G和静电力常量k的数值 C.奥斯特发现了电流间的相互作用规律,同时找到了带电粒子在磁场中的受力规律D.开普勒提出了三大行星运动定律后,牛顿发现了万有引力定律 5.发明白炽灯的科学家是() A.伏打 B.法拉第 C.爱迪生 D.西门子 6.在物理学发展的历程中,许多物理学家的科学研究推动了人类文明的进程。以下对几位物理学家所作科学贡献的叙述中,正确的是 A.牛顿运用理想实验法得出“力不是维持物体运动的原因” B.安培总结出了真空中两个静止点电荷之间的作用规律 C.爱因斯坦创立相对论,提出了一种崭新的时空观 D.第谷通过大量的观测数据,归纳得到了行星的运行规律 7.自然界的电、热和磁等现象都是相互联系的,很多物理学家为寻找它们之间的联系做出了贡献。下列说法不.正确的是() A.奥斯特发现了电流的磁效应,揭示了电现象和磁现象之间的联系 B.欧姆发现了欧姆定律,说明了热现象和电现象之间存在联系

公共基础知识复习资料:物理学常识

公共基础知识复习资料:物理学常识 下面是事业单位考试网为考生整理的物理学常识,公共基础知识考试内容广泛,考生们一定要注意平时的知识积累。 1.哥白尼的日心地动说:是波兰天文学家哥白尼在《天体运行论》中阐述的观点。他认为,太阳是宇宙的中心,所有行星围绕太阳旋转,地球也是一颗普通的行星。指出,太阳的东升西落是地球自转的表现;天球上恒星位置每年所发生的周期性变化是地球绕太阳公转的结果。它从根本上纠正了自古流传并为基督教会所支持的地心和地静说的错误,动摇了教会的权威。 2.自由落体定律:伽利略通过实验发现:物体从静止开始的自由下落是一种匀加速运动,物体下落的速度与其经历的时间成正比,下落的距离与其经历的时间的平方成正比。即自由落体定律。根据这个定律,两轻重不同的物体从同一高度下落,应同时到达地面,物体下落速度与其质量无关,从而彻底批判了亚里士多德的错误观点。 3.惯性运动:伽利略通过实验得出结论,物体在没有外力作用的情况下保持原有运动状态,物体具有维持原有运动状态的特性,即惯性运动。也就是说,亚里士多德认为必须有外力才能维持物体运动的观点是站不住脚的。 4.开普勒第一定律:是德国天文学家开普勒通过观测发现的行星运动三条定律之一,亦称行星轨道定律。这一定律指出:行星运行的轨道不是正圆形而是椭圆形,它们围绕各自椭圆轨道的一个焦点运行,而这些焦点又都重合在一起,那就是太阳之所在。 5.开普勒第二定律:是德国天文学家开普勒通过观测发现的行星运动三条定律之一,亦称行星运动面积定律。它指出:在相等时间内行星与太阳联线所扫过的面积相等。 6.开普勒第三定律:是德国天文学家开普勒通过观测发现的行星运动三条定律之一,亦称行星运动周期定律。它指出:任何两颗行星公转周期的平方与它们轨道长半径的立方成正比。 7.万有引力:是牛顿揭示出来的力学定律。任何两个物体之间的引力与它们的质量的乘机成正比,与两物间距离的平方成反比。 8.运动第一定律:是牛顿最终揭示出来的力学基本定律。又称惯性定律。它指出:如果没有外力的作用,任何物体将保持其静止状态或匀速直线运动状态。即力是使物体的运动状态发生变化的原因。 9.运动第二定律:是牛顿最终揭示出来的力学基本定律。指出:碰撞运动中作用于一物体的 外力与它的运动量的变化成正比。 10.运动第三定律:是牛顿最终揭示出来的力学基本定律。指出:当物体A施力于物体B时,

