文档库 最新最全的文档下载
当前位置:文档库 › 硬盘结构简介

硬盘结构简介

硬盘结构简介
硬盘结构简介

硬盘结构简介

第一部分简介

1,1

一. 硬盘结构简介

1. 硬盘参数释疑

到目前为止, 人们常说的硬盘参数还是古老的CHS(Cylinder/Head/Sector) 参数. 那么为什么要使用这些参数,它们的意义是什么?它们的取值范围是什么?

很久以前, 硬盘的容量还非常小的时候,人们采用与软盘类似的结构生产硬盘. 也就是硬盘盘片的每一条磁道都具有相同的扇区数.由此产生了所谓的3D参数(Disk Geometry). 既磁头数(Heads), 柱面数(Cylinders),扇区数(Sectors),

以及相应的寻址方式.

其中:

磁头数(Heads)表示硬盘总共有几个磁头,也就是有几面盘片, 最大

为255 (用8 个二进制位存储);

柱面数(Cylinders) 表示硬盘每一面盘片上有几条磁道,最大为1023

(用10 个二进制位存储);

扇区数(Sectors) 表示每一条磁道上有几个扇区, 最大为63(用 6

个二进制位存储).

每个扇区一般是512个字节, 理论上讲这不是必须的,但好象没有取

别的值的.

所以磁盘最大容量为:

255 * 1023 * 63 * 512 / 1048576 = 8024 GB ( 1M =1048576 Bytes )

或硬盘厂商常用的单位:

255 * 1023 * 63 * 512 / 1000000 = 8414 GB ( 1M =1000000 Bytes )

在CHS 寻址方式中, 磁头, 柱面, 扇区的取值范围分别为0到Heads - 1, 0 到Cylinders - 1, 1 到Sectors (注意是从1 开始).

2. 基本Int 13H 调用简介

BIOS Int 13H 调用是BIOS提供的磁盘基本输入输出中断调用, 它可以

完成磁盘(包括硬盘和软盘)的复位, 读写, 校验, 定位, 诊断,格式化等功能.

它使用的就是CHS 寻址方式, 因此最大识能访问8 GB 左右的硬盘(本文中如不作特殊说明, 均以1M = 1048576 字节为单位).

3. 现代硬盘结构简介

在老式硬盘中, 由于每个磁道的扇区数相等,所以外道的记录密度要远低

于内道, 因此会浪费很多磁盘空间(与软盘一样). 为了解决这一问题,进一

步提高硬盘容量, 人们改用等密度结构生产硬盘. 也就是说,外圈磁道的扇区

比内圈磁道多. 采用这种结构后, 硬盘不再具有实际的3D参数,寻址方式也改

为线性寻址, 即以扇区为单位进行寻址.

为了与使用3D寻址的老软件兼容(如使用BIOSInt13H接口的软件), 在硬

盘控制器内部安装了一个地址翻译器,由它负责将老式3D参数翻译成新的线性

参数. 这也是为什么现在硬盘的3D参数可以有多种选择的原因(不同的工作模

式, 对应不同的3D参数, 如LBA, LARGE, NORMAL).

4. 扩展Int 13H 简介

虽然现代硬盘都已经采用了线性寻址, 但是由于基本Int13H 的制约, 使

用BIOS Int 13H 接口的程序, 如DOS 等还只能访问8 G以内的硬盘空间.

为了打破这一限制, Microsoft 等几家公司制定了扩展Int 13H 标准

(Extended Int13H), 采用线性寻址方式存取硬盘, 所以突破了8 G的限制,

而且还加入了对可拆卸介质(如活动硬盘) 的支持.

二. Boot Sector 结构简介

1. Boot Sector 的组成

Boot Sector 也就是硬盘的第一个扇区, 它由MBR (MasterBoot Record),

DPT (Disk Partition Table) 和Boot Record ID三部分组成.

MBR 又称作主引导记录占用Boot Sector 的前446 个字节( 0 to 0x1BD ),

存放系统主引导程序(它负责从活动分区中装载并运行系统引导程序).

DPT 即主分区表占用64 个字节(0x1BE to 0x1FD),记录了磁盘的基本分区

信息. 主分区表分为四个分区项, 每项16 字节,分别记录了每个主分区的信息

(因此最多可以有四个主分区).

Boot Record ID 即引导区标记占用两个字节(0x1FE and0x1FF), 对于合法

引导区, 它等于0xAA55, 这是判别引导区是否合法的标志.

