文档库 最新最全的文档下载
当前位置:文档库 › 江南船厂2-1150燃料罐预冷工艺流程图

江南船厂2-1150燃料罐预冷工艺流程图

四氯化硅冷氢化工艺中热量优化利用的分析

四氯化硅冷氢化工艺中热量优化利用的分析 发表时间:2019-12-31T12:15:54.133Z 来源:《防护工程》2019年17期作者:保妍艳1 李彦能2 [导读] 目前,多晶硅生产企业基本采取将四氯化硅转化为原料三氯氢硅或以四氯化硅为原料制备白炭黑的方式实现闭环生产与综合利用,从而提高企业的经济效益并解决环保问题。 1.曲靖阳光能源硅材料有限公司云南曲靖 655000; 2.云南驰宏锌锗股份有限公司会泽矿业分公司云南曲靖 654212 摘要:高纯多晶硅是电子信息产业和太阳能光伏产业的基础原料,工业规模化生产多晶硅主要方法为改良西门子法和流化床法,分别以三氯氢硅和硅烷为主要原料,在以三氯氢硅和基于三氯氢硅歧化法制备硅烷的多晶硅生产工艺中都有大量的副产物四氯化硅产生,目前,多晶硅生产企业基本采取将四氯化硅转化为原料三氯氢硅或以四氯化硅为原料制备白炭黑的方式实现闭环生产与综合利用,从而提高企业的经济效益并解决环保问题。 关键词:四氯化硅冷氢化工艺;热量优化;利用 一、四氯化硅冷氢化反应机理 四氯化硅冷氢化是在流化床反应器或者固定床反应器中进行,在压力1.2-4.0MPa、温度673-873K、氢气与四氯化硅摩尔比1∶1-5∶1的条件下,将四氯化硅和氢气通过硅粉床层,将四氯化硅转化为三氯氢硅。总的反应方程式为: 紧接着是活性的Si…Cl、Cu…Cl、Cu…Si和Si…Si键被H2还原生成SiHCl3和HCl,这是一个慢反应,随后中间产物HCl和Si在催化活性位置Cu…Si上快速反应生成三氯氢硅,Si被反应生成SiHCl3,位置被来自下部的Si原子迁移补充,产生新的活性位Cu…Si,完成催化循环。 目前,除铜基、镍基、铁基、钴基等金属或金属化合物催化剂之外,其他的催化剂体系也有研究开发,例如Lee等[7]使用碳基催化剂研究四氯化硅氢化成三氯硅烷反应,发现掺杂了硅的金属-碳复合催化剂比催化剂和硅粉简单物理混合的催化剂具有更高的催化活性,可以获得更高的SiHCl3收率。 二、四氯化硅冷氢化工艺中热量优化利用的方法 1、换热网络优化 1.1坚持外部损失最小原则 在实际生产时,由于化工行业产生能量或多或少都会出现损失,譬如跑、冒、滴、漏等现象出现、生产三废排放、又或者是保温效果降低等都会导致能量损失。虽说从相关研究来看,化工行业生产所损失的这些能量能量级较低,但由于其均是由系统内部高能量级的能量转换而来的,并且这些损失的能量属于不可逆的。所以,为了尽可能避免能量损失,换热网设计中就必须严格遵循外部损失最小原则将生产中所有环节能量充分利用起来,并对沿线可能存在的泄漏点进行优化,从而降低不必要的能量损失,这样一来有助于实现较为理想的热量优化利用效果。 1.2确定传热最优推动力 结合实践来看,能量在转化与传递这两个过程中都需要具备着诸如温度差、电位差、化学位差不同的热力学势差推动作用下方可以实现,同时它们推动力与速率二者构成正比关系。另外因为热力学势差具有不可逆转性,因而这就意味着能量转化与传递这两个过程势必会出现能量地损失。面对这种情况,四氯化硅冷氢化工艺中换热网络优化设计中应当遵循传热最优推动力原则。简单点说就是换热网优化设计上首要任务要将最优推动力找出来,为此我们需要充分考虑好四氯化硅生产外部条件情况,并通过相关实验将最优推动力确定出来,从而最终实现提高能量的有效利用率目的。 1.3实现能源最优利用 化工实际生产时,不少生产线上原料与产品运输、存储是处于常温常压状况中完成的,但是其反应和分离提纯这两个环节绝大部分则是要求一定温度和压力才可以完成。这是由于化工原料与产品通过多次升压(降压)、升温(降温)单元操作时所需的能量除了需要利用公用工程提之外,还能够借助于这些操作较好地利用其该过程中各种物料的能力,这样一来有利于实现能量的最优化利用。

糕点工艺流程图车间布置图

蒸煮类糕点生产工艺流程图 **原辅料、包材验收GB2748-2003 、(GB317-2006、GB1355-1986)、GB 9687-1988GB 9683-1988 蛋处理打蛋废弃物 牛奶、低筋粉、白糖、)、及工艺配方要求(搅拌机、电子秤:满足GB2760**配料搅拌色拉油、泡大粉等 成成型操作台、成型模) 以上20--30min;年糕类:2h(蒸锅:时间**蒸制根据具体产品规格不同而制定不同工艺规范书) 摊凉

入库配送 ()为关键设备及参数.备注:**标注为关键控制工序;小西饼生产工艺流程图

GB2748-2003(GB317-200GB1355-198GB 9687-198GB 9683-198、及工艺配方要 GB276150--18、时15--30min230--23纵150--16GB7099-200JJF1070 入库配送 ()为关键设备及参数.备注:**标注为关键控制工序; 蛋糕生产工艺流程图 **原辅料、包材验收GB2748-2003 (GB317-2006、、GB8608-1988GB 9683-1988、GB 9687-1988) 蛋处理打蛋废弃物 面粉、白糖、牛奶、打蛋机、(及工艺配方要求)、电子秤:满足GB2760**配料搅拌泡打粉、塔塔粉等 成型操作台、蛋糕坯模:根据不同工艺规范书()成型

