文档库 最新最全的文档下载
当前位置:文档库 › 2010-2011 有机光谱分析 B卷

2010-2011 有机光谱分析 B卷

2010-2011 有机光谱分析 B卷
2010-2011 有机光谱分析 B卷

中国药科大学 有机光谱分析 期末试卷(B 卷)

2010- 2011学年第一学期

专业 班级 学号 姓名

题号 一 二 三 四 五 总分 得分

核分人:

一、单项选择题(每小题1分,共20分)

1. 下列三个化合物中,中间化合物的εmax 较低的原因是( )。

A .空间位阻 B. 超共轭效应 C. 共轭效应 D. 取代基的影响

εmax 21,000 8500 23,000

2.酮C=O 伸缩振动的正常波数(cm -1

)为 ( )

A .1800 cm -1

B .1735 cm -1

C .1725 cm -1

D .1715 cm -1

3.以下说法正确的是 ( )

A .磁等价核一定是化学等价核

B .化学等价核一定是磁等价核

C .磁等价核不一定是化学等价核

D .以上都不正确

4.羰基中电子吸收紫外线后将产生何种跃迁 ( )

A .σ→σ*

跃迁 B .π→π*

跃迁 C . n →π*

跃迁 D . n →σ*

跃迁 5

.双键中电子吸收紫外线后将产生何种跃迁 ( )

A .σ→σ*

跃迁 B .π→π*

跃迁 C . n →π*

跃迁 D . n →σ*

跃迁 6.分子中的各种能级大小有如下排列 ( )

得分

评卷人

A.△E转动>△E振动> △E电子

B.△E振动>△E转动> △E电子

C.△E电子>△E振动>△E转动

D.△E电子>△E转动> △E振动

7.烯键中同碳质子的偶合常数为()A.8 Hz B.16 Hz C.2 Hz D.22 Hz

8.OOP区苯环邻二取代的波数(cm-1)为()A.690 cm-1 B.750 cm-1 C.780 cm-1 D.850 cm-1

9. 下图分别为原料(A,左图)和反应产物(C,右图)的部分IR光谱图,这是有名的狄尔斯-

阿德尔反应。反应式如下:

从上图判断,反应产物C是否合成得到?()

A. 产物C已经合成得到

B. 产物C没有成功合成

C.无法判断

10.飞行时间质谱仪的英文缩写为()A.FT-MS B.TOF-MS C.LD-MS D.FAB-MS

二、简答题(共40分)

1. 2-(环已-1-烯基)-2-丙醇在硫酸存在下加热处理,得到主要产物的分子式为C 9H 14,产物经纯化,测得其紫外光谱λmax =242nm (εmax =10100),推断这个主要产物的结构,并讨论其反应过程。(10分)

得分

评卷人

2.简述MS法的定义,并指出MS仪的主要组成部分及各部分的主要作用。(10分)3.简述MS中电喷雾离子化(ESI)的过程及原理。(5分)

4.写出下列化合物发生麦氏(McLafferty)重排的过程及重排离子的质荷比m/z 。(10分)

(1) (2)

5.请解释1-溴丙烷中各质子化学位移的主要影响因素,以及1,2,3-位质子δ值变化规律的主要原因。(5分)

3 2 1

CH3CH2Br

CH2

1.25 1.69 3.30

三、填空题(每小题1分,共20分)

得分评卷人

1. 若化合物的吸收峰在250nm以上,且εmax在1000~10000时,表明该化合物具有

结构。

2. 结构中具有酚羟基、烯醇、不饱和羧酸的化合物,介质由中性变为碱性时,化合物的紫外吸收谱带发生。

3.UV光谱中蓝移指由于助色基的引入或溶剂效应使λmax向方向位移的效应。

4. 分子吸收波长范围在到区间的电磁波产生的吸收光谱称为紫

外-可见吸收光谱。

5.IR是由跃迁引起的。

6.IR中线性分子振动自由度为个。

7.IR中单取代双键在指纹区产生2个强峰,位于 cm-1和 cm-1附近。8.红外吸收谱带的强度取决于分子振动时的变化,变化越小,谱带强度也就越弱。

9. IR中腈基(-CN)的伸缩振动吸收峰位于 cm-1。

10. 费米共振指的是

11. 双原子分子的振动频率随着的增加而增大,随着

的增加而降低。

12. 醇类化合物中,υO-H随着溶液浓度的增大而向方向位移。13.NMR中影响化学位移的5个因素:、、

、、。

四、单谱解析题(每题5分,共20分)

评卷人

得分

1. 某化合物的分子式为C6H12O,IR光谱图如图所示,试推断其可能结构,并说明1400

cm-1~1360 cm-1区域的特征。

Shift(ppm) 峰形质子数 7.954 d 2H 7.700 d 2H 6.926 s(活泼质子) 1H 4.364 q 2H

1.386 t 3H

Shift(ppm) 峰形质子数

0.916 t 3H

1.413 五重 2H

1.683 六重 2H

3.420 t 2H

4.某化合物分子式为C4H8O,其MS图如下,试推断其结构并写出裂解途径说明各峰的归属。(10分)

五、综合解析题(每题10分,共10分)得分评卷人

1. 某化合物的分子式为C10H13NO2,其红外、质谱、氢谱和碳谱图如下。(1)试推测其合理结构;

(2)指出其主要的红外峰归属;

(3)写出主要质谱裂解过程;

(4)对质子(氢谱)和C信号(碳谱)进行归属。

IR:

MS:

m/z:29.0 43.0 80.0 108.0 109.0 137.0 138.0 179.0 180.0 强度:6.2 32.4 14.3 100 90.2 48.2 5.5 67.4 7.9

1H-NMR:

Shift(ppm) 峰形质子数

7.94 s, br 1H

7.36 d 2H

6.80 d 2H

3.976 q 2H

2.092 s 3H

1.380 t 3H

13C-NMR:

Shift(ppm): 168.81, 155.80, 131.18, 122.13, 114.74, 63.73, 24.11, 14.83

各种光谱原理解读

紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息 质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息 气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化 提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关 反气相色谱法 IGC