Boot Sector 的具体结构如下图所示(参见NightOwl大侠的文章):

下面还有喔(39%)│结束← │↑/↓/PgUp/PgDn 移动│? 辅助说明│0000 ¦------------------------------------------------¦

¦¦

¦¦

¦Master Boot Record¦

¦¦

¦¦

¦主引导记录(446字节)¦

¦¦

¦¦

¦¦

01BD¦¦

01BE ¦------------------------------------------------¦

¦¦

01CD¦分区信息1(16字节)¦

01CE ¦------------------------------------------------¦

¦¦

01DD¦分区信息2(16字节)¦

01DE ¦------------------------------------------------¦

¦¦

01ED¦分区信息3(16字节)¦

01EE ¦------------------------------------------------¦

¦¦

01FD¦分区信息4(16字节)¦

¦------------------------------------------------¦

¦ 01FE ¦01FF¦

¦55¦ AA¦

¦------------------------------------------------¦

2. 分区表结构简介

分区表由四个分区项构成, 每一项的结构如下:

BYTE State: 分区状态, 0 =未激活, 0x80 = 激活(注意此项)

BYTE StartHead: 分区起始磁头号

WORD StartSC: 分区起始扇区和柱面号,底字节的低6位为扇区号,

高2位为柱面号的第9,10 位, 高字节为柱面号的低8 位BYTE Type: 分区类型, 如0x0B = FAT32, 0x83 = Linux 等,

00 表示此项未用,07 = NTFS

BYTE EndHead: 分区结束磁头号

WORD EndSC:分区结束扇区和柱面号, 定义同前

DWORD Relative:在线性寻址方式下的分区相对扇区地址

(对于基本分区即为绝对地址)

DWORD Sectors: 分区大小(总扇区数)

注意: 在DOS / Windows 系统下,基本分区必须以柱面为单位划分

( Sectors * Heads 个扇区), 如对于CHS 为764/255/63 的硬盘,分区的

最小尺寸为255 * 63 * 512 / 1048576 = 7.844 MB.

3. 扩展分区简介

由于主分区表中只能分四个分区, 无法满足需求,因此设计了一种扩展

分区格式. 基本上说, 扩展分区的信息是以链表形式存放的,但也有一些特

别的地方.

首先, 主分区表中要有一个基本扩展分区项,所有扩展分区都隶属于它,

也就是说其他所有扩展分区的空间都必须包括在这个基本扩展分区中.对于

DOS / Windows 来说, 扩展分区的类型为0x05.

除基本扩展分区以外的其他所有扩展分区则以链表的形式级联存放, 后

一个扩展分区的数据项记录在前一个扩展分区的分区表中,但两个扩展分区

的空间并不重叠.

扩展分区类似于一个完整的硬盘, 必须进一步分区才能使用.但每个扩

展分区中只能存在一个其他分区. 此分区在DOS/Windows环境中即为逻辑盘.

因此每一个扩展分区的分区表(同样存储在扩展分区的第一个扇区中)中最多

只能有两个分区数据项(包括下一个扩展分区的数据项).

扩展分区和逻辑盘的示意图如下:

¦-----------------------¦--------

¦ 主扩展分区(/dev/hda2) ¦^

¦-----------------------¦¦

¦扩展¦分区项1¦--\¦

¦¦------------¦¦¦

¦分区表¦分区项2 ¦--+--\¦

¦-----------------------¦¦ ¦¦

¦¦¦ ¦¦

¦ 逻辑盘1 (/dev/hda5)¦<-/ ¦¦

¦¦¦ ¦

¦-----------------------¦¦主

¦扩展分区2¦<----/

¦-----------------------¦扩

¦扩展¦分区项1¦--¦ ¦------------¦¦展

¦分区表¦分区项 2 ¦--+--¦-----------------------¦ ¦¦分

¦¦¦ ¦

¦ 逻辑盘2 (/dev/hda6)¦<-/ ¦区

¦¦¦ ¦

¦-----------------------¦¦¦

¦扩展分区3¦<----/¦

¦-----------------------¦¦

¦扩展¦分区项1¦--\¦

¦¦------------¦¦¦

¦分区表¦分区项2 ¦¦¦

¦-----------------------¦¦ ¦

¦¦¦¦

¦ 逻辑盘3 (/dev/hda7)¦<-/ ¦

¦¦¦

¦-----------------------¦---------

¦扩展¦分区项1¦--¦ ¦------------¦¦展

¦分区表¦分区项 2 ¦--+--

¦-----------------------¦ ¦¦分

¦¦¦ ¦

¦ 逻辑盘2 (/dev/hda6)¦<-/ ¦区

¦¦¦ ¦

¦-----------------------¦¦¦

¦扩展分区3¦<----/¦

¦-----------------------¦¦

¦扩展¦分区项1¦--\¦

¦¦------------¦¦¦

¦分区表¦分区项2 ¦¦¦ ¦-----------------------¦¦ ¦

¦¦¦¦

¦ 逻辑盘3 (/dev/hda7)¦<-/ ¦

¦¦¦

¦-----------------------¦---------

三. 系统启动过程简介

系统启动过程主要由一下几步组成(以硬盘启动为例):

1. 开机:-)

2. BIOS 加电自检( Power On Self Test -- POST )

内存地址为0ffff:0000

3. 将硬盘第一个扇区(0头0道1扇区, 也就是BootSector)

读入内存地址0000:7c00 处.

4. 检查(WORD) 0000:7dfe 是否等于0xaa55,若不等于

则转去尝试其他启动介质,如果没有其他启动介质则显示

"No ROM BASIC" 然后死机.

5. 跳转到0000:7c00 处执行MBR 中的程序.