物理学史及其物理研究方法 教案

微专题物理学史及常见的思想方法一、人物部分 1.力学部分 (1)胡克:发现了胡克定律. (2)伽利略:在研究自由落体中采用的“逻辑推理+实验研究”方法是人类思想史上最伟大的成就之一.(理想斜面实验) (3)牛顿:得出牛顿运动定律及万有引力定律,奠定了以牛顿运动定律为基础的经典力学. (4)开普勒:发现了行星运动规律——开普勒三定律,研究的是第谷的观察数据 (5)卡文迪许:巧妙地利用扭秤装置测出了万有引力常量,被称作是测出地球质量的人 2.电磁学部分 (1)库仑:,利用库仑扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量. (2)密立根:测定电荷量 (3)欧姆:德国物理学家,在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系——欧姆定律. (4)奥斯特:,通过试验发现了电流能产生磁场,电流的磁效应 (5)安培:,提出了著名的分子电流假说,总结出了右手螺旋定则和左手定则.安培在电磁学中的成就很多,被誉为“电学中的牛顿”. (6)劳伦斯:,发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步. (7)法拉第:英国科学家,发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念. (8)楞次:概括试验结果,发表了确定感应电流方向的楞次定律. 3.选考部分 (4)麦克斯韦:总结前人研究的基础上,建立了完整的电磁场理论.

(5)赫兹:在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,并测得电磁波传播速度等于光速,证实了光是一种电磁波. (6)惠更斯:在对光的研究中,提出了光的波动说,发明了摆钟. (7)托马斯·杨:,首先巧妙而简单地解决了相干光源问题,成功地观察到光的干涉现象. (8)伦琴:德国物理学家,继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线——伦琴射线. (9)普朗克:德国物理学家,提出量子概念——电磁辐射(含光辐射)的能量是不连续的,其在热力学方面也有巨大贡献. (10)爱因斯坦:他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论. (11)德布罗意:提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应. (12)汤姆生:,研究阴极射线时发现了电子,测得了电子的比荷;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象. (13)卢瑟福:通过α粒子的散射现象,提出原子的核式结构.实现人工核转变的第一人,发现了质子. (14)玻尔:,把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论. (15)查德威克:英国物理学家,从原子核的人工转变实验研究中,发现了中子. (16)威尔逊:英国物理学家,发明了威尔逊云室以观察α、β、γ射线的径迹. (17)贝克勒尔:法国物理学家,首次发现了铀的天然放射现象,开始认识原子核结构是复杂的. (18)玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者. (19)约里奥·居里夫妇:法国物理学家,老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素.

物理学史

物理学史 ★伽利略(意大利物理学家)对物理学的贡献: ①发现摆的等时性 ②物体下落过程中的运动情况与物体的质量无关 ③伽利略的理想斜面实验:在1683年出版的《两种新科学的对话》一书中,运用观察—假设—数学推理的方法,详细地研究了落体运动。将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因) 经典题目1 伽利略根据实验证实了力是使物体运动的原因(错) 伽利略认为力是维持物体运动的原因(错) 伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对) 伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对) ★胡克(英国物理学家) 对物理学的贡献:胡克定律 经典题目2 胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) ★牛顿(英国物理学家)对物理学的贡献 ①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学 ②经典力学的建立标志着近代自然科学的诞生 经典题目3 牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对) 牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对) ★卡文迪许 贡献:测量了万有引力常量 典型题目4 牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对) ★亚里士多德(古希腊) 观点: ①重的物理下落得比轻的物体快 ②力是维持物体运动的原因 经典题目5 亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对) ★开普勒(德国天文学家) 对物理学的贡献开普勒三定律 经典题目6 开普勒发现了万有引力定律和行星运动规律(错)★托勒密(古希腊科学家) 观点:发展和完善了地心说 ★哥白尼(波兰天文学家)观点:日心说 ★第谷(丹麦天文学家)贡献:测量天体的运动 ★库仑(法国物理学家) 贡献:发现了库仑定律——标志着电学的研究从定性走向定量 典型题目7 库仑总结并确认了真空中两个静止点电荷之间的相互作用(对) 库仑发现了电流的磁效应(错) ★密立根贡献:密立根油滴实验——测定元电荷通过油滴实验测定了元电荷的数值。 e=1.6×10-19C ★昂纳斯(荷兰物理学家)发现超导 ★欧姆:贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家) 电流可以使周围的磁针偏转的效应,称为电流的磁效应(电流能够产生磁场)