仪器分析实验有机化合物的红外光谱分析解读

仪器分析实验有机化合物的红外光谱分析 2015年4月21日 有机化合物的红外光谱分析 开课实验室:环境资源楼312 【实验目的】 1、初步掌握两种基本样品制备技术及傅里叶变换光谱仪器的简单操作; 2、通过谱图解析及网上标准谱图的检索,了解由红外光谱鉴定未知物的一般过程; 3、掌握有机化合物红外光谱测定的制样方法,回顾基础有机化学光谱的相关知识。 【基本原理】 ? 原理概述:物质分子中的各种不同基团,在有选择地吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量分析。特别是对化合物结构的鉴定,应用更为广泛。 ? 红外吸收法: 类型:吸收光谱法; 原理:电子的跃迁:电子由于受到光、热、电等的激发,从一个能级转移到另一个能级的现象。这是因为分 子中的电子总是处在某一种运动状态中,每一种状态都具有一定的能量,属于一定的能级。当这些电子有选择地吸收了不同频率的红外辐射的能量,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对化合物进行定性和定量分析; 条件:分子具有偶极矩。 【仪器与试剂】 1、仪器: 傅里叶变换红外光谱仪(德国Bruker公司,TENSOR 27型; 美国Thermo Fisher 公司, Nicolet 6700型);压片机; 玛瑙研钵; 红外灯。 2、试剂:NaCl窗片、KBr晶体,待分析试样液体及固体。 【实验步骤】 1、样品制备 (1)固体样品:KBr压片法 在玛瑙研钵将KBr晶体充分研磨后加入其量5%左右的待测固体样品,混合研磨直至均匀。在一个具有抛光面的金属模具上放一个圆形纸环,用刮勺将研磨好的

光谱学及其应用

光谱学及其应用 摘要:光谱学是光学的一个分支学科,它主要研究各种物质的光谱的产生及其同物质之间的相互作用。光谱是电磁辐射按照波长的有序排列,根据实验条件的不同,各个辐射波长都具有各自的特征强度。通过光谱的研究,人们可以得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的知识。但是,光谱学技术并不仅是一种科学工具,在化学分析中它也提供了重要的定性与定量的分析方法。 关键词:发展简史;内容;发射;吸收;分析;应用 光谱学的发展简史 光谱学的研究已有一百多年的历史了。1666年,牛顿把通过玻璃棱镜的太阳光分解成了从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是可算是最早对光谱的研究。 其后一直到1802年,渥拉斯顿观察到了光谱线,其后在1814年夫琅和费也独立地发现它。牛顿之所以没有能观察到光谱线,是因为他使太阳光通过了圆孔而不是通过狭缝。在1814~1815年之间,夫琅和费公布了太阳光谱中的许多条暗线,并以字母来命名,其中有些命名沿用至今。此后便把这些线称为夫琅和费暗线。 实用光谱学是由基尔霍夫与本生在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,并利用这种方法发现了几种当时还未知的元素,并且证明了太阳里也存在着多种已知的元素。 从19世纪中叶起,氢原子光谱一直是光谱学研究的重要课题之一。在试图说明氢原子光谱的过程中,所得到的各项成就对量子力学法则的建立起了很大促进作用。这些法则不仅能够应用于氢原子,也能应用于其他原子、分子和凝聚态物质。 氢原子光谱中最强的一条谱线是1853年由瑞典物理学家埃斯特朗探测出来的。此后的20年,在星体的光谱中观测到了更多的氢原子谱线。1885年,从事天文测量的瑞士科学家巴耳末找到一个经验公式来说明已知的氢原子诺线的位置,此后便把这一组线称为巴耳末系。继巴耳末的成就之后,1889年,瑞典光谱学家里德伯发现了许多元素的线状光谱系,其中最为明显的为碱金属原子的光谱系,它们也都能满足一个简单的公式。 尽管氢原子光谱线的波长的表示式十分简单,不过当时对其起因却茫然不知。一直到1913年,玻尔才对它作出了明确的解释。但玻尔理论并不能解释所观测到的原子光谱的各种特征,即使对于氢原子光谱的进一步的解释也遇到了困难。 能够满意地解释光谱线的成因的是20世纪发展起来的量子力学。电子不仅具有轨道角动量,而且还具有自旋角动量。这两种角动量的结合便成功地解释了光谱线的分裂现象。 电子自旋的概念首先是在1925年由乌伦贝克和古兹密特作为假设而引入的,以便解释碱金属原子光谱的测量结果。在狄喇克的相对论性量子力学中,电子自旋(包括质子自旋与中子自旋)的概念有了牢固的理论基础,它成了基本方程的自然结果而不是作为一种特别的假设了。 1896年,塞曼把光源放在磁场中来观察磁场对光三重线,发现这些谱线都是偏振的。现在把这种现象称为塞曼效应。次年,洛伦兹对于这个效应作了满意的解释。 塞曼效应不仅在理论上具有重要意义,而且在应用中也是重要的。在复杂光谱的分类中,塞曼效应是一种很有用的方法,它有效地帮助了人们对于复杂光谱的理解。