6. MBR 首先将自己复制到0000:0600 处,然后继续执行.

7. 在主分区表中搜索标志为活动的分区.如果发现没有活动

分区或有不止一个活动分区, 则转停止.

8. 将活动分区的第一个扇区读入内存地址0000:7c00处.

9. 检查(WORD) 0000:7dfe 是否等于0xaa55,若不等于则

显示"Missing Operating System" 然后停止,或尝试

软盘启动.

10. 跳转到0000:7c00处继续执行特定系统的启动程序.

11. 启动系统...

以上步骤中2,3,4,5 步是由BIOS 的引导程序完成.6,7,8,9,10

步由MBR中的引导程序完成.

一般多系统引导程序(如SmartFDISK, BootStar, PQBoot等)

都是将标准主引导记录替换成自己的引导程序, 在运行系统启动程序

之前让用户选择要启动的分区.

而某些系统自带的多系统引导程序(如lilo, NT Loader等)

则可以将自己的引导程序放在系统所处分区的第一个扇区中, 在Linux 中即为SuperBlock (其实SuperBlock 是两个扇区).

注: 以上各步骤中使用的是标准MBR,其他多系统引导程序的引导过程与此不同.

硬盘结构,主引导记录MBR,硬盘分区表DPT,主分区、扩展分区和逻辑分区

硬盘结构,主引导记录MBR,硬盘分区表DPT,主分区、扩展分区和逻辑分区,电脑启动过程 2010-04-17 22:12 filex的文件系统看的云里雾里,还是先总结下FAT的一些基本知识吧。 硬盘结构 硬盘有很多盘片组成,每个盘片的每个面都有一个读写磁头。如果有N个盘片。就有2N个面,对应2N个磁头(Heads),从0、1、2开始编号。每个盘片的半径均为固定值R的同心圆再逻辑上形成了一个以电机主轴为轴的柱面(Cylinders),从外至里编号为0、1、2……。每个盘片上的每个磁道又被划分为几十个扇区(Sector),通常的容量是512byte,并按照一定规则编号为1、2、3……形成Cylinders×Heads×Sector个扇区。 主引导扇区 主引导扇区位于整个硬盘的0柱面0磁头1扇区{(柱面,磁头,扇区)|(0,0,1)},bios在执行自己固有的程序以后就会jump到MBR中的第一条指令。将系统的控制权交由mbr来执行。主引导扇区主要由三部分组成:主引导记录 MBR (Master Boot Record或者Main Boot Record)、硬盘分区表 DPT(Disk Partition Table)和结束标志字三大部分组成。 对于硬盘而言,一个扇区可能的字节数为128×2n (n=0,1,2,3)。大多情况下,取n=2,即一个扇区(sector)的大小为512字节。在总共512byte的主引导记录

中,MBR的引导程序占了其中的前446个字节(偏移0H~偏移1BDH),随后的64个字节(偏移1BEH~偏移1FDH)为DPT(Disk PartitionTable,硬盘分区表),最后的两个字节“55 AA”(偏移1FEH~偏移1FFH)是分区有效结束标志。 主引导记录MBR(master boot record) 主引导记录中包含了硬盘的一系列参数和一段引导程序。其中的硬盘引导程序的主要作用是检查分区表是否正确并且在系统硬件完成自检以后引导具有激活标 志的分区上的操作系统,并将控制权交给启动程序。MBR是由分区程序(如Fdisk)所产生的,它不依赖任何操作系统,而且硬盘引导程序也是可以改变的,从而能够实现多系统引导。 硬盘分区表DPT(Disk Partition Table) 硬盘分区表占据MBR扇区的64个字节(偏移01BEH--偏移01FDH),可以对四个分区的信息进行描述,其中每个分区的信息占据16个字节。具体每个字节的定义可以参见硬盘分区结构信息。 结束标志字 结束标志字55,AA(偏移1FEH- 偏移1FFH)是MBR扇区的最后两个字节,是检验主引导记录是否有效的标志。 电脑启动过程 ?系统开机或者重启。 ?BIOS 加电自检 ( Power On Self Test -- POST )。BIOS执行内存地址

硬盘内部如此精彩——硬盘构造再揭秘

硬盘内部如此精彩——硬盘构造再揭秘 组装也是高科技 谈起参观WD泰国硬盘工厂,我们必须要明确的一点是,如果不加特别解释的话,我们通常所说的“硬盘工厂”,指的都是硬盘整机(即“硬盘驱动器”)组装厂。CPU的制造过程中也有封装的步骤,可以把这一步拿出来单独成立封装测试厂,但我们很难把CPU明确地再分解成若干部件,每种部件都有特定的供应商——要真这样的话Intel的CPU工厂只靠做些组装的活儿就能获取高额利润,那钱赚得岂不是太容易? 如果要类比的话,硬盘工厂(即整机组装厂,下同)应该与光驱生产厂更为接近,前者要用到的磁头、盘片及马达与后者要用到的光头、马达等往往都来自于供应商,大家做的都是一个组装的工作。更通俗一些的话,还可以想想PC的生产:CPU来自于Intel或AMD,主板来自于华硕、微星等有名或无名的大厂小厂,内存(条)来自于三星、英飞凌……这是大家最熟悉的组装过程了。当然,这些比喻那些硬盘供应商们听了会生气的,别的不说,就凭现代硬盘的(温彻斯特)工作原理要求内外部空气要相对隔绝这一点,就需要硬盘工厂斥巨资建立并维护Class 100(100级)甚至Class 10(10级)的净室,关键的生产步骤都在里面进行,技术要求和难度都远非PC和光驱的生产所能相比——不然,硬盘厂商也不至 于像现在这样“屈指可数”啊。 在净室中操作的工人们。环境要求:温度20℃±3℃,相对湿度40%~65%,直径大于0.5微米的微粒不超过100个,大于0.3微米的不超过300个。不同的工厂上述条件会有 出入,但都是很严格的。