高中物理-近代物理学常识

高中2017级高二物理一周一测(17) 近代物理常识 满 分:120分 考试时间:40分钟 一、光电效应 1、概念:在光(电磁波)的照射下,从物体表面逸出的 的现象称为光电效应,这种电子被称之为 。使电子脱离某种金属所做功的 ,叫做这种金属的逸出功,符号为W 0。 2、规律: 提出的“光子说”解释了光电效应的基本规律,光子的能量与频率的关系为 。 ①截止频率:当入射光子的能量 逸出功时,才能发生光电效应,即:0____W hv ,也就是入射光子的频率必须满足v ≥ ,取等号时的______0=ν即为该金属的截止频率(极限频率); ②光电子的最大初动能:_________k m =E ,由此可知,对同一重金属,光电子的最大初动能随着入射光的频率增加而 ,随着入射光的强度的增加而 ,光电子从金属表面逸出时的动能应分布在 范围内。 3、实验:装置如右图,其中 为阴极,光照条件下发出光电子; 为阳极,吸收光电子,进而在电路中形成 ,即电流表的示数。 ①当A 、K 未加电压时,电流表 示数; ②当加上如图所示 向电压时,随着电压的增大,光电流趋于一个饱和值,即 ;当电压进一步增大时,光电流 。 ③当加上相反方向的电压( 向电压)时,光电流 ;当反向电压达到某一个值时,光电流减小为0,这个反向电压U c 叫做 ,即使最有可能到达阳极的光电子刚好不能到达阳极的反向电压,则关于U c 的动能定理方程为 。 【练习1】某同学用同一装置在甲、乙、丙光三种光的照射下得到了三条光电流与电压之间的关系曲线,如右图所示。则可判断出( ) A .甲光的频率大于乙光的频率 B .乙光的波长大于丙光的波长 C .乙光对应的截止频率大于丙光的截止频率 D .甲光对应的光电子最大初动能大于丙光的光电子最大初动能 二、原子结构 1、物理学史: 通过对 的研究,发现了电子,从而认识到原子是有内部结构的; 基于 实验中出现的少数α粒子发生 散射,提出了原子的核式结构模型; 在1913年把物理量取值分立(即量子化)的观念应用到原子系统,提出了自己的原子模型,很好的解释了氢原子的 。 2、波尔理论: ①原子的能量是量子化的,这些量子化的能量值叫做 ;原子能量最低的状态叫做 ,其他较高的能量状态叫做 ; ②原子在不同能量状态之间可以发生 ,当原子从高能级E m 向低能级E n 跃迁时 光子,原子从低能级E n 向高能级E m 跃迁时 光子,辐射或吸收的光子频率必须满足 。 ③原子对电子能量的吸收:动能 两个能级之差的电子能量能被吸收,吸收的数值是 ,剩余的能量电子带走。 ④原子电离:电离态——电子脱离原子时速度也为零的状态,此时“原子—电子”系统能量值为E ∞= ;要使处于量子数为n 的原子电离,需要的能量至少是_____=-=?∞n E E E 。 【练习2】如图所示为氢原子的能级示意图。现用能量介于10eV —12.9eV 范围内的光子去照射一群处于基态的氢原子,则下列说法正确的是( ) A .照射光中只有一种频率的光子被吸收 B .照射光中有三种频率的光子被吸收 C .氢原子发射出三种不同频率的光 D .氢原子发射出六种不同频率的光 【练习3】用大量具有一定能量的电子轰击大量处于基态的氢原子,观测到了一定数目的光谱线。调高电子的能量再次进行观测,发现光谱线的数目比原来增加了5条。用△n 表示两次观测中最高激发态的量子数n 之差,E 表示调高后电子的能量。根据氢原子的能级图可以判断,△n 和E 的可能值为( ) A .△n =1,13.22 eV

(完整版)心理学十大流派综述

一、内容心理学派 产生背景及其发展 19世纪60年代,内容心理学在德国产生。内容心理学派的代表人物主要有费希纳和冯特。 费希纳(1801-1887)的心理物理学是关于身心之间或外界刺激和心理现象之间的函数关系或依存关系的严密科学。这是一门介于心理学和物理学之间的独立学科。费希纳受赫'尔巴特的启发,认为心理是可测量的。经过许多实验和推导,他把感觉强度和刺激强度之间的关系概括为如下公式:S=C*org(R/R0),其中S-感觉强度;C-适用于不同感觉中的每个感官的常数;R-刺激强度;R0-在阈限的刺激强度。 这个公式表明刺激的效果不是绝对的,而是相对于已有的感觉的强度。费希纳在心理物理学的研究中曾创造了三种心理测量的方法:最小可觉差法、正误法和均差法。费希纳把物理学的数量化测量方法带到心理学中,提供了后来心理学实验研究的工具。从现代心理学发展的历史上看,费希纳应被认为是现代西方心理学的主要缔造者之一,他的心理物理学为冯特心理学的建立起到了奠基作用。 冯特(1832-1920)是近代心理学的创始人之一,在心理学史上他的名字与心理学的独立和实验(内容)心理学的建立直接联系在一起。 待续...... 二、意动心理学派 产生背景及其发展 意动心理学产生的直接原因和冯特的内容心理学息息相关。可以