光谱基础知识解读

太阳光光谱 紫外线谱带:波长280-400nm之间,其特点是穿透性强,可使人体皮肤黑色素沉积,颜色加深,过度的紫外线曝晒会导致皮肤癌,可导致地毯、窗帘、织物及家具油漆褪色。 可见光谱带:波长380~780nm之间,其特点是肉眼可以看见的唯一光谱,可见光波段进一步可以分为不同的颜色(赤橙黄绿蓝靛紫七色),对人体没有直接伤害。 红外光谱带:波长700~2400nm之间,其特点是我们可以直接感受到阳光“不可见”的热量,所含能量最大,所以热量也高。 各波段的远近红外线构成了太阳能的53%,紫外线占3%,可见光占44%。 元素光谱简介 如果物质是以单原子的形式而存在,关键看该原子的电子激发能了。如果在可见光的某个范围内,并且吸收某一部分光线,那它就显剩下的部分的光线的颜色。如该原子的电子激发能非常低,可以吸收任意的光线,该原子就是黑色的,如果该原子的电子激发能非常高。不能吸收任何光线,它就是白色的。如果它能吸收短波部分的光线,那它就是红色或黄色的。 具体的元素光谱:红色代表硫元素,蓝色代表氧元素,而绿色代表氢元素。 元素燃烧发出的光谱 燃烧所发出的光色根据不同的元素发出不同的光谱,每一种元素燃烧时都发出多条光谱,这种光通过三梭镜或光栅后会在屏障上显现出多条亮线,也就是说只发出有限的几种频率的光,这就是这种元素的光谱。其中会有一条或几条最亮的线,这几条最亮的线决定了在人眼中所看到的颜色。 观察光谱的方法 连续光谱的光线在通过含某种元素的气体时在光谱带上会出现多条暗线,这些暗线刚好与这种元素的光谱线位置相同,强度刚好相反,(光谱线越强的位置暗线越明显)这就是元素的吸收光谱。天文学家就是利用吸收光谱来查明遥远的恒星大气和星云中所含的元素,观察恒星红移或蓝移也要利用吸收光谱。 观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱 原子决定明线光谱 实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.彩图7就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构。 吸收光谱 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,

近红外光谱分析及其应用简介

近红外光谱分析及其应用简介 1、近红外光谱分析及其在国际、国内分析领域的定位 近红外光谱分析是将近红外谱区(800-2500nm)的光谱测量技术、化学计量学技术、计算机技术与基础测试技术交叉结合的现代分析技术,主要用于复杂样品的直接快速分析。近红外分析复杂样品时,通常首先需要将样品的近红外光谱与样品的结构、组成或性质等测量参数(用标准或认可的参比方法测得的),采用化学计量学技术加以关联,建立待测量的校正模型;然后通过对未知样品光谱的测定并应用已经建立的校正模型,来快速预测样品待测量。 近红外光谱分析技术自上世纪60年代开始首先在农业领域应用,随着化学计量学与计算机技术的发展,80年代以来逐步受到光谱分析学家的重视,该项技术逐渐成熟,90年代国际匹茨堡会议与我国的BCEIA等重要分析专业会议均先后把近红外光谱分析与紫外、红外光谱分析等技术并列,作为一种独立的分析方法;2000年PITTCON 会议上近红外光谱方法是所有光谱法中最受重视的一类方法,这种分析方法已经成为ICC(International Association for Cereal Science and Technology国际谷物科技协会)、AOAC(American Association of Official Analytical Chemists美国公职化学家协会)、AACC(American Association of Cereal Chemists美国谷物化学家协会)等行业协会的标准;各发达国家药典如USP(United States Pharmacopoeia美国药典)均收入了近红外光谱方法;我国2005年版的药典也将该方法收入。在应用方面近红外光谱分析技术已扩展到石油化工、医药、生物化学、烟草、纺织品等领域。发达国家已经将近红外方法做为质量控制、品质分析和在线分析等快速、无损分析的主要手段。 我国对近红外光谱技术的研究及应用起步较晚,上世纪70年代开始,进行了近红外光谱分析的基础与应用研究,到了90年代,石化、农业、烟草等领域开始大量应用近红外光谱分析技术,但主要是依靠国外大型分析仪器生产商的进口仪器。目前国内能够提供完整近红外光

(完整版)仪器分析习题答案-光谱分析部分

仪器分析部分作业题参考答案 第一章绪论 1-2 1、主要区别:(1)化学分析是利用物质的化学性质进行分析;仪器分析是利用物质的物理或物理化学性质进行分析;(2)化学分析不需要特殊的仪器设备;仪器分析需要特殊的仪器设备;(3)化学分析只能用于组分的定量或定性分析;仪器分析还能用于组分的结构分析;(3)化学分析灵敏度低、选择性差,但测量准确度高,适合于常量组分分析;仪器分析灵敏度高、选择性好,但测量准确度稍差,适合于微量、痕量及超痕量组分的分析。 2、共同点:都是进行组分测量的手段,是分析化学的组成部分。 1-5 分析仪器与仪器分析的区别:分析仪器是实现仪器分析的一种技术设备,是一种装置;仪器分析是利用仪器设备进行组分分析的一种技术手段。 分析仪器与仪器分析的联系:仪器分析需要分析仪器才能达到量测的目的,分析仪器是仪器分析的工具。仪器分析与分析仪器的发展相互促进。 1-7 因为仪器分析直接测量的是物质的各种物理信号而不是其浓度或质量数,而信号与浓度或质量数之间只有在一定的范围内才某种确定的关系,且这种关系还受仪器、方法及样品基体等的影响。因此要进行组分的定量分析,并消除仪器、方法及样品基体等对测量的影响,必须首先建立特定测量条件下信号与浓度或质量数之间的关系,即进行定量分析校正。 第二章光谱分析法导论 2-1 光谱仪的一般组成包括:光源、单色器、样品引入系统、检测器、信号处理与输出装置。 各部件的主要作用为: 光源:提供能量使待测组分产生吸收包括激发到高能态; 单色器:将复合光分解为单色光并采集特定波长的光入射样品或检测器; 样品引入系统:将样品以合适的方式引入光路中并可以充当样品容器的作用; 检测器:将光信号转化为可量化输出的信号。

仪器分析(完整版)

绪论 一、什么是仪器分析?仪器分析有哪些特点?(简答,必考题) 仪器分析是分析化学的一个重要部分,是以物质的物理或物理化学性质作为基础的一类分析方法,它的显著特征是以仪器作为分析测量的主要手段。 1、灵敏度高,检出限量可降低。 如样品用量由化学分析的mL、mg级降低到仪器分析的、级,甚至更低。适合于微量、痕量和超痕量成分的测定。 2、选择性好。 很多的仪器分析方法可以通过选择或调整测定的条件,使共存的组分测定时,相互间不产生干扰。 3、操作简便,分析速度快,容易实现自动化。 4、相对误差较大。 化学分析一般可用于常量和高含量成分分析,准确度较高,误差小于千分之几。多数仪器分析相对误差较大,一般为5%,不适用于常量和高含量成分分析。 5、需要价格比较昂贵的专用仪器。 二、仪器分析的分类 光化学分析法,电化学分析法,色谱分析法和其他仪器分析方法。 三、仪器分析法的概念 仪器分析法是以物质的物理或物理化学性质为基础,探求这些性质在分析过程中所产生的分析信号与物质的内在关系,进而对待测物进行定性、定量及结构分析及动态分析的一类测定方法。 四、仪器分析法的主要性能指标 精密度,准确度,灵敏度,标准曲线的线性范围,检出限(浓度—相对检出限;质量—绝对检出限) 五、选择分析方法的几种考虑 仪器分析方法众多,对一个所要进行分析的对象,选择何种分析方法可从以下几个方面考虑: 1.您所分析的物质是元素?化合物?有机物?化合物结构剖析? 2.您对分析结果的准确度要求如何?