**烘烤(电热平炉:温度120--200℃、时间10--45min 根据具体产品规格不同而制 定不同工艺规范书) 自然冷却 脱模 摊凉

包材消毒间:紫外3mi以GB7099-200JJF1070 入库配送 ()为关键设备及参数.备注:**标注为关键控制工序; 面包生产工艺流程图 (GB317-2006、LS/T3201-1993、GB2748-2003 原辅料、包材验收**QB/T1501-1992、NY479-2002、GB 9683-1988) 面粉、白糖、酵母、**配料GB2760及工艺规范书)(电子秤:依据酥油、面包改良剂等搅拌和面(搅拌机) 计量、自动分割滚圆(电子秤、分割机)

蛋糕的生产工艺流程

工艺流程 蛋糕工艺规程 1.原材料验收 1.1检查合格供货商目录,确认供应商为经过评审合格的供应商 1.2检查运输车辆是否专车专用,车厢是否清洁卫生。 1.3检查货单,确认货物数量、名称,检查原料表示是否齐全,是否有QS标志,是否有详细的配料表、生产日期、保质期。 1.4检查内包装是否完好 2.储存:按照“先进先用”的原则分类摆放于相应的库房中。 3.鸡蛋清洗消毒:将鸡蛋放入洗蛋间进行清洗干净,确保鸡蛋表面没有其他杂物,然后放配制好的消毒水中浸泡5分钟,浸泡时确保消毒水淹没鸡蛋;用流水冲洗鸡蛋,冲去消毒剂残留。 4.配料 4.1向打面机中加入适量糖、盐等调料; 4.2向打面机中加入适量面粉,放入打好的鸡蛋; 4.3向打面机中加入改良剂 5.搅拌、压面 向打面机中加入水搅拌至面团蓬松匀实状态,把打好的面团多次揉压,使面团有筋度。

6.称量:按要求称量,制作面团 7.开酥:把压好的的面团通过开酥机开酥 8.成型 8.1按要求制作成各式蛋糕 8.2做有馅的产品按要求将馅包在面包胚中,放在专用托盘中 9.装饰:按要求进行装饰,要做到美观大方 10.烘烤:放入180度的烤炉中烘烤10分钟,注意蛋糕表面不能发黑 11.放凉:取出蛋糕,放于专用货架上,放于凉冻间散热,等表面温度降下来时再用吹风机进行凉冻 12.包装材料验收 12.1对照合格供应商目录检查供应商资质 12.2检查包装是否完好 12.3定期抽样化验微生物指标,合格后方可使用 13.内包装消毒 把内包装材料放入专用的消毒柜内用紫外灯进行消毒,放入专用的消毒柜内的包装材料有摊开,以便于消毒,消毒时间至少要保证1小时以上 14.包装 14.1检查包装材料包装是否完好,包装破损的不能使用14.2检查外观质量,挑拣杂质,然后进行包装

糕点生产工艺流程图及车间平面图

蒸煮类糕点生产工艺流程图 (GB317-2006、GB1355-1986、GB2748-2003 GB 9683-1988、GB 9687-1988) **原辅料、包材验收 打蛋 废弃物 蛋处理 低筋粉、白糖、牛奶、色拉油、泡大粉等 (搅拌机、电子秤:满足GB2760、及工艺配方要求) **配料搅拌 入库配送 备注:**标注为关键控制工序;()为关键设备及参数.

小西饼生产工艺流程图 入库配送 备注:**标注为关键控制工序;()为关键设备及参数.

蛋糕生产工艺流程图 (GB317-2006、GB8608-1988、GB2748-2003 GB 9683-1988、GB 9687-1988) **原辅料、包材验收 废弃物 蛋处理 打蛋 面粉、白糖、牛奶、 泡打粉、塔塔粉等 **配料搅拌 (打蛋机、 电子秤:满足GB2760、及工艺配方要求) (成型操作台、蛋糕坯模:根据不同工艺规范书) 成型 (电热平炉:温度120--200℃、时间10--45min 根据具体产品规格不同而制定不同工艺规范书) **烘烤 自然冷却 脱模 入库配送 备注:**标注为关键控制工序;()为关键设备及参数. 摊凉

面包生产工艺流程图 (GB317-2006、LS/T3201-1993、GB2748-2003 QB/T1501-1992、NY479-2002、GB 9683-1988) **原辅料、包材验收 备注:**标注为关键控制工序;()为关键设备及参数. (电子秤、分割机) (搅拌机) (电子秤:依据GB2760及工艺规范书) 计量、自动分割滚圆 搅拌和面 面粉、白糖、酵母、 酥油、面包改良剂等 **配料

冷氢化工艺

洛阳晶辉新能源科技有限公司 1、低温氢化技术方案 “低温氢化”反应原理为:四氯化硅(SiCl4)、硅粉(Si)和氢气(H2)在500℃温度和1.5MPa 压力条件下,通过催化反应转化为三氯氢硅(SiHCl3)。化学反应式为: 3SiCl4+Si+2H2=4SiHCl3 行业“低温氢化”虽然比“热氢化”具有能耗低、设备运行可靠的优点,但是尚存一些不足: (1)实际转化率偏低——四氯化硅(SiCl4)实际转化率一般在18%左右; (2)催化剂稳定性差——导致催化剂寿命短、消耗量大、成本高;特别是催化剂载体铝离子容易造成“铝污染”; (3)设备复杂、系统能耗大——工作温度高,所以氢化炉需要内或外加热,设备复杂,系统无有效的能量回收装置,系统能耗高。 3)“催化氢化”技术方案 针对上述四氯化硅(SiCl4)冷、热氢化存在的缺点和问题,洛阳晶辉新能源科技有限公司和中国工程院院士、中石化权威催