说,冯特的内容心理学是促成布伦塔诺意动心理学的直接动力。 意动心理学派与冯特的内容心理学几乎同时产生,创始人布伦塔诺。 1874年布伦塔诺发表了著名专著《从经验的观点看心理学》。在书中,布伦塔诺认为心理学研究的对象不是感觉、判断等思维内容,而是感觉、判断等思维活动,即"意动",并将"意动"概念作为中心的心理学概念进行阐述。 待续...... 三、构造主义心理学派 产生背景及其发展 构造主义心理学派是由冯特的最忠诚的学生铁钦纳于内容心理学派形成近20年后在美国建立的,是内容心理学思想的继承和进一步发展。但构造主义心理学派决不等同于内容心理学派,二者无论在形成的时间、地点以及研究方法和具体内容上,都存在着差异。 构造主义心理学派与铁钦纳的个人努力有重要关系。并在铁钦纳去世后衰退。并在与机能主义心理学派的论战中得到发展。 时代精神: 科学界百家争鸣。德国事实上已经成为当时世界心理学研究的中心。 待续...... 机能派心理学和构造派心理学的争论 构造主义心理学派中只有铁钦纳始终坚持明显的传统,他是一个性

物理学史简介1

物理学史简介(课时3) 教学目标:通过物理学史的简介,让学生了解物理学史上的著名科学家和重大物理事件。培养学生学习物理的积极性。 教学方式:课件视频展示归纳总结 一、力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。 同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 7、17世纪,德国天文学家开普勒提出开普勒三大定律; 8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同; 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。 11、1957年10月,苏联发射第一颗人造地球卫星; 1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。 二、电磁学 12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。 18世纪中叶,美国人富兰克林提出了正、负电荷的概念。 1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。 18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。 19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。 20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断

现代心理与教育统计学复习资料

第一章心理与教育统计学基础知识 1、数据类型 称名数据 计数数据离散型数据 顺序数据 等距数据 测量数据连续型数据 比率数据 2、变量、随机变量、观测值 变量是可以取不同值的量。统计观察的指标都是具有变异的指标。当我们用一个量表示这个指标的观察结果时,这个指标是一个变量。 用来表示随机现象的变量,称为随机变量。一般用大写的X或Y表示随机变量。 随机变量所取得的值,称为观测值。一个随机变量可以有许多个观测值。 3、总体、个体和样本 需要研究的同质对象的全体,称为总体。 每一个具体研究对象,称为一个个体。 从总体中抽出的用以推测总体的部分对象的集合称为样本。 样本中包含的个体数,称为样本的容量n。 一般把容量n ≥30的样本称为大样本;而n <30的样本称为小样本。 5、统计误差 误差是测得值与真值之间的差值。 测得值=真值+误差 统计误差归纳起来可分为两类:测量误差与抽样误差。 由于使用的仪器、测量方法、读数方法等问题造成的测得值与真值之间的误差,称为测量误差。 由于随机抽样造成的样本统计量与总体参数间的差别,称为抽样误差 第二章统计图表 一、数据的整理 在进行整理时,如果没有充足的理由证明某数据是由实验中的过失造成的,就不能轻易将其排除。对于个别极端数据是否该剔除,应遵循三个标准差法则。 二、次数分布表 (一)简单次(频)数分布表 (二)相对次数分布表