3.您的样品量是多少? 4.您样品中待测物浓度大小范围是多少? 5.可能对待测物产生干扰的组份是什么? 6.样品基体的物理或化学性质如何? 7.您有多少样品,要测定多少目标物? 光谱分析法导论 一、什么是光谱分析法 以测量光与物质相互作用,引起原子、分子内部量子化能级之间的跃迁产生的发射、吸收、散射等波长与强度的变化关系为基础的光学分析法,称为光谱分析法——通过各种光谱分析仪器来完成分析测定——光谱分析仪器基本组成部分:信号发生系统,色散系统,检测系统,信号处理系统等。 二、光谱的分类 1、按产生光谱的物质类型:原子光谱(线状光谱)、分子光谱(带状光谱)、固体光谱 2、按产生光谱方式:发射光谱、吸收光谱、散射光谱 3、按光谱性质和形状:线状光谱、带状光谱、连续光谱 三、光谱仪器的组成 1、光源:要求:强度大(分析灵敏度高)、稳定(分析重现性好) 按光源性质:连续光源:在较大范围提供连续波长的光源,氢灯、氘灯、钨灯等 线光源:提供特定波长的光源,金属蒸气灯(汞灯、钠蒸气灯)、空心 阴极灯、激光等。 2、单色器:是一种把来自光源的复合光分解为单色光,并分离出所需要波段光束的装置(从连续光源的辐射中选择合适的波长频带)。 单色光具有一定的宽度(有效带宽)。有效带宽越小,分析的灵敏度越高、选择性越好、分析物浓度与光学响应信号的线性相关性也越好。 3、样品室:光源与试样相互作用的场所; 吸收池:紫外-可见分光光度法:石英比色皿 红外分光光度法:将试样与溴化钾压制成透明片 4、检测器 5、显示与数据处理 二、光的能量E 、频率υ、波长λ、波数σ的关系 E=h υ=hc/λ=hc σ 不同波长的光(辐射)具有不同的能量,波长越长,频率、波数越低,能量越低 KcL A

(整理)光谱分析技术及应用

光谱分析技术及应用 一、光谱分析的分类 1、原子吸收光谱法——也叫湿法分析。它是以待测元素的特征光波,通过样品的蒸发,被蒸发中的待测元素的基态原子所吸收,由辐射强度的减弱程度,来测定该元素的存在与否和含量多少;通常是采用火焰或无火焰(也叫等离子)方法,把被测元素转化为基态原子。根据吸收光波能量的多少测定元素的含量。 通常原子吸收光谱法是进行仪器定量分析的湿法分析。 2、原子发射光谱法——利用外部能量激发光子发光产生光谱。 看谱分析法就是原始的、也是最经典的利用原子发射光谱的分析方法。看谱分析法在我国工业生产上的使用是在上世纪50年代,58年北京永定机械厂制造了第一台仿苏联技术的看谱仪,随后天津光学仪器厂成为我国大量生产棱镜分光的看谱镜基地。 上世纪80年代起,德国、英国、美国等国家,开始研制采用CCD (Charge Coupled Device电荷耦合器件)技术作为光谱接收器件的直读式定量光谱仪,德国以实验室用大型直读定量光谱仪为主;英国阿朗公司、美国尼通公司以便携式金属分析仪为主打市场。近年来,德国、芬兰等国家研制生产便携式、直读定量光谱仪,分析精度在一定条件下可以替代实验室直读式定量光谱仪。 二、看谱分析的特点 1、操作简便,分析速度快。 2、适合现场操作。

3、无损检测(现场操作情况下无须破坏样品)。 4、检测成本低。是便携式金属分析仪的1/30左右,是便携式直读定量光谱仪的1/40。 5、有一定的灵敏度和准确度。 三、看谱分析的方法: 定性分析方法,所谓定性就是判定分析的元素是否存在的分析。严格的讲定性分析是根据某元素的特征灵敏线的出现与否,来确定该元素是否存在的分析方法。 那么,什么叫灵敏线呢? 某元素在某几个区域出现的几条与其它元素不同的特征线;或称“在较低含量情况下出现的谱线”,或者说是在某一范围内出现的谱线,叫做灵敏线。 半定量方法就是近似的估计元素含量的方法。 利用谱线进行比较,即通过 亮度比较含量,就是与铁基线进 行比较,含量与亮度的对数成正 比关系。(用来进行比较的铁基线 的亮度应不变。)lgI(谱线强度) 四、看谱分析的一般步骤 1、分析前的准备