化剂和化工专家合作,在传统“低温氢化”基础上进行改良,自主创新开发出了新一代“改良低温氢化”技术——“催化氢化”。 (1)“催化氢化”技术路线 ?开发高活性多元纳米催化剂——在现有单活性金属基础上,引入第二活性金属,并采用特殊负载工艺,使活性金属呈纳米状态,提高催化剂活性;开发高稳定性催化剂载体——解决现有催化剂稳定性差问题,延长催化剂使用寿命,同时解决“铝污染”; (2)“催化氢化”技术特点 催化剂活性高,特别是反应?选择性好——四氯化硅(SiCl4)单程率达到22%,以上(最高可达25%); ?实现热量耦合、节约能源——需要的外加热量小,减少系统能源消耗;催化剂稳定性好——寿命长、用量小、避免了Al2O3 分解带来的“铝污染”;反应温度进一步降低,反应炉不需要内(或外)加热,并设能量综合回收装置,降低了系统能耗; ? 系统用氢细致划分,由电解氢改良为多晶硅生产过程的回收氢气,既节约了制氢站电解氢的消耗量,同时也有利于提高多晶硅生产

冷氢化技术

冷氢化技术综述 (上) 20世纪70年代美国喷气推进实验室(JPL)在美国能源部的支持下组织研究新硅烷法工艺过程中,采用多晶硅工厂的副产物四氯化硅(STC)作原料,将其转化为三氯氢硅(TCS),然后将三氯氢硅通过歧化反应生产硅烷。 80年代初,为得到低成本、高纯度的多晶硅,又进行了一系列的研究开发。其中高压低温氢化工艺(以下简称冷氢化)就是一项能耗最低、成本最小的STC 转化为TCS的工艺技术。该工艺被UCC(Union Carbide Corporation)公司在80年代中后期进一步的完善,实现了从实验装置到工业化运行的跨越,目前REC 在华盛顿州的多晶硅工厂所采用的此项工艺仍在运行中。因此,毋庸置疑,冷氢化技术的原创应当是UCC,目前流行的各类流化床冷氢化工艺只是在UCC的基础上“整容,而非变性”(易中天语)! 90年代,为了提高多晶硅产品纯度,满足电子工业对多晶硅质量的要求,开发了高温低压STC氢化工艺,这两种工艺的比较如下:

综上比较,二者各有优缺点,但低温高压冷氢化工艺耗电量低,在节能减排、 降低成本方面具有一定的优势。国内多晶硅新建及改、扩建单位可以根据项目的具体情况、自身的优势及喜好,择优选定。 冷氢化主要反应式如下: Si+ 2H2 + 3SiCl4 < 催化剂 > 4SiHCl3 (主反应) SiCl4+Si+2H2 = 2SiH2Cl2 (副反应) 2SiHCl3 = SiCl4+SiH2Cl2 (副反应) 典型的冷氢化装置组成如下: 一个完整的冷氢化系统大致包括以下6大部分: 1、技术经济指标:包括,1)金属硅、催化剂、补充氢气、STC、电力的消耗,2)产品质量指标,3)STC转化率,4)公用工程(氮气、冷却水、冷媒、蒸汽及导热油); 2、主装置:包括,1)流化床反应器、2)急冷淋洗器,3)淋洗残液的处理系统,4)气提,5)加热及换热装置; 3、原料系统:包括,1)硅粉输送,2)催化剂选用及制备,3)原料气体的加热装置; 4、粗分离系统:包括,1)脱轻,2)脱重,3)TCS分离; 5、热能回收系统,包括:1)流化床出口氢化气的热量回收,2)急冷塔出口淋洗气的热能回收,氯硅烷物流热量综合利用;热能回收系统,包括:1)流化床出口氢化气的热量回收,2)急冷塔出口淋洗气的热能回收; 6、物料处置及回收系统:包括,1)淋洗残液中的氯硅烷回收,2)脱重塔残液中的氯硅烷回收,3)轻组分中的氯硅烷回收,4)固废处理,5)氯硅烷废液处理。

铸造工艺流程图

《铁-石墨自生金属型特种成型技术》的优越性 我公司重点项目为:《铁-石墨自生金属型特种成型技术》 我公司与上海交通大学材料系联合研发该项技术:《铁-石墨自生金属型特种成型技术》,技术水平处于国内领先地位,该技 术及利用该技术生产的产品(FPM件主要用于汽车、机床、压缩机和液压件等)填补了省内空白。该技术是把铁碳合金在金属模中高速冷却,使得微观组织中的石墨形成致密的珊瑚状(具有分支的纤维),均匀分布在基体组织中。这种珊瑚状石墨由于是在合金液凝固过程中通过冷却速度的控制和加入微量元素而得到的,无须外加加入非金属强化材料(纤维或粒子),故被认为是自生复合材料。由于石墨本身具有优良的润滑性能,当该材料用于耐磨件时,一方面,石墨有润滑作用,另一方面,石墨剥落形成的显微凹坑可以在摩擦面上形成储油腔,使得在工件相互运动时可在配合面形成一层均匀的油膜,对材料起到保护作用.因此,铁-石墨自生复合材料作为高强度耐磨材料,具有广泛的用途。 表8典型金属型铸铁化学成分、组织与性能

注:1?表中化学成分含量百分数皆指质量分数。 2.净化球墨铸铁铁液,控制Ti、Pb、S、Mn、Cu等元素对金属型球铁质量也十分重要。 ①Mg :高冷却速度(铜)型薄壁件低硫铁液加MgO.01%即可使石墨完全球化。过高残Mg是造成多种金属型球墨铸铁件废、 次品的主因。 ②P:增加流动性,又可防热裂,有的加到 3.6%[53]。还加Sb0.02%?0.04%53]。磷加于炉料中的效果比加于铁液中明显。 ③Ti对灰铸铁可增加铁液过冷度,促进生成D型石墨。低CE作用明显。为保护机加工刀具Ti V 0.075%。 该技术的主要优越性及先进性体现为:环境与资源是当今世界的两个重大课题。如何保护环境、节约资源是目前各国 铸造工作者迫切追求的目标。为了实现这一目标,人们提出了绿色集约化铸造(绿色材料环境材料)的概念。所谓绿色集约化铸造是指铸造整个生产过程中应满足对环境无害、合理使用和节约自然资源、依靠科学技术得到最大的产出和效 益等几个要求。所谓绿色材料是指资源和能源消耗小、对生态环境影响小、再生循环利用率高或可降解使用的具有优异 实用性能的新型材料。按照这些要求,如前所述“铁-石墨自生金属型特种成型技术”代表了这一趋势。它除了在材料微观组织结构的优点,还摈弃了铁合金铸造中采用的砂型铸造的污染严重,劳动强度大等落后的生产方法。该技术生产的 铸铁可保证致密无气孔、缩孔、缩松,工艺出品率高;铸铁尺寸精度高,表面光洁,加工量少且易加工(退火后);结晶细,性