当然,硬盘整机的制造是“来料加工”的组装过程,并不意味着硬盘厂商不具备部件的研发和生产能力。日立(Hitachi GST,以前的IBM硬盘部门)和希捷(Seagate)都采用所谓的垂直整合模式,即能够包办从磁头、盘片的研发生产直至硬盘整机制造的全过程。就像希捷公司台湾技术行销经理朱秋男先生所说,希捷拥有从部件到硬盘驱动器的全线技术,生产硬盘所用到的主要零部件中只有马达来自于日本厂家(在中国和泰国生产)。当然,这样做的代价也是巨大的,譬如希捷公司从2003年7月至2004年6月的硬盘技术研发投入达到了6.66亿美元,而在此期间其总收入为62.3亿美元,净收入5.29亿美元(若排除2004年4~6月的重组费用,为5.66亿美元)。 相比之下,WD(西部数据)公司采用的(在部件技术上的)跟随策略成本就要低很多,所冒的风险也小。同期WD的总收入为30.47亿美元,净收入1.513亿美元(若排除2003年第三季度收购Read-Rite的费用,为1.993亿美元),而在此期间的研发投入为1.84亿美元。即使考虑到不同的公司在不同时期经营业绩和研发投入会有一定的波动,这种对比 也是颇具参考价值的。 站在不同的角度去解读上述数据会得出不同的结论。笔者认同高投入才能有高产出的观点,希捷公司较高水平的利润率就与其高研发投入有很大的关系。不过,这样无疑会抬高硬盘行业的门槛,特别是对WD、三星等以生产较低利润的台式机硬盘为主的厂商更是如此——如果所有的硬盘厂商都必须采用垂直整合的业务模式,那么硬盘行业的格局就不会是今天这个样子。在这方面我们可以想想PC行业,虽然更有技术含量的IBM最终退出了这个自己一手开创的市场,但如果没有高度的分工合作带来的市场繁荣,今天用得起计算机的人能有这 么多吗? 越扯越远了,就此打住,言归正传。 部件举例之磁头上岗记(上) 强求每家硬盘厂商都走垂直整合之路不现实,但尽可能地掌握一些关键部件的技术却很有必要。特别是在盘片存储密度越来越高、磁头尺寸越来越小,以至一度因遭遇技术瓶颈而被迫放缓单碟容量提升速度的今天,缺乏盘片和磁头技术储备的硬盘厂商将会在新产品的推出上处于不利地位。迈拓(Maxtor)在2001年9月将MMC Technology变成了自己的全资子公司,现在后者已经是它最大的盘片提供者;WD则在2003年7月收购了磁头供应商Read-Rite,现在其位于加州Fremont的晶圆制造厂即得自该交易。垂直整合不是万能的, 但离核心技术太远是很容易无能的。 笔者没有去过Fremont,但有幸参观过日立GST设在深圳的磁头生产工厂。与硬盘工厂一样,磁头厂也不允许随便拍照,好在WD在其为此次访问专门准备的会议室里摆放了磁头生产过程中各个阶段的产品,我们可以一一展示给大家。

硬盘内部结构图解

硬盘内部结构图解 平时大家在论坛上对硬盘的认识和选购,大都是通过产品的外型、性能指标特征和网站公布的性能评测报告等方面去了解,但是硬盘的内部结构究竟是怎么样的呢,所谓的磁头、盘片、主轴电机又是长什么样子呢,硬盘的读写原理是什么,估计就不是那么多人清楚了。所以我就以一块二手西数硬盘WD200BB为例向大家讲解一下硬盘的内部结构,让硬件初学者们能够对硬盘有一个更深的认识。 在动手之前,先了解一些硬盘的结构理论知识。总得来说,硬盘主要包括:盘片、磁头、盘片主轴、控制电机、磁头控制器、数据转换器、接口、缓存等几个部份。所有的盘片都固定在一个旋转轴上,这个轴即盘片主轴。而所有盘片之间是绝对平行的,在每个盘片的存储面上都有一个磁头,磁头与盘片之间的距离比头发丝的直径还小。所有的磁头连在一个磁头控制器上,由磁头控制器负责各个磁头的运动。磁头可沿盘片的半径方向动作,而盘片以每分钟数千转到上万转的速度在高速旋转,这样磁头就能对盘片上的指定位置进行数据的读写操作。由于硬盘是精密设备,尘埃是其大敌,所以必须完全密封。现在先贴上今日的主角西数WD200BB硬盘的“玉照”,它是容量为20G的7200转的普通3.5寸IDE硬盘,属于比较常见的产品,也是用户最经常接触的。除此之外,硬盘还有许多种类,例如老式的普通IDE硬盘是5.25英寸,高度有半高型和全高型,还有体积小巧玲珑的笔记本电脑,块头巨大的高端SCSI硬盘及非常特殊的微型硬盘。