有机光谱分析完整版.doc

有机光谱分析完整版 (友情提醒:本门课程内容繁芜庞杂,若能将本资料辅以课本复习,必所向披靡战无不胜) 第一章紫外吸收光谱 紫外 -可见吸收光谱是由电子能级跃迁产生的吸收光谱,检测波长在紫外和可见区即200-800 nm;红外光谱是指物质受中红外光(波长范围 400-4000cm -1)照射,发生分子振动和转动能级 跃迁产生光谱;核磁共振光谱是指在强外磁场中,用垂直于强外磁场的射频电磁场照射样品分 子,某些具有磁性的原子核吸收电磁波(射频电磁波频率与磁化矢量进动频率相同)产生原子核 能级跃迁。 自然光:包含有许多不同波长并在不同方向振动平面上传播的光; 单色光:自然光通过分光器(棱镜或光栅)得到单一波长的光,UV 光谱定量分析用单色光。 非偏振光:光波电场矢量与传播方向所组成的平面成为广播的振动面,这个振动面是无限多的。 光波垂直于光传播方向有任意方向发射的光,称为非偏振光。 圆偏正光:单一波长的线偏振光可分解为两束振幅、频率相同,旋转方向相反的圆偏振光。 椭圆偏振光:如果两束圆偏振光的振幅(强度)不相同,则合成的将是一束椭圆偏振光。 分子的运动可分为平动、转动、振动和分子内电子的运动。各能量状态是分立的,非连续的,具有量子化特征。每个电子能级中包含了若干振动能级,每个振动能级中包含了若干转动能级,即△ E 电子 >△ E 振动 >△ E 转动 有机化合物中的价电子:形成单键的ζ电子;形成双键或三键的电子;未成键的 n 电子 (O、N、 S、Cl) 电子跃迁:分子吸收光子后,基态的一个电子被激发到反键分子轨道(电子激发态)。 电子跃迁的必要条件:物质接受的紫外光或可见光的能量与价键电子的跃迁能△ E 相等。 跃迁类型: 1、ζ→ζ*跃迁:ζ轨道上的电子由基态激发到激发态产生的跃迁。需要较高能 量,一般发生在低于 150nm 的远紫外区。 2、→ * 跃迁:双键或三键中轨道上的电子吸 收紫外线后产生的跃迁。吸收峰一般在小于200 nm 的紫外区。 3、n→*跃迁:在 -CO- 、-CH O、-COOH 、硝基等基团中,不饱和键一端直接与未用电子对的杂原子相连所产生的跃迁。4、n→ζ*跃迁:含有未用电子对基团中的未用电子对在吸收光能后产生的跃迁。如-OH 、 -SH、-Cl 等。△ E:ζ→ζ*>n→ζ →*> *> n→* 电子跃迁的选律:1.自旋定律,△ S = 0(电子在跃迁过程中自旋方向不变);2.轨道选律,△ L = 0,±1(电子在同种轨道之间的跃迁是禁止的);3.对称性选律(允许跃迁:ζ→ζ*、→ * 禁阻跃迁:→ζ*、ζ→ * 、 n→ * ) 紫外吸收光谱:应用不同波长紫外或可见光依次照射一定浓度的样品溶液,并测出在不同波长处样品的吸收度,然后以波长为横坐标,吸收度为纵坐标作图,所得曲线即紫外吸收曲线。波 长范围: 100-400nm, 其中 100-200nm 为远紫外区, 200-400nm 为近紫外区(常指) 肩峰(曲折): S,是指当吸收曲线在下降或上升处有停顿或吸收稍有增加的现象,常是由 主峰内藏有其他吸收峰造成。 末端吸收:紫外吸收曲线的短波末端处吸收增强,但未成峰形。

各种光谱分析的原理解读

各种仪器分析的基本原理及谱图表示方法!!!来源:张月娟的日志 紫外吸收光谱 UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法 FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法 IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法 Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法 NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息电子顺磁共振波谱法 ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法 MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法 GC 分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离 谱图的表示方法:柱后流出物浓度随保留值的变化

(完整版)现代有机分析期末试卷(网络版)

2008学年第二学期现代有机分析期末试卷 班级:姓名:学号: 一、判断题(1*7) 1.分子离子可以是奇电子离子,也可以是偶电子离子。……………………………(×) 2. 苯环中有三个吸收带,都是由σ→σ*跃迁引起的。………………………….......…(×) 3. 离子带有的正电荷或不成对电子是它发生碎裂的原因和动力之一。..........……….....(√) 4. 当物质分子中某个基团的振动频率和红外光的频率一样时,分子就要释放能量,从原来的基态振动能级跃迁到能量较高的振动能级。…………………………………….…(×) 5. 在核磁共振中,凡是自旋量子数不为零的原子核都没有核磁共振现象。......………...(×) 6.符合比尔定律的有色溶液稀释时,其最大吸收峰的波长位置不移动但吸收峰强度发生浅色效应。………………………………………………………………………………………(√) 7. 质谱图中质荷比最大的峰不一定是分子离子峰。但分子离子峰一定是质谱图中质荷比最大的峰。………………………………………………………………………………………(√) 二、选择题(3*12) 1.含O、N、S、卤素等杂原子的饱和有机物,其杂原子均含有未成键的( B )电子。由于其所占据的非键轨道能级较高,所以其到σ*跃迁能……………………………………( A ) 1 . A. π B. n C. σ 2. A.小 B. 大 C.100nm左右 D. 300nm左右 2.质谱中分子离子能被进一步裂解成多种碎片离子,其原因是……………………( D ) A.加速电场的作用。 B.电子流的能量大。 C.分子之间相互碰撞。 D.碎片离子均比分子离子稳定。 3.用紫外可见光谱法可用来测定化合物构型,在几何构型中,顺式异构体的波长一般都比反式的对应值短,并且强度也较小,造成此现象最主要的原因是…………………………( B )