将次数分布表中各组的实际次数转化为相对次数,即用频数比率(f /N )或百分比( )来表示次数,就可以制成相对次数分布表 (三)累加次数分布表 (四)双列次数分布表 双列次数分布表又称相关次数分布表,是对有联系的两列变量用同一个表表示其次数分布。 所谓有联系的两列变量,一般是指同一组被试中每个被试两种心理能力的分数或两种心理特点的指标,或同一组被试在两种实验条件下获得的结果。 三、次数分布图 使一组数据特征更加直观和概括,而且还可以对数据的分布情况和变动趋势作粗略的分析。 简单次(频)数分布图——直方图、次数多边形图 累加次数分布图——累加直方图、累加曲线 (一)简单次数分布图--直方图 (二)简单次数分布图-次数多边图 次数分布多边形图(frequency polygon )是一种表示连续性随机变量次数分布的线形图,属于次数分布图。凡是等距分组的可以用直方图表示的数据,都可用次数多边图来表示。 绘制方法:以各分组区间的组中值为横坐标,以各组的频数为纵坐标,描点;将各点以直线连接即构成多边图形。 (三)累加次数分布图—累加直方图 (四)累加次数分布图——累加曲线 四、其他统计图表 条形图:用直条的长短来表示统计项目数值大小的图形,主要是用来比较性质相似的间断型资料。 圆形图:是用于表示间断型资料比例的图形。圆形的面积表示一组数据的整体,圆中扇形的面积表示各组成部分所占的比例。各部分的比例一般用百分比表示。 线形图用来表示连续型资料。它能表示两个变量之间的函数关系;一种事物随另一种事物变化的情况;某种事物随时间推移的发展趋势等。基于线形图,既可对有关统计变量进行数量比较,又可分析发展的趋势。 散点图是用相同大小圆点的多少或梳密表示统计资料量大小以及变化趋势的图。 第三章 集中量数 集中量数用来表现数据资料的典型水平或集中趋势(central tendency )。 常用的集中量包括算术平均数、加权平均数、中位数和众数等等。 一、算术平均数 算术平均数(arithmetic average )一般简称为平均数(average )或均数、均值(mean )。 一般用M,或者用 表示。 算术平均数是最常用的集中量 (一)算术平均数的计算公式 %100?N f X i n i n X n n X X X X ∑ =∑=+++=1211 X n X ∑=1

物理学史教学大纲

《物理学史》课程教学大纲(10学时) (理论课程) 一课程说明 (一)课程概况 课程中文名称:《物理学史》 课程英文名称:history of physics 课程编码:3910252217 开课学院:理学院 适用专业/开课学期:物理学/第7学期 学分/周学时:0.5/ 《物理学史》为物理学专业限定专业选修课。本课程在学习完专业课的基础上,系统介绍物理学发展的历史过程,能帮助学习者还原物理学发展的历史面目,了解与概括物理学基础知识发展的全貌及总体规律,有利于巩固和加深理解已学的物理知识。物理规律的发现包含了物理学家们大量思想和方法的创新,了解掌握物理学思想和方法的发展过程,对于理解物理规律的本质,培养大学生的创新思想和创新意识、创新能力都有着重要的作用。 学习《物理学史》,一般要求已学完物理学方面的专业课程。 (二)课程目标 通过本课程学习,学生应了解物理学各主要分支学科的发展历史,弄清物理学发展历程中重要思想、方法、规律、原理提出的前因后果及其发展的历史线索,掌握其中包含的创新思想和创新方法。并在此基础上形成对物理学历史发展的全面认识。 二教学方法和手段 本课程的教学以讲授为主,以课堂讨论为补充。不管是讲授还是课堂讨论,都要贯彻启发式教学原则,启迪学生思维,引导学生对物理学的历史进行正确理解,培养学生分析、判断历史问题能力。 为达到上述目的,应充分发挥好课堂教学主渠道的作用,并利用计算机辅助教学、网络教学等现代化教育技术的优势,扩大教学信息量,提高教学质量和效率。 三教学内容 第一章中国古代物理学(第一、二章共1学时) 一、教学目标

了解中国古代自然观、中国古代的力学、热学、光学、电磁学、声学知识和中国古代物理学的特点,能分析形成这些特点的原因。 二、教学重、难点 1·重点:中国古代自然观、中国古代的力学、热学、光学、电磁学、声学知识和中国古代物理学的特点 2·难点:分析形成这些特点的原因 三、主要内容 1·中国古代自然观 2·中国古代的力学知识 3·中国古代的热学知识 4·中国古代的光学知识 5·中国古代的电磁学知识 6·中国古代的声学知识 7·中国古代物理学的特点 第二章西方古代物理学(1学时) 一、教学目标 了解古希腊的自然观、古希腊和中世纪的物理知识,能总结出西方古代物理学的特点,与中国古代物理学的特点相区别,并能分析形成这些区别的主要原因。 二、教学重、难点 1·重点:古希腊的自然观、古希腊和中世纪的物理知识 2·难点:总结出西方古代物理学的特点,找出与中国古代物理学特点的区别 三、主要内容 1·古希腊的自然观 2·古希腊的物理知识 3·中世纪的物理知识 第三章经典力学的建立和发展(1学时) 一、教学目标 了解运动定律的建立和万有引力定律的发现过程,牛顿的重大贡献和牛顿后力学的发展情况。理解伽利略在研究运动过程中对逻辑方法的应用。 二、教学重、难点 1·重点:运动定律的建立 2·难点:理解万有引力定律的发现过程