硫氢化钠工艺处理技术处理方案

20万t/a苯加氢精制酸性尾气净化综合利用项目 技术方案

目录 1 酸性尾气净化回收的意义 2 基础数据 3 产品质量及产量 4 工艺说明 5 控制系统 6 业主提供的条件 7 化学品 8 装置设备一览 9 物料平衡 11装置占地面积 12投资预算

13 经济效益分析

1. 酸性尾气净化回收的意义 根据20万吨苯加氢精制装置的尾气数据,硫化氢酸性气是石油化工生产过程中的副产物,具有剧毒、恶臭、的特点,是石油化工行业重要的污染源之一。对酸性气的处理,传统的方法是克劳斯法进行硫回收,但投资大,产出低,运行成本高。针对业主气量小,H2S含量高的特点,采用NaOH化学吸收法设计了酸性气脱硫处理工艺,生产化工基础原料硫氢化钠。采用该工艺流程简单,H2S脱除率高,投资小、回收效益高。 产品硫氢化钠主要用于选矿、农药、染料、制革生产以及有机合成等工业。染料工业中硫氢化钠用于合成有机中间体和制备硫化染料的助剂,制革工业用于生皮的脱毛及鞣革,应用于制革工业常规浸泡,能均匀松散皮料纤维组织,使皮料能缓慢膨胀,具有明显的抗皱和提高革得率作用,并可确保皮料蓝皮的颜色,保证皮料的感观和质量。化肥工业中硫氢化钠可用于脱去活性炭脱硫剂中的单体硫,农药工业中是制造硫化铵及农药乙硫醇半成品的原料。采矿工业中硫氢化钠大量用于铜矿选矿,人造纤维生产中用于亚硫酸染色等方面,此外,硫氢化钠还可用于废水处理。 2.基础数据

稳定塔废气: 温度:40℃ 压力:0.4MPa 流量:200 Nm3 循环氢驰放气: 温度:40℃ 压力:0.4MPa 流量:200 Nm3 3 产品质量、产量 3.1制硫氢化钠 质量:液体,硫氢化钠含量≥36%(质量) 产量:1792.67吨/年(8000小时/年) 产品质量达到GB23937-2009液体硫氢化钠标准(L-1或L-2)。 GB23937-2009工业硫氢化钠质量标准

冷、热氢化工艺技术、消耗对比

冷、热氢化工艺技术、 消耗对比 2011年11月

一.冷氢化及热氢化工艺技术比较 1 冷氢化单元工艺流程简述 (1)冷氢化工序 工业级硅粉送至硅粉干燥器,干燥后排入硅粉中间仓。硅粉在硅粉中间仓中由氢气带入氢化反应器中。 提纯后的四氯化硅经过加压、预热后送至四氯化硅汽化器,汽化后的四氯化硅气体经过加热器进一步加热至500-550℃送至氢化反应器中。 循环氢气和补充的新鲜氢气经各自的压缩机加压后混合,按与硅粉规定比例经过预热器、加热器加热至500-550℃送至氢化反应器中。 如采用氯化氢参与的冷氢化反应,则氯化氢气体也经压缩机压缩后按比例经预热器加热后送至氢化反应器中。 在氢化反应器中,硅粉与四氯化硅、氢气(氯化氢)在500-550℃左右、2.5--3.0MPa压力下进行气固流

化反应,生成含一定比例三氯氢硅的氯硅烷混合气。其主要反应方程式如下: 3SiCl4(气)+ 2H2(气)+Si(固)= 4SiHCl3(气) Si(固)+2SiCl4 (气)+ H2(气)+HCl(气)=3SiHCl3反应后的氯硅烷混合气体经过急冷除尘系统,以除去反应气体中夹带的细微硅粉颗粒,同时降低反应气体温度。 除尘后的气体经过冷凝器冷凝分离回收,冷凝液主要为氯硅烷的混合液,送入粗氯硅烷储罐,而氢气返回循环氢气压缩机循环使用。 (2)粗馏工序 来自冷氢化工序的粗氯硅烷液送入1级粗馏塔进行预分离。1级粗馏塔顶排出含少量的氯化氢和二氯二氢硅的不凝气体被送往废气及残液处理单元进行处理;塔顶馏出液为含有部分SiCl4的三氯氢硅冷凝液,送入精馏工序继续精馏提纯。

1级粗馏塔釜得到含高沸点杂质的粗四氯化硅,送入2级粗馏塔进行进一步提纯。2级粗馏塔的作用是将粗四氯化硅和高沸点杂质进行分离,塔顶排出的不凝气体同样送往废气及残液处理单元进行处理。 2 热氢化单元工艺流程简述 来自氯硅烷罐区的精制四氯化硅通过泵加压进入氢化炉汽化器,汽化器外设蒸汽夹套,内设盘管,用10bar(g)的蒸汽加热,将四氯化硅汽化送至各氢化的气体混合气柜,与高纯氢气按一定比例在气体混合气柜均匀混合,经氢化炉尾气换热器(力臂克管),由氢化炉反应尾气预热后,通过氢化炉底盘喷嘴进入炉内,在1250℃温度下,氢气与四氯化硅发生反应,生成二氯二氢硅、三氯氢硅和氯化氢。 反应尾气经交换和急冷降温后(<290℃),经氢化炉尾气过滤器过滤后,送至尾气回收工序。 氢化反应产生的热量由90℃的高温热水带走,高温热

熔模铸造工艺流程-图文.