有机化合物的红外光谱分析

有机化合物的红外光谱分析 系别:化学物理系 学号:PB09206108 姓名:倪宇飞

有机化合物的红外光谱分析 一、实验目的 (1)初步掌握两种基本样品制备技术及傅立叶变换红外光谱仪的简单操作。 (2)通过谱图解析及标准谱图的检索,了解由红外光谱鉴定未知物的一般过程。 二、实验原理 (1)原理概述 物质分子中的各种不同基团,在有选择的吸收不同频率的红外辐射后,发生振动能级之间的跃迁,形成各自独特的红外吸收光谱。据此,可对物质进行定性和定量的分析。特别是对化合物结构的分析,应用更为广泛。 (2)对试样的要求 A.试样应该是单一组分的纯物质,纯度应大于98%,便于与纯化合物的标准进行 对照,多组分试样应尽量在测试前预先用分馏、萃取、重结晶、区域熔融和色谱法进行分离提纯; B.试样中不应含有游离水。本身水有红外吸收,会严重干扰样品的谱图,而且会 侵蚀吸收池的盐窗,游离水的吸收为止约为3400cm-1以及1630cm-1; C.试样的浓度和测试厚度应该选择适当,以使光谱图中的大多数吸收峰透射比处 于10%~80%范围内。 (3)制样方法 本次实验中的提供了固体和液体两种未知待测样品,因此有针对性的采用了两种制样方法 A.液膜法 对于沸点较高的的液体,直接将样品滴在两块NaCl盐窗之间,形成没有气泡的毛细厚度液膜,之后用夹具固定,放入仪器的光路中进行测试。本实验中由于液体的流动性较差,故只用一片盐窗即可; B.KBr压片法,将1~2mg固体试样与200mg纯KBr研细混合,研磨至粒径小 于2微米,在油压机上压成透明薄片即可用于测定。 (4)仪器工作原理 傅立叶变换红外光谱仪主要由光源(硅碳棒、高压汞灯)、Michelson干涉仪、检测器、计算机和记录仪组成

红外光谱分析技术及其应用

红外光谱分析技术及其应用(作者: _________ 单位:___________ 邮编: ___________ ) 作者:范雪芳徐淼侯晓涛王帅李洪宇张丽华 【摘要】红外光谱(IR)分析技术是一门发展迅猛的高新技术,与传统分析技术相比,红外光谱分析技术具有分析速度快,样品用量少,无破坏无污染等特点。红外光谱测定的是物质中分子的吸收光谱,不同的物质会有其特征指纹的特性,利用红外指纹图谱技术对中成药进行质量鉴定与分析,借助计算机和模式识别等技术,以综合的、宏观的、非线性的分析理念和质量控制模式来评价中药的真伪优劣 【关键词】红外光谱;红外指纹图谱技术 【Abstract ] Infrared spectrum (IR) is a fast developing newly tech no logy. Comparedwith traditi onal an alysis tech no logy, IR possesses characters of fast analysis, little sample, no breach and no pollution. IR measures the absorption spectrum of molecule, and different substances have different fingerprint patter ns. Thus, IR tech no logy can be applied to detect and an alyze the quality of traditi onal Chin ese drug. Using the computer, pattern recognition and so on, we can estimate if

原子光谱解读

光谱『spectrum』 光波是由原子内部运动的电子产生的.各种物质的原子内部电子的运动情况不同,所以它们发射的光波也不同.研究不同物质的发光和吸收光的情况,有重要的理论和实际意义,已成为一门专门的学科——光谱学.下面简单介绍一些关于光谱的知识. 分光镜观察光谱要用分光镜,这里我们先讲一下分光镜的构造原理.图6-18是分光镜的构造原理示意图.它是由平行光管A、三棱镜P和望远镜筒B组成的.平行光管A的前方有一个宽度可以调节的狭缝S,它位于透镜L1的焦平面①处.从狭缝射入的光线经透镜L1折射后,变成平行光线射到三棱镜P上.不同颜色的光经过三棱镜沿不同的折射方向射出,并在透镜L2后方的焦平面MN上分别会聚成不同颜色的像(谱线).通过望远镜筒B的目镜L3,就看到了放大的光谱像.如果在MN那里放上照相底片,就可以摄下光谱的像.具有这种装置的光谱仪器叫做摄谱仪. 发射光谱物体发光直接产生的光谱叫做发射光谱.发射光谱有两种类型:连续光谱和明线光谱. 连续分布的包含有从红光到紫光各种色光的光谱叫做连续光谱(彩图6).炽热的固体、液体和高压气体的发射光谱是连续光谱.例如电灯丝发出的光、炽热的钢水发出的光都形成连续光谱. 只含有一些不连续的亮线的光谱叫做明线光谱(彩图7).明线光谱中的亮线叫做谱线,各条谱线对应于不同波长的光.稀薄气体或金属的蒸气的发射光谱是明线光谱.明线光谱是由游离状态的原子发射的,所以也叫原子光谱.观察气体的原子光谱,可以使用光谱管(图6-19),它是一支中间比较细的封闭的玻璃管,里面装有低压气体,管的两端有两个电极.把两个电极接到高压电源上,管里稀薄气体发生辉光放电,产生一定颜色的光. 观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱. 实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.彩图7就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构. 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,某些波长的光被物质吸收后产生的光谱,叫做吸收光谱。例如,让弧光灯发出的白光通过温度较低的钠气(在酒精灯的灯心上放一些食盐,食盐受热分解就会产生钠气),然后用分光镜来观察,就会看到在连续光谱的背景中有两条挨得很近的暗线(见彩图8.分光镜的分辨本领不够高时,只能看见一条暗线).这就是