高中物理备考必备物理学史

物理学史总结 一、力学 1、1638年,意大利物理学家伽利略在《两种新科学的对话》中用科学推理论证重物体和轻物体下落一样快;并在比萨斜塔做了两个不同质量的小球下落的实验,证明了他的观点是正确的,推翻了古希腊学者亚里士多德的观点(即:质量大的小球下落快是错误的); 2、17世纪,伽利略通过构思的理想实验指出:在水平面上运动的物体若没有摩擦,将保持这个速度一直运动下去;得出结论:力是改变物体运动的原因,推翻了亚里士多德的观点:力是维持物体运动的原因。同时代的法国物理学家笛卡儿进一步指出:如果没有其它原因,运动物体将继续以同速度沿着一条直线运动,既不会停下来,也不会偏离原来的方向。 3、1687年,英国科学家牛顿在《自然哲学的数学原理》著作中提出了三条运动定律(即牛顿三大运动定律)。 4、20世纪初建立的量子力学和爱因斯坦提出的狭义相对论表明经典力学不适用于微观粒子和高速运动物体。 5、1638年,伽利略在《两种新科学的对话》一书中,运用观察-假设-数学推理的方法,详细研究了抛体运动。 6、人们根据日常的观察和经验,提出“地心说”,古希腊科学家托勒密是代表;而波兰天文学家哥白尼提出了“日心说”,大胆反驳地心说。 7、17世纪,德国天文学家开普勒提出开普勒三大定律; 8、牛顿于1687年正式发表万有引力定律;1798年英国物理学家卡文迪许利用扭秤实验装置比较准确地测出了引力常量; 9、1846年,英国剑桥大学学生亚当斯和法国天文学家勒维烈应用万有引力定律,计算并观测到海王星,1930年,美国天文学家汤苞用同样的计算方法发现冥王星。 10、我国宋朝发明的火箭是现代火箭的鼻祖,与现代火箭原理相同; 俄国科学家齐奥尔科夫斯基被称为近代火箭之父,他首先提出了多级火箭和惯性导航的概念。 11、1957年10月,苏联发射第一颗人造地球卫星; 1961年4月,世界第一艘载人宇宙飞船“东方1号”带着尤里加加林第一次踏入太空。 二、电磁学 12、1785年法国物理学家库仑利用扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量k的值。 13、16世纪末,英国人吉伯第一个研究了摩擦是物体带电的现象。 18世纪中叶,美国人富兰克林提出了正、负电荷的概念。 1752年,富兰克林在费城通过风筝实验验证闪电是放电的一种形式,把天电与地电统一起来,并发明避雷针。 14、1913年,美国物理学家密立根通过油滴实验精确测定了元电荷e电荷量,获得诺贝尔奖。 15、1837年,英国物理学家法拉第最早引入了电场概念,并提出用电场线表示电场。 16、1826年德国物理学家欧姆(1787-1854)通过实验得出欧姆定律。 17、1911年,荷兰科学家昂纳斯发现大多数金属在温度降到某一值时,都会出现电阻突然降为零的现象——超导现象。 18、19世纪,焦耳和楞次先后各自独立发现电流通过导体时产生热效应的规律,即焦耳定律。 19、1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流磁效应。 20、法国物理学家安培发现两根通有同向电流的平行导线相吸,反向电流的平行导线则相斥,并总结出安培定则(右手螺旋定则)判断电流与磁场的相互关系和左手定则判断通电导线在磁场中受到磁场力的方向。 21、荷兰物理学家洛伦兹提出运动电荷产生了磁场和磁场对运动电荷有作用力(洛伦兹力)的观点。 22、汤姆生的学生阿斯顿设计的质谱仪可用来测量带电粒子的质量和分析同位素。 23、1932年,美国物理学家劳伦兹发明了回旋加速器能在实验室中产生大量的高能粒子。(最大动能仅取决于磁场和D形盒直径,带电粒子圆周运动周期与高频电源的周期相同) 24、1831年英国物理学家法拉第发现了由磁场产生电流的条件和规律——电磁感应定律。 25、1834年,俄国物理学家楞次发表确定感应电流方向的定律——楞次定律。 26、1835年,美国科学家亨利发现自感现象(因电流变化而在电路本身引起感应电动势的现象),日光灯的工作原理即为其应用之一。

相关文档