熔模铸造工艺流程 模具制造 制溶模及浇注系 统 模料处理 模组焊接 模组清洗 上涂料及撒砂 涂料制备 重

复 型壳干燥(硬化 多 次 脱蜡 型壳焙烧 浇注 熔炼 切 割 浇 口 抛 光 或 机

工 钝化 修整焊补 热处理 最后清砂 喷丸或喷砂 磨内

口 震 动 脱 壳 模料 制熔模用模料为日本牌号:K512模料 模料主要性能: 灰分≤0.025% 铁含量灰分的10% ≤0.0025% 熔点 83℃-88℃(环球法)60℃±1℃ 针入度 100GM(25℃)3.5-5.0DMM 450GM(25℃)14.0-18.0DMM 收缩率 0.9%-1.1% 比重 0.94-0.99g/cm3 颜色新蜡——兰色、深黄色 旧蜡——绿色、棕色

蜡(模)料处理 工艺参数: 除水桶搅拌时温度 110-120℃ 搅拌时间 8-12小时 静置时温度 100-110℃ 静置时间 6-8小时 静置桶静置温度 70-85℃ 静置时间 8-12小时 保温箱温度 48-52℃ 时间 8-24小时 二、操作程序 1、从脱蜡釜泄出的旧蜡用泵或手工送到除水桶中,先在105-110℃下置6-8小时沉淀,将水分泄掉。 2、蜡料在110-120℃下搅拌8-12小时,去除水份。 3、将脱完水的蜡料送到70-85℃的静置桶中保温静置桶中保温静置8-12小时。 4、也可将少量新蜡加入静置桶中,静置后清洁的蜡料用手工灌到保温箱蜡缸中,保温温度48-52℃,保温时间8-24小时后用于制蜡模。

5、或把静置桶中的回收蜡料输入到气动蜡模压注机的蜡桶中,保温后压制浇道。 三、操用要点 1、严格按回收工艺进行蜡料处理。 2、除水桶、静置桶均应及时排水、排污。 3、往蜡缸灌蜡时,蜡应慢没缸壁流入,防止蜡液中进入空气的灰尘。 4、蜡缸灌满后应及时盖住,避免灰尘等杂物落入。 5、经常检查每一个桶温,防止温度过高现象发生。 6、作业场地要保持清洁。 7、防止蜡液飞溅。 8、严禁焰火,慎防火灾。 压制蜡(熔)模 一、工艺参数 室温20-24℃压射蜡温50-55℃ 压射压力0.2-0.5Mpa 保压时间10-20S 冷却水温度15±3℃ 二、操作程序

冷氢化制备三氯氢硅

注:本文为笔者个人观点,欢迎大家讨论,不足之处,还请指正! 如有转载,请告知并注明出处! 前两天有一位朋友问笔者冷氢化电加热器的损坏问题,由于目前国内的多晶硅生产企业真正运行冷氢化系统的没有几家,因此一直没有过多的进行关注。但看到他发过来的照片,发现加热器损坏还是蛮严重的。再结合以前就听说冷氢化经常因为设备、管道堵塞而不能正常运营,因此这两天静下心来仔细研究了一下冷氢化设备和工艺,结合笔者以前的经验提出自己对冷氢化的一些想法,供大家讨论。 或许是基于提升自身竞争优势原因,国内企业一直将冷氢化搞得非常神秘,不管有没有开车,开车是否正常,都将其限定在特定的人群,一定的范围之中。这样从表面上来看,技术保密对于企业非常重要,但是从生产运行的角度来看,过度的保密反而影响企业的生产技术发展,这点在企业没有完全掌握此项技术的时候表现的更为明显。没有开放式的共同研究,单凭有限的人员对工艺包的消化,很难快速的达到预期的效果。这一点需要国内的生产企业重新进行审视。 一、冷氢化技术的发展史: 根据冷氢化技术的专利申请人美国LXE公司技术顾问Larry Coleman的介绍,冷氢化专利由其于1980提出,1982年批准,2002年过期。整个冷氢化的发展经历了以下过程: (1)1948年,联合碳素UCC的分公司林德气体为了找到一种合成TCS的方法而最先开发了冷氢化技术,但在当时生产TCS是为了制备有机硅而非高纯硅。 (2)1950~1960,林德公司在西维吉尼亚建了一个用冷氢化技术生产TCS的生产线。同时,他们发现用Si+HCl的方式(合成法)来生产TCS更加经济,于是就将冷氢化技术搁置。 (3)1973年,当第一次石油危机来临后,美国政府开始寻找石油的替代能源,太阳能就是其中之一,很多公司参与了与之相关的研究(包括多晶硅的生产),其中包括UCC。 (4)1977年,美国总统卡特授权美国航空航天署NASA寻找降低太阳能电池板生产成本的方法。此时,多晶硅的生产再次被提上议事日程。UCC当时介入了此事,便重新把硅烷技术(1971年发明)及冷氢化技术找出来,开始准备建立中试装置。 (5)1979~1981年,UCC在Washougal建立了一个做硅烷(100MTA硅烷)的中试工厂(生产硅烷的第一步生产TCS所采用的是可以闭路循环的冷氢化技术),并成功生产出电阻率为10000的多晶硅。他们希望通过国家对太阳能级多晶硅的支持来提升其电子级多晶硅的名气,因为当时工厂还不能够生产电阻率如此高的电子级多晶硅。(6)1983年,UCC在Moses lake开始建设1000MTA硅烷的扩大化工厂。但当时在位的总统里根为了解决石油企业利润微薄的问题,抽调了供给NASA研究廉价太阳能利用项目组的资金,叫停了太阳能产业的发展。此后,UCC 对太阳能的利用失去了兴趣,于1989年将这个1000吨的硅烷工厂以三成的价格卖给了一个叫ASMI的日本企业。(7)此后几年,ASMI又将50%的股份卖给了REC,至此REC开始进入多晶硅领域,冷氢化技术的工业化生产得以延续。REC也由此成为冷氢化生产技术新的开拓者。 二、冷氢化工艺原理: 目前国内的冷氢化技术主要分为两种,一种就是传统意义上的由H2、硅粉、STC作为原料在催化剂的作用下及中温高压条件下生产TCS的冷氢化技术,其反应原理如下: 另一种是在传统冷氢化技术上引入回收HCl生产TCS的方法,即氯氢化技术。其整合了三氯氢硅合成和冷氢化两者的特点,可看作是传统冷氢化工艺的衍生和优化,将回首HCl得到充分的利用。其反应原理如下: 不论是传统的冷氢化生产技术还是改良后的氯氢化技术,其主要生产工艺流程和设备基本是相同的。