在硬盘的正面都贴有硬盘的标签,标签上一般都标注着与硬盘相关的信息,例如产品型号、产地、出厂日期、产品序列号等,上图所示的就是WD200BB的产品标签。在硬盘的一端有电源接口插座、主从设置跳线器和数据线接口插座,而硬盘的背面则是控制电路板。从下图中可以清楚地看出各部件的位置。总得来说,硬盘外部结构可以分成如下几个部份:

硬盘接口类型简介(图例版)

串口和并口: 计算机上有串口和并口的地方应该有:硬盘、主板、还有打印机等。串口一般用于接一些特殊的外接设备。比如通讯方面的设备。并口通常用于连接打印设备。串口比较小,有突出的针露在外面。并口一般比串口要大,通常是红色的,有两排小孔; 串口形容一下就是一条车道,而并口就是有8个车道同一时刻能传送8位(一个字节)数据。但是并不是并口快,由于8位通道之间的互相干扰。传输受速度就受到了限制。而且当传输出错时,要同时重新传8个位的数据。串口没有干扰,传输出错后重发一位就可以了。所以快比并口快。串口硬盘就是这样被人们重视的; 串口和并口是连接外设的不同端口。这两种端口的外形、传输速度和可以连接的设备都有所不同; 串口传输是一位接一位的,象串起的珠子一样,并口是可以并发数据的可以同时传输多位; 现在有串行的硬盘SATA接口,是一样的道理,它之所以可以150MB/s的速度传输,得益于其串行的方式,并行的几路信号在比较高的频率下不能很好的解决他们之间的干扰,所以现在ATA 13MBb/s的并行硬盘已走到极限,取而代之的是STAT。另80 channel 的ATA100的并口硬盘数据线,其中有40根是地线,是用来防止并行信号之间的干扰的; STAT那个速度标称的bit/s,实际就是150M/300M的速度,现在最快的单块硬盘的速度也不足100MB/s ,常见的都在40-60MB/s的速度; 切记!!!接口不是瓶颈

硬盘接口常用的分为四种 1、SATA 接口硬盘 SATA是Serial ATA的缩写,即串行ATA。这是一种完全不同于并行ATA的新型硬盘接口类型,由于采用串行方式传输数据而得名。SATA总线使用嵌入式时钟信号,具备了更强的纠错能力,与以往相比其最大的区别在于能对传输指令(不仅仅是数据)进行检查,如果发现错误会自动矫正,这在很大程度上提高了数据传输的可靠性。串行接口还具有结构简单、支持热插拔的优点。 SATA接口主板

硬盘主要参数

硬盘(英文名:Hard Disc Drive,简称HDD,全名:温彻斯特式硬盘)作为电脑主要的存储设备之一,可以说在整个电脑系统中起着重要的作用,因为我们大多数的数据都是通过硬盘来存储的,这些数据比硬盘本身甚至整台电脑都要宝贵许多。 探秘硬盘内部结构 而我们平时了解硬盘,主要是从外观以及容量、性能等各种参数去认识,它的内部结构到底是怎么样的?相信多数人都不是很清楚。今天笔者就通过工具把一块硬盘大卸八块,跟大家一起探秘一下硬盘内部精密的结构,一起来看下吧。 另外有一点需要提醒大家:没事千万不要随意打开硬盘的外壳,因为硬盘的内部是不能沾染灰尘的,否则立即报废。我们本次的硬盘是已经不能使用的了,所以看了本篇文章的童鞋拆硬盘后导致硬盘坏了可不要来找我,嘿嘿。

在实际动手之前,我们先来了解一下硬盘结构的理论知识。总得来说,硬盘主要包括:盘片、磁头、盘片主轴、控制电机马达、磁头控制器、数据转换器、接口、缓存等几个部份。 一般在硬盘的正面都贴有硬盘的标签,标签上一般都标注着与硬盘相关的信息,例如产品型号、产地、出厂日期、产品序列号等。而硬盘的背面则是控制电路板,同时在硬盘的一端有数据接口和供电接口设计。

要拆解硬盘,工具是必不可少的。由于硬盘的安装螺丝是使用特殊的内六角螺丝,而且螺丝中心呈凹形,所以使用普通螺丝刀是没法拧开的。 拆掉六个螺丝之后就可以将电路板分离出来,这时可以看到,电路板和硬盘体之间还有一层软垫,以减免两者间发生短路的几率。