有机光谱复习总结

有机光谱复习总结 第一章紫外吸收光谱 电子能级跃迁所产生的吸收光谱,主要在近紫外区和可见区,称为可见-紫外光谱;键振动能级跃迁所产生的吸收光谱,主要在中红外区,称为红外光谱;自旋的原子核在外加磁场中可吸收无线电波而引起能级的跃迁,所产生的吸收光谱称为核磁共振谱;c = λ·υ;E = h υ 分子吸收光谱的产生:在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。△E电子>△E振动>△E转动 Lambert–Beer定律:A= -lgT=εCL= KCL A:吸光度;T:透光率,T=I/I o(I、I o分别是出射和入射光的强度):物质浓度为1mol/L 时所测得的吸光度,称为摩尔吸光系数;K:物质浓度为1%(g/100ml)时测得的吸光度,称为百分吸光系数;L:通常用1cm 吸收池(比色皿) 分子轨道的类型:s-s重叠;s-p重叠;p-p重叠;n轨道 电子跃迁类型:1、σ→σ*跃迁:ζ轨道上的电子由基态激发到激发态产生的跃迁。它需要的能量较高,一般发生在真空紫外光区(≤150nm)。饱和烃中的—c—c—键属于这类跃迁,例如乙烷的最大吸收波长λmax为135nm。2、π→π*跃迁:双键或三键中轨道上的电子吸收紫外线后产生的跃迁。它需要的能量低于ζ→ζ*跃迁,吸收峰一般处于近紫外光区,在200 nm左右,其特征是摩尔吸光系数大,一般εmax≥104,为强吸收带。如乙烯(蒸气)的最大吸收波长λmax为162 nm。3、n→π*跃迁:简单的生色团如-CO-、—CHO、-COO H、硝基等中的孤对电子向反键轨道的跃迁。这类跃迁发生在近紫外光区。其特点是谱带强度弱,摩尔吸光系数小,通常小于100,属于禁阻跃迁。4、n→σ*跃迁:含有未用电子对基团中的未用电子对在吸收光能后产生的跃迁。如-OH、-SH、-Cl等。实现这类跃迁所需要的能量较高,其吸收光谱落于远紫外光区和近紫外光区,如CH3OH和CH3NH2的n→ζ* 跃迁光谱分别为183nm和213nm。也属于禁阻跃迁。△E:σ→σ*>n→σ*>π→π*> n →π* 电子跃迁的选律:1自旋定律:△ S = 0;2轨道选律:△L = 0,±1;3对称性选律 允许跃迁:ζ→ζ*、π→π*禁阻跃迁:π→ζ*、ζ→π*、n→ζ*、n→π* 紫外吸收光谱:应用不同波长紫外或可见光依次照射一定浓度的样品溶液,并测出在不同波长处样品的吸收度,然后以波长为横坐标,吸收度为纵坐标作图,所得曲线即紫外吸收曲线。波长范围:100-400nm, 其中100-200nm 为远紫外区,200-400nm为近紫外区(常指) 肩峰(曲折):S,是指当吸收曲线在下降或上升处有停顿或吸收稍有增加的现象,常是由主峰内藏有其他吸收峰造成。 A=-logI/I o=εCL, 摩尔吸收系数ε:指1L溶液中含有1mol溶质,其液层厚度为1cm时,在指定波长和一定条件下所测得的吸收度,单位L/(mol*cm);吸收系数E1cm1%:是指100m

红外吸收光谱分析及其应用

红外吸收光谱分析及其应用 20世纪50年代初期,红外光谱仪问世,揭开了有机物结构鉴定的新篇章。到了50年代末期,已经积累了大量的红外光谱数据,到70年代中期,红外光谱法成为了有机结构鉴定的重要方法。红外光谱测定的优点: 1、任何气态、液态、固态样品都可以进行红外光谱的测定,这是核磁、质谱、紫外等仪器所不及的。 2、每种化合物均有红外吸收,又有机化合物的红外光谱可以获得丰富的信息。 3、常规红外光谱仪价格低廉,易于购置。 4、样品用量小。 红外吸收光谱分析也叫红外分光光度法,十一研究物质分子对红外辐射的吸收特性二建立起来的一种定性(包括结构分析)、定量分析法。根据试样的红外吸收光谱进行定性、定量分析和确定分子结构等分析的方法,称为红外吸收光谱法。 原理:当分子中某个基团的振动频率和红外光的振动频率一致时,分子就吸收红外光的能量,从原来的基态振动能级跃迁到能量较高的振动能级。物质对红外光的吸收曲线称为红外吸收光谱(IR)。 分子吸收红外光必须满足如下两个条件: 1.红外光的能量应恰好能满足振动能级跃迁所需要的能量,当红外光的频率与分子中某基团的振动频率相同时,红外光的能量才恩能够被吸收。 2.分子必须有偶极矩的变化。 与UV(紫外光谱)相比,IR的特点:IR频率范围小、吸收峰数目多、吸收曲线复杂、吸收强度弱。IR峰出现的频率位置由振动能级差决定;吸收峰的个数与分组振动自由度的数目有关;吸收峰的强度则主要取决于振动过程中偶极矩变化的大小和能级跃迁的几率。 红外吸收光谱具有高度的特征性,除光学异构外,没有两种化合物的红外光谱是完全相同的。红外光谱中往往具体要几组相关峰可以互相佐证而增强了定性和结构分析的可靠性,因此在官能团定性方面,是紫外、核磁、质谱等结构分析方法所不及的。红外光谱法可测定链、位置、顺反、晶型等异构体,而质谱法对异构体的鉴别则无能为力;红外光谱测定的样品范围广,无机、有机、高分子等

光谱分析技术及相关仪器解析

第四章光谱分析技术及相关仪器首页基本要求重点难点讲授学时内容提要1 基本要求 1.1掌握 1.1.1掌握光谱分析的基本原理和紫外-可见分光光度计的基本结构和功能。 1.1.2掌握荧光分析的基本原理和荧光光谱仪的组成。 1.1.3掌握原子吸收分光光度计和原子发射光谱仪的基本原理和结构。 1.2 熟悉 1.2.1熟悉常用紫外-可见分光光度计的调试、使用及维护。 1.2.2熟悉荧光光谱仪的调试、使用及维护。 1.2.3熟悉原子吸收分光光度计的性能。 1.3 了解 1.3.1 了解紫外-可见分光光度计的常见故障和进展。 1.3.2了解荧光光谱仪的应用方向。 1.3.3了解原子光谱分析仪的应用方向。 2 重点难点 2.1重点 紫外-可见分光光度计的基本原理、基本结构、分类、调试及使用。 荧光光谱仪的基本原理、基本结构、分类、调试及使用。 原子吸收分光光度计的基本原理、基本结构及使用。 2.2 难点 2.2.1 光谱的产生和分类 2.2.2 光吸收定律 2.2.3 紫外-可见分光光度计的基本原理和性能评价。 2.2.4 荧光光谱仪的基本原理和基本结构。 2.2.5 原子吸收分光光度计和原子发射光谱仪的异同。