冷氢化装置项目操作原则

工艺流程说明 3.1装置主要工序组成 本装置为千吨级太阳能级多晶硅装置的一个组成部分。主要包括如下生产工序: 1)四氯化硅转化三氯氢硅工序 2)废气和残液处理工序 3.2 工艺流程叙述 本装置工艺流程图见附图 (一)四氯化硅转化三氯氢硅工序 四氯化硅转化三氯氢硅,主要是在反应炉内,用气态四氯化硅与硅粉及氢气在高温高压下反应制得三氯氢硅,此外还通入少量HCL气体与硅粉发生反应。 四氯化硅转化三氯氢硅工序包括以下几个系统: ——原料处理系统; ——四氯化硅转化系统; ——汽气混合气急冷系统; ——冷凝氯硅烷精馏系统; 其中原料处理系统、四氯化硅转化系统及汽气混合气急冷系统设置两条相同生产线,氯硅烷精馏系统为一条生产线。 1、原料处理系统 原料处理系统完成对原料四氯化硅的汽化和加热,对循环氢气和补充氢气的压缩和加热以及对转让转化炉的氯化氢气体的压缩和加热。 来自原有多晶硅装置罐区的精制四氯化硅贮罐(V0304)的精制四氯化硅进入四氯化硅缓冲罐(V0905a/b),然后经四氯化硅输送泵(P0901a/b/c)加压后本别输送到每条生产线的四氯化硅汽化器(E0906a/b),通过电加热汽化,然后再经四氯化硅电加热器(E0906a/b)加热到550℃,送往四氯化硅转化反应炉(R0901a/b/)。 来自急冷系统的急冷塔顶换热器(E0907)的循环H2经过循环氢气压缩机(C0902ab)增压到约3.1MPaG,然后再分别经氢气电加热器(E0901a/b)加热到550℃,后送往四氯化硅转化反应炉(R0901a/b/)。循环氢气不能满足转化反

应的需要,还要再加入补充氢气。来自电解制氢装置的补充氢气压缩机(C0901ab)增压,先分别进入氢气电加热器1#(E0901a/b)加热到280℃,再经氢气电加热器2#(E0902a/b)加热到550℃,然后进入四氯化硅转化反应炉(R0901a/b/)。 来自原有多晶硅装置罐区氯化氢缓冲罐的HCL(来自还原CDI的副产HCL)经过氯化氢压缩机(C0903ab)增压到约3.1MPaG,然后再分别经氯化氢电加热器(E0902a/b)加热到550℃,送往四氯化硅转化反应炉(R0901a/b/)。 2、四氯化硅转化系统 四氯化硅转化系统包括以下设备:硅粉吊车(L0901)、加料料斗(V0901a/b)、硅粉干燥罐(V0902a/b)、硅粉缓冲罐(V0903a/b)、硅粉加料罐(V0904a/b)、四氯化硅转化反应炉(R0901a/b/)和加料时的废气过滤器(F0901)。 硅粉每四小时一次由硅粉干燥罐放入安装于下方的硅粉缓冲罐(V0903a/b),再放入下方的硅粉加料罐(V0904a/b/c/d).通入打开安装于缓冲罐底部的开关阀将硅粉送入四氯化硅转化反应器中。硅粉每四小时一次由硅粉干燥罐放入安装于下方的硅粉缓冲罐(V0903a/b),再放入下方的硅粉加料罐(V0904a/b/c/d).通入打开安装于缓冲罐底部的开关阀将硅粉送入四氯化硅转化反应器中。 加热并预热后的氢气与四氯化硅气体通过底部的分布器连续进入四氯化硅转化三氯氢硅反应炉(流化床反应器)与硅粉发生反应,生成三氯氢硅,同时生成二氯氢硅、金属氯化物、聚氯硅烷等副产物。反应压力为3MPaG,反应温度为540~550℃。 主要反应式如下: Si+3 SiCl4+2 H2 =4 SiHCl3 Si+ SiCl4+2 H2 =2SiH2Cl2 同时,加压并预热后的氯氢化气体也从底部进入反应器,与硅粉发生反应,同时生成三氯氢硅、二氯氢硅、金属氯化物、聚氯硅烷等副产物。主要反应式如下: Si+3 HCl = SiHCl3+ H2+Q Si+2 HCl = SiH2Cl2+Q Si+ 4HCl = SiCl4+ 2H2+Q SiHCl3+ HCl = SiCl4+ H2

铸造工艺流程介绍

铸造生产的工艺流程 铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序: 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图; 2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备; 3)造型与制芯; 4)熔化与浇注; 5)落砂清理与铸件检验等主要工序。 成形原理 铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。 图1 铸造成形过程

铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。 型砂的性能及组成 1、型砂的性能 型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。2、型砂的组成 型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤份、锯末、纸浆等。型砂结构,如图2所示。 图2 型砂结构示意图 工艺特点 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点:1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。 2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。 4)铸件一般使用的原材料来源广、铸件成本低。 5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 铸件的手工造型 手工造型的主要方法 砂型铸造分为手工造型(制芯)和机器造型(制芯)。手工造型是指造型和制芯的主要工作均由手工完成;机器造型是指主要的造型工作,包括填砂、紧实、起模、合箱等由造型机完成。泊头铸造工量具友介绍手工造型的主要方法: 手工造型因其操作灵活、适应性强,工艺装备简单,无需造型设备等特点,被广泛应用于单件小批量生产。但手工造型生产率低,劳动强度较大。手工造型的方法很多,常用的有以下几种: 1.整模造型 对于形状简单,端部为平面且又是最大截面的铸件应采用整模造型。整模造型操作简便,造型时整个模样全部置于一个砂箱内,不会出现错箱缺陷。整模造型适用于形状简单、最大截面在端部的铸件,如齿轮坯、轴承座、罩、壳等(图2)。