从上图可以看到,该硬盘采用了Marvell 88i8845E-BHY2主控芯片,内部集成了32MB缓存,而电机控制芯片则来自于SMOOTH的L7251。 出处:pconline 2010年09月09日作者:天涯为客责任编辑:lvke 要想打开硬盘,我们首先要把硬盘正面的9个安装螺丝拆卸下来。从上图可以看到,除了外围的7个螺丝外,硬盘的标签下面还隐藏有2个螺丝,大家拆卸时需要注意。

硬盘结构图

硬盘几种结构 硬盘是电脑中存贮数据的重要部件,可是由于它长期被封闭在机箱内部,属于那种“幕后英雄”,所以大部分用户可能对其了解不是很透彻。没有关系,在这里,我们将一起去冒险,对它作一个全面的了解吧。 由于SCSI硬盘平时我们接触较少,因此我们目前所提到的硬盘一般指的是IDE接口的硬盘。这种硬盘多属于温盘(Winchester),由头盘组件(HDA,Head Disk Assembly)与印刷电路板组件(PCBA,Print Circuit Board Assembly)组成。平时我们了解硬盘,多是从产品外观、产品特征及磁盘性能等方面去认识,那么硬盘的内部到底是什么样呢?相信许多用户都不太清楚,毕竟谁都不会去冒冒失失地将硬盘拆开来,所以了解硬盘内部结构的机会实在太少了。那么就随着我一起来看看吧。 1、硬盘外部结构 (1)接口:接口包括电源接口插座和数据接口插座两部分,其中电源插座就是与主机电源相连接,为硬盘正常工作提供电力保证。数据接口插座则是硬盘数据与主板控制芯片之间进行数据传输交换的通道,使用时是用一根数据线将其与主板IDE接口或与其他控制适配器的接口相连接,经常听说的40针、80芯的接口电缆也就是指数据线,数据接口可以分成IDE 接口和SCSI接口两大派系(见图1)。 图1 SCSI接口 (2)控制电路板:大多数的控制电路板都采用贴片式焊接,它包括主轴调速电路、磁头驱动与伺服定位电路、读写电路、高速缓存、控制与接口电路等。在电路板上还有一块ROM芯片,里面固化的程序可以进行硬盘的初始化,执行加电和启动主轴电机,加电初始寻道、定位以及故障检测等。在电路板上还安装有容量不等的高速数据缓存芯片。读写电路的作用就是控制磁头进行读写操作。磁头驱动电路直接控制寻道电机,使磁头定位。主轴调速电路是控制主轴电机带动盘体以恒定速率转动的电路。缓存(Cache)对磁盘性能所带来的作用是毋庸置疑的,在读取零碎文件数据时,大缓存能带来非常大的优势。 (3)外壳:硬盘的外壳与底板结合成一个密封的整体,正面的外壳保证了硬盘盘片和机构的稳定运行。在固定面板上贴有产品标签,上面印着产品型号、产品序列号、产地、生产日期等信息,由此我们可以对这款产品作一番大致的了解。除此,还有一个透气孔,它的作用就是使硬盘内部气压与大气气压保持一致。另外,硬盘侧面还有一个向盘片表面写入伺服信号的Servo孔。 Servo孔的作用是向硬盘盘片写入伺服信号 2、硬盘内部结构 拆下控制电路板后再将外面的保护面拆后就现出了硬盘的内脏(见图4)。它由磁头、盘片、主轴、电机、接口及其他附件组成,其中磁头盘片组件是构成硬盘的核心,它封装在硬盘的净化腔体内,包括有浮动磁头组件、磁头驱动机构、盘片、主轴驱动装置及前置读写控制电路这几个部分。将硬盘面板揭开后,内部结构即可一目了然。

UNIX硬盘分区简介

UNIX硬盘分区简介 写这份文档的初衷是在网络上和一些朋友聊天的时候,常常会被问到这个问题,回答了很多次。为了一劳永逸的解决这个问题,决定写一份文档,方便以后再次被问到的时候copy,呵呵。同时,也是为了帮助自己不断巩固这些知识,算是一份粗糙的笔记吧。 “Unix硬盘分区简介”这个标题有些大,本来只是为了介绍一下Solaris和Linux的分区,但是也希望对其他Unix熟悉的朋友们分享您们的知识,将您们所熟悉的Unix,例如FreeBSD,Sco Unix,Hp Unix等的硬盘分区知识,share出来。假如发现了文章之中的错误,请联系我(E-Mail:cqwlyh@https://www.wendangku.net/doc/b47061283.html,;MSN:cqwlyh@https://www.wendangku.net/doc/b47061283.html,),假如对文章进行了修改,请留下您的名字和联系方式。 ok,闲话少说,让我们进入正题吧: 1.Solaris硬盘分区简介 Solaris下,一个磁盘包含8个分区,标记为0-7。此信息能够通过format命令,然后选择一个硬盘来看到,例如,在我自己的系统中(Solaris 9,Ultra 60),显示出来的信息如下: # format Searching for disks...done AVAILABLE DISK selectIONS: 0. c0t0d0 /pci@1f,4000/scsi@3/sd@0,0 Specify disk (enter its number): 0 selecting c0t0d0 [disk formatted] Warning: Current Disk has mounted partitions. FORMAT MENU: disk - select a disk