3 讲授学时 建议8学时~12学时 4 内容提要 4.1光谱分析技术的基础理论与光谱技术的分类 4.1.1 光谱分析技术的基础理论 1.光是由光量子组成的,具有二重性,即不连续的微粒和连续的波动性。波长和频率是光的特征。 2. 光照射到物质时,可发生折射、反射和透射。根据物质结构和含量的不同,可以得当不同的吸收光谱和发射光谱。 3. 物质的吸收光谱取决于物质的结构,包括分子吸收光谱和原子吸收光谱。分子吸收光谱包括电子、振动和转动这三种光谱。原子吸收光谱通常是线状光谱,只包括外层电子跃迁吸收的能量,位于光谱的紫外区和可见光区。 4.物质的发射光谱有三种:线状光谱、带状光谱及连续光谱。线状光谱由原子或离子被激发而发射;带状光谱由分子被激发而发射;连续光谱由炙热的固体或液体所发射。线光谱是元素的固有特征,每种元素有其特有的不变的线光谱。 4.1.2 光谱技术的分类 利用被测定组分中的分子所产生的吸收光谱进行测定的分析方法,即分子吸收法,包括可见与紫外分光光度法、红外光谱法;利用被测定组分中的分子所产生的发射光谱进行测定的分析方法,称为分子发射法,常见的有分子荧光光度法。利用被测定组分中的原子吸收光谱进行测定的分析方法,即原子吸收法;利用被测定组分中的原子发射光谱进行测定的分析方法,称为原子发射法,包括发射光谱分析法、原子荧光法、X射线原子荧光法、质子荧光法等。 4.2 紫外-可见分光光度计 4.2.1 紫外-可见分光光度计的基本结构 紫外-可见分光光度计的基本结构由光源、单色器、样品池、检测器和放大显示系统等五部分组成。光源是提供入射光的装置,包括热辐射灯(钨灯、卤钨灯等),气体放电灯(氢灯、氘灯及氙灯等),金属弧灯(各种汞灯)等多种。单色器是将来自光源的复合光分解为单色光并分离出所需波段光束的装置,其性能直接影响射出光的纯度,从而影响测定的灵敏度、选择性及校正曲线的线性范围。吸收池是用来盛放被测溶液的器件,同时也决定着透光液层厚度,可用塑料、玻璃、石英或熔凝石英制成。检测器是把光信号转换为电信号的装置,常用的有光电管、光电倍增管、光电二极管阵列、光电池、电荷耦合器

(完整word版)有机光谱分析

第一章紫外吸收光谱 电子能级跃迁所产生的吸收光谱,主要在近紫外区和可见区,称为可见-紫外光谱;键振动能级跃迁所产生的吸收光谱,主要在中红外区,称为红外光谱;自旋的原子核在外加磁场中可吸收无线电波而引起能级的跃迁,所产生的吸收光谱称为核磁共振谱;c = λ·υ;E = h υ 分子吸收光谱的产生:在分子中,除了电子相对于原子核的运动外,还有核间相对位移引起的振动和转动。△ E电子>△ E振动>△ E转动 Lambert–Beer定律:A= -lgT=εCL= KCL A:吸光度;T:透光率,T=I/I o(I、I o分别是出射和入射光的强度):物质浓度为1mol/L 时所测得的吸光度,称为摩尔吸光系数;K:物质浓度为1%(g/100ml)时测得的吸光度,称为百分吸光系数;L:通常用1cm 吸收池(比色皿) 分子轨道的类型:s-s重叠;s-p重叠;p-p重叠;n轨道 电子跃迁类型:1、σ→σ*跃迁:σ轨道上的电子由基态激发到激发态产生的跃迁。它需要的能量较高,一般发生在真空紫外光区(≤150nm)。饱和烃中的—c—c—键属于这类跃迁,例如乙烷的最大吸收波长λmax为135nm。2、π→π*跃迁:双键或三键中 轨道上的电子吸收紫外线后产生的跃迁。它需要的能量低于σ→σ*跃迁,吸收峰一般处于近紫外光区,在200 nm左右,其特征是摩尔吸光系数大,一般εmax≥104,为强吸收带。如乙烯(蒸气)的最大吸收波长λmax为162 nm。3、n→π*跃迁:简单的生色团如-CO-、—CHO、-COOH、硝基等中的孤对电子向反键轨道的跃迁。这类跃迁发生在近紫外光区。其特点是谱带强度弱,摩尔吸光系数小,通常小于100,属于禁阻跃迁。4、n→σ*跃迁:含有未用电子对基团中的未用电子对在吸收光能后产生的跃迁。如-OH、-SH、-Cl等。实现这类跃迁所需要的能量较高,其吸收光谱落于远紫外光区和近紫外光区,如CH3OH和CH3NH2的n→σ*跃迁光谱分别为183nm和213nm。也属于禁阻跃迁。△ E:σ→σ*>n→σ*>π→π*> n→π* 电子跃迁的选律:1自旋定律:△ S = 0;2轨道选律:△ L = 0,±1;3对称性选律 允许跃迁:σ→σ*、π→π* 禁阻跃迁:π→σ*、σ→π*、n→σ*、n→π* 紫外吸收光谱:应用不同波长紫外或可见光依次照射一定浓度的样品溶液,并测出在不同波长处样品的吸收度,然后以波长为横坐标,吸收度为纵坐标作图,所得曲线即紫外吸收曲线。波长范围:100-400nm, 其中100-200nm 为远紫外区,200-400nm为近紫外区(常指) 肩峰(曲折):S,是指当吸收曲线在下降或上升处有停顿或吸收稍有增加的现象,常是由主峰内藏有其他吸收峰造成。 A=-logI/I o=εCL, 摩尔吸收系数ε:指1L溶液中含有1mol溶质,其液层厚度为1cm时,在指定波长和一定条件下所测得的吸收度,单位L/(mol*cm);吸收系数E1cm1%:是指100ml 溶液中含有1g溶质,液层厚度为1cm时,在指定波长和一定条件下所测得的吸收度,单位cm2/g 吸收系数a= E1cm1%/10=ε/摩尔质量 测定吸收系数时的注意事项:所用容量仪器及分析天平应经过校正;被测物质应为经过精制的纯品,并按规定方法干燥;测定所用的溶剂,其空白吸收应符合规定;吸收池应在临用前

相关文档
相关文档 最新文档