冷氢化

、从外形和接管的结构形式来看,这应当是一台材质为Incoloy 800H的冷氢化流化床反应器;评论:就目前来说冷氢化流化床基本上的材质都是镍合金。厚度各有不同差异,基本在55-65的厚壁。 2、喷嘴应当安装在分布板的反面,上面看不到,国内有些设计院喜欢采用这种结构; 评论:这点各有不同。个人认为,喷嘴在下面比较好点。 3、上部为出料管,硅粉进料装置应当在反应器的下部(反应段),照片上看不出来; 评论:硅粉进料装置不一定在下部,底部为分布板,进硅粉对磨损更厉害。这个反应器采用的是顶部进硅粉及催化剂,插入到反应段。是一个垂直的方向。 4、从外部结构上来看,反应器内部没有旋风除尘,但是会有内部挡板; 评论:旋风除尘都在外面。不知您是否见过安装在反应器里面的旋风。是否能做个比较,介绍一下。内部挡板是必须的,用来破碎气泡。 5、以厂房作为背景的话,基本能够估算出反应段直径和扩大段直径。 评论:该设备是2800*1800???,厚度在50以下。厂家是国内外资厂家 1、因为镍基合金Incoloy 800H的管子非常难买,所以反应器上的接管都是用棒材加工的。看到流化床反应器上的棒料加工的厚壁管,可以断定是高压流化床反应器; 2、“喷嘴在下面比较好点”,这点不敢苟同,喷嘴形式很多,各有利弊。图中的喷嘴在运行时可能会有死角,无法吹扫堆积在分布板上的硅粉,所以个人认为并非最佳; 3、硅粉进料有上、下进料方式,我认为各有利弊,要说明的是,有一种下部进料可以对多孔板不造成任何磨损,或磨损很小。此外还有侧面进料,国内侧面进料的流化床反应器也有不少; 4、内旋风除尘的反应器也很多,其优点是可以减少催化剂的耗量,黄河水电的氯氢化流化床反应器就是内旋风除尘; 5、看参照物,本设备直径应当1600mm以上,扩大段应当在2600mm以上,国内做此设备也就那么几家厂,可以推断出来。 这种冷氢化的反应器已经淘汰了。 反应器的主体材质是316L/800H,设备上端是316L,下端是800H。 主体有四、五层分布板,没有加旋风。 设备下端设有一个分布器,不过图上的只是一个蝶形封头,封头上还要焊喷嘴。 这种设备,我们公司2年前的产品,现已严重被淘汰,只是一些冷氢化追随者还在忙跟。现在的设备已经在这基础上,做了很多调整。这个设备开车并不是很理想 .冷氢化工艺冷氢化及热氢化工艺技术比较目前,国内外多晶硅生产企业已投入工业化运行的四氯化硅氢化系统主要有以下两种工艺:(1)热氢化工艺(2)冷氢化工艺上述两种氢化工艺技术特点比较见下表。表1-1 热氢化技术成熟性操作压力操作温度反应原理综合电耗占地面积建设投资生产成本(产品多晶硅) 生产维护操作技术要求成熟0.6 MPaG 1250℃SiCL4+H2=SiHCL3+HCL 2.5~3 kWh/kg-TCS 100% 100% 100% 较易一般汽相连续反应,不需催化剂;易操作和控制;维修量小;反应无硼磷杂质带入,后续的精镏更简单;蒸汽耗量低;工艺成熟,有可靠的技术来源。业主已有操作经验反应是电氢化还原反应,电耗高;STC 转化率低(15~20%)多晶硅产品含 C 较高。两种