固态硬盘基础知识

固态硬盘基础知识 作者:长风傲天 写在前面:最近固态硬盘降价,看论坛的情况也有不少景友入手了,只是没见过几位同学真正理解固态硬盘的原理和使用方法。所以写一些东西出来,还请各位方家指正。 部分内容及配图来自PCEVA论坛超级版主neeyuese,在此表示最诚挚的敬意和感谢。 我已经尽量避免写过多不易理解的概念,所以难免会有一些说法有问题,还请谅解。 ------------------------------------------------------------------------------------------------------------------------------ 1楼:固态硬盘基本原理 2楼:固态硬盘正常使用指南 3楼:固态硬盘选购的品牌参考 不想看原理的童鞋请往下走。鸡蛋板砖随意。 ------------------------------------------------------------------------------------------------------------------------------ 机械硬盘的工作原理 要理解固态硬盘(Solid State Drive)的基本原理,首先得研究一下普通机械硬盘。借用网上的一 张图片: 上图是一款双碟的机械硬盘。任何机械硬盘的结构都是一样的:电路板上的主控制器芯片负责与芯片组之间的通信并且控制硬盘内部的运转;盘片是用磁性材料做成的,固定在硬盘中部的马达上旋转(这里就有了转速的区别:5400rpm指的是每分钟盘片旋转5400转,7200rpm则是每分钟7200转);磁头(图中那个近似于三角形的部件)则沿着盘片的径向移动。磁头的移动过程就是硬盘寻道的过程(这句话不太严谨,但是除了断电归位等情况之外绝大部分情况下都是)。至于“寻道”,则是和盘片的结构有关。

硬盘接口技术详解

硬盘接口技术详解 1、IDE/ATA 1.1 概述 IDE即Integrated Drive Electronics,它的本意是指把控制器与盘体集成在一起的硬盘驱动器,我们常说的IDE接口,也叫ATA (Advanced Technology Attachment)接口,现在PC机使用的硬盘大多数都是IDE兼容的,只需用一根电缆将它们与主板或接口卡连起来就可以了。 IDE接口是由Western Digital与COMPAQ Computer两家公司所共同发展出来的接口。因为技术不断改进,新一代Enhanced IDE(加强型IDE,简称为EIDE)最高传输速度可高达100MB/秒(Ultra ATA/100)。 IDE接口有两大优点:易于使用与价格低廉,问世后成为最为普及的磁盘接口。但是随着CPU速度的增快以及应用软件与环境的日趋复杂,IDE的缺点也开始慢慢显现出来。Enhanced IDE就是Western Digital公司针对传统IDE接口的缺点加以改进之后所推出的新接口。Enhanced IDE使用扩充CHS(Cylinder-Head-Sector)或LBA(Logical Block Addressing)寻址的方式,突破528MB的容量限制,可以顺利地使使用容量达到数十GB等级的IDE硬盘。 在PC中,I/O设备,如硬盘驱动,不是直接与系统中央总线连接的(AT总线在AT系统,或PCI总线在之后的系统)。而I/O设备与接口芯片相连,而接口芯片与系统总线连接。 接口芯片组成了I/O设备与系统总线的桥,在系统总线协议(PCI或AT)与I/O设备协议(如IDE或SCSI)之间进行翻译。这使I /O设备可以独立于系统总线协议。 下图展示了PC工作站的基本系统结构,展示了IDE设备与系统余下部分的关系。 1.2 IDE传输模式 IDE硬盘接口的几种传输模式有明显区别。IDE接口硬盘的传输模式,经历过三个不同的技术变化,由PIO(Programmed I/O)模式,DMA(Direct Memory Access)模式,直至现今的Ultra DMA模式(简称UDMA)。 PIO(Programmed I/O)模式的最大弊端是耗用极大量的中央处理器资源,在以前还未有DMA模式光驱的时候,光驱都是以PIO 模式运行。大家可能还记得,当时用光驱播放VCD光盘,再配以软件解压,就算使用Pentium 166,其流畅度也不理想,这就是处理器被长期大量占用的缘故。以PIO模式运行的IDE接口,数据传输率达3.3MB/秒(PIO mode 0)至16.MB/秒(PIO mode 4)不等。后