冷氢化应用技术研究与探讨

2014年8月湖北第二师范学院学报 Aug.2014第31卷第8期 Journal of Hubei University of Education Vol.31 No.8 冷氢化应用技术研究与探讨 田新衍 (江西赛维LDK 光伏硅科技有限公司,江西新余338000) 摘 要:西门子法生产多晶硅过程中副产大量的四氯化硅。近几年来, 企业为了降低成本、采用冷氢化工艺将四氯化硅转为三氯氢硅循环再利用。本文重点讲叙冷氢化应用技术研究与探讨。关键词:多晶硅;冷氯化;转化率收稿日期:2014-07-12 中图分类号:TQ03 文献标识码:A 文章编号:1674-344X (2014)8-0028-02基金项目:国家高技术研究发展计划(865计划)(2012AA06A116) 作者简介:田新衍(1966-),男,江西南昌人, 高级工程师,研究方向为新能源与化工。多晶硅是太阳能行业的基础原材料, 其主要生产工艺是改良西门子法。而西门子法每生产1t 多晶硅就有15 20t 的四氯化硅出现。四氯化硅遇潮湿空气会反应生成硅酸和氯化氢,强烈腐蚀人体组织,如果四氯化硅不经处理直接倾倒或掩埋,将使周围的土地寸草不生。如今,四氯化硅的处理问题已成为制约多晶 硅生产的瓶颈[1] 。热氢化转化率低,消化不了大量的四氯化硅,造成四氯化硅价格低下,甚至多晶硅厂为了 解决库存问题而倒贴运费送出处理,造成了原料的浪 费,不仅产品成本高,还严重的污染了环境。《十二五规划纲要》指出,“加快建设资源节约型、环境友好型 社会,提高生态文明水平,调整能源消费结构,增加非化石能源比重”、“加大环境保护力度”,明确提出了走以前高污染的路子行不通。目前,处理四氯化硅最有效的方法是将其加氢还原成生产多晶硅的原料三氯氢 硅,使SiCl 4在西门子法流程中循环[2] 。冷氢化工艺和改良西门子法的工艺有很多相似之处。冷氢化主要工艺由三氯氢硅合成、尾气回收(干法)和精馏3个部分组成,与改良西门子法工艺分别对应如下: (1)冷氢化反应器系统与改良西门子法三氯氢硅合成中的三氯氢硅合成炉、旋风分离器和洗涤塔对应;(2)冷凝分离系统与改良西门子法尾气回收(干法)中的尾气冷凝对应,也就是常见的CDI 系统中的四级冷凝系统; (3)精馏系统与改良西门子法精馏中的粗馏、精馏对应。 熟悉传统改良西门子法生产的技术人员都知道,尾气回收四级冷凝系统和精馏都较易操作,而三氯氢硅合成存在很多未解决的问题。因此,冷氢化的实际挑战在于冷氢化反应器系统。改良西门子法TCS 合成工序有3个常见问题,即三氯氢硅转化率低,管道设 备堵塞和管道设备磨损。三氯氢硅转化率的高低在于其工艺控制水平,管道堵塞和设备管道磨损状况则取决于三氯氢硅合成炉的工艺控制水平和相应设备的操作技巧。因此,冷氢化生产必须借鉴三氯氢硅合成出现的这些问题。 冷氢化法又可以分为流化床和固定床两种,流化床的转化率比较高,大约在20% 25%左右,但是在运行的过程中,会发生催化剂流失,而且流态化的催化剂以及硅粉末会堵塞实验装置,导致生产停工,给企业的效益带来严重损失 [3] ,为了避免以上种种缺点,产能较低的冷氢化工艺采用固定床,通过控制反应温度、 压力、氢气和四氯化硅的物质的量比以及催化剂和硅的质量比,得到高产率的三氯氢硅,从而实现多晶硅的闭环生产。选择流化床反应器需要结合冷氢化特殊的工艺条件,考虑到今后生产各个因素,包括不同厂家的操作习惯和经验,进行多方面的权衡及评估,完全的套用其它厂家的结构和工艺不一定最适合自己。冷氢化法是以硅粉、氢气、四氯化硅为原料辅以氯 化氢,在500 550?,2.0 3.0MPa (G ),铜基或镍基为催化剂的条件下,于反应器中进行放热反应,生成三 氯氢硅、二氯二氢硅等的混合物,主要反应如下:Si +3SiCl 4+2H 2=4SiHCl 3。出流化床的反应混合气体经旋风分离器或精密过滤器除尘,将其中少量的硅粉除去,再经多级冷凝回收系统得到氯硅烷液体,不凝气体返回循环使用,氯硅烷液体经粗馏系统分离出未反应的四氯化硅和三氯氢硅粗品,四氯化硅返回使用,三氯 氢硅粗品送至精馏装置进行精制[4] 。通过计算,分析四氯化硅的转化率,从而得到最佳反应条件。 · 82·

冷氢化工艺简述

冷氢化技术综述 (上) 朱骏业岳菡张永良 20世纪70年代美国喷气推进实验室(JPL)在美国能源部的支持下组织研究新硅烷法工艺过程中,采用多晶硅工厂的副产物四氯化硅(STC)作原料,将其转化为三氯氢硅(TCS),然后将三氯氢硅通过歧化反应生产硅烷。 80年代初,为得到低成本、高纯度的多晶硅,又进行了一系列的研究开发。其中高压低温氢化工艺(以下简称冷氢化)就是一项能耗最低、成本最小的STC转化为TCS的工艺技术。该工艺被UCC(Union Carbide Corporation)公司在80年代中后期进一步的完善,实现了从实验装置到工业化运行的跨越,目前REC在华盛顿州的多晶硅工厂所采用的此项工艺仍在运行中。因此,毋庸置疑,冷氢化技术的原创应当是UCC,目前流行的各类流化床冷氢化工艺只是在UCC的基础上“整容,而非变性”(易中天语)! 90年代,为了提高多晶硅产品纯度,满足电子工业对多晶硅质量的要求,开发了高温低压STC氢化工艺,这两种工艺的比较如下:

综上比较,二者各有优缺点,但低温高压冷氢化工艺耗电量低,在节能减排、降低成本方面具有一定的优势。国内多晶硅新建及改、扩建单位可以根据项目的具体情况、自身的优势及喜好,择优选定。 冷氢化主要反应式如下: Si+ 2H2 + 3SiCl4 < 催化剂 > 4SiHCl3(主反应) SiCl4+Si+2H2 = 2SiH2Cl2(副反应) 2SiHCl3 = SiCl4+SiH2Cl2(副反应) 典型的冷氢化装置组成如下: 一个完整的冷氢化系统大致包括以下6大部分:

1、技术经济指标:包括,1)金属硅、催化剂、补充氢气、STC、电力的消耗,2)产品质量指标,3)STC转化率,4)公用工程(氮气、冷却水、冷媒、蒸汽及导热油); 2、主装置:包括,1)流化床反应器、2)急冷淋洗器,3)淋洗残液的处理系统,4)气提,5)加热及换热装置; 3、原料系统:包括,1)硅粉输送,2)催化剂选用及制备,3)原料气体的加热装置; 4、粗分离系统:包括,1)脱轻,2)脱重,3)TCS分离; 5、热能回收系统,包括:1)流化床出口氢化气的热量回收,2)急冷塔出口淋洗气的热能回收,氯硅烷物流热量综合利用;热能回收系统,包括:1)流化床出口氢化气的热量回收,2)急冷塔出口淋洗气的热能回收; 6、物料处置及回收系统:包括,1)淋洗残液中的氯硅烷回收,2)脱重塔残液中的氯硅烷回收,3)轻组分中的氯硅烷回收,4)固废处理,5)氯硅烷废液处理。 冷氢化技术综述 (中) 上文说到,一个完整的冷氢化系统大致要考虑六个方面的因素,包括:技术经济指标、主装置、原料系统、粗分离系统、热能回收系统、物料处置及回收系统,现就这六个方面的因素作一些简单的点评: 1、技术经济指标: 技术经济指标是厂家最关心的基础数据,现在江湖上流传的这些数据有些乱,有的低得离谱,有的高得让人无法接受,根据目前掌握的各厂家运行数据来看: 金属硅消耗在0.056-0.061kg/kgTCS之间;

相关文档