合理规划您的硬盘分区

合理规划您的硬盘分区 2)最合理的的分区方式; 最合理的分区结构:主分区在前,扩展分区在后,然后在扩展分区中划分逻辑分区;主分区的个数+扩展分区个数要控制在四个之内;比如下面的分区是比较好的; [主|分区1] [主|分区2] [主|分区3] [扩展分区] | [逻辑|分区5] [逻辑|分区6] [逻辑|分区7] [逻辑|分区8] ... ... [主|分区1] [主|分区2] [扩展分区] | [逻辑|分区5] [逻辑|分区6] [逻辑|分区7] [逻辑|分区8] ... ... [主|分区1] [扩展分区] | [逻辑|分区5] [逻辑|分区6] [逻辑|分区7] [逻辑|分区8] ... ... 最不合理的分区结构:主分区包围扩展分区;比如下面的; [主|分区1] [主|分区2] [扩展分区] [主|分区4] [空白未分区空间] | [逻辑|分区5] [逻辑|分区6] [逻辑|分区7] [逻辑|分区8] ... ... 这样[主|分区2] 和[主|分区4] 之间的[扩展分区] 是有自由度,但[主|分区4]后的[空白未分区空间]怎么办?除非把主分区4完全利用扩展分区后的空间,否则您想在主分区4后再划一个分区是不可能的,划分逻辑分区更不可能;虽然类似此种办法也符合一个磁盘四个主分区的标准,但这样主分区包围扩展分区的分区方法实在不可取;我们根据这个标题,查看一下我们的例子,是不是符合这个标准呢? Device Boot Start End Blocks Id System /dev/hda1 * 1 765 6144831 7 HPFS/NTFS /dev/hda2 766 2805 16386300 c W95 FAT32 (LBA) /dev/hda3 2806 9729 55617030 5 Extended /dev/hda5 2806 3825 8193118+ 83 Linux /dev/hda6 3826 5100 10241406 83 Linux /dev/hda7 5101 5198 787153+ 82 Linux swap / Solaris /dev/hda8 5199 6657 11719386 83 Linux /dev/hda9 6658 7751 8787523+ 83 Linux /dev/hda10 7752 9729 15888253+ 83 Linux 后记: 把分区基础写出来,主要是想让新手弟兄知道什么是合理的分区结构,如果把硬盘分区规划好了,也为以后学习省却了不少麻烦;在此文后,我计划写具体的分区工具介绍;这也算一个基础知识的积累;虽

从硬盘接口技术的发展谈硬盘技术的发展

兰州大学信息科学与工程学院 从硬盘接口技术的发展谈硬盘技术的发展 黄来君 2011/5/6

从硬盘接口技术的发展谈硬盘技术的发展 目录 1、概述 2、发展历程 3、IDE接口和SATA接口的区别 4、SCSI接口和SAS接口的区别 5、总结 一、概述: (1)硬盘接口: 硬盘接口是硬盘与主机系统间的连接部件,作用是在硬盘缓存和主机内存之间传输数据。不同的硬盘接口决定着硬盘与计算机之间的连接速度,在整个系统中,硬盘接口的优劣直接影响着程序运行快慢和系统性能好坏。 从整体的角度上,硬盘接口分为IDE、SATA、SCSI和光纤通道四种,IDE接口硬盘多用于家用产品中,也部分应用于服务器,SCSI接口的硬盘则主要应用于服务器市场,而光纤通道只在高端服务器上,价格昂贵。SATA是种新生的硬盘接口类型,还正出于市场普及阶段,在家用市场中有着广泛的前景。在IDE和SCSI的大类别下,又可以分出多种具体的接口类型,又各自拥有不同的技术规范,具备不同的传输速度,比如ATA100和SATA;Ultra160 SCSI和Ultra320 SCSI都代表着一种具体的硬盘接口,各自的速度差异也较大。

(图一) (2)IDE IDE的英文全称为“Integrated Drive Electronics”,即“电子集成驱动器”,它的本意是指把“硬盘控制器”与“盘体”集成在一起的硬盘驱动器。把盘体与控制器集成在一起的做法减少了硬盘接口的电缆数目与长度,数据传输的可靠性得到了增强,硬盘制造起来变得更容易,因为硬盘生产厂商不需要再担心自己的硬盘是否与其它厂商生产的控制器兼容。对用户而言,硬盘安装起来也更为方便。IDE这一接口技术从诞生至今就一直在不断发展,性能也不断的提高,其拥有的价格低廉、兼容性强的特点,为其造就了其它类型硬盘无法替代的地位。 (图二) (3)主板IDE接口 IDE代表着硬盘的一种类型,但在实际的应用中,人们也习惯用IDE来称呼最早出现

(完整版)常见几种硬盘接口类型

常见硬盘接口类型 硬盘接口是硬盘与主机系统间的连接部件,作用是在硬盘缓存和主机内存之间传输数据。不同的硬盘接口决定着硬盘与计算机之间的连接速度,在整个系统中,硬盘接口的优劣直接影响着程序运行快慢和系统性能好坏。 从整体的角度上,硬盘接口分为IDE、SATA、SCSI和光纤通道四种。 一、四类硬盘大致情况 1、IDE硬盘 IDE和ATA是一种硬盘,分为33,66,100,133接口频率。 2、SATA SATA,就是现在的主流,串口硬盘; 又分为SATA1为150频率,SATA2具说可达到速度可达300M/S。3、SCIS 硬盘 SCIS硬盘主要用于服务器,可达万转以上.性能最强。一般分为50针、68针和80针三种。 4、光纤通道硬盘 光纤通道的主要特性有:热插拔性、高速带宽、远程连接、连接设备数量大 二、具体情况 1、IDE硬盘

IDE的英文全称为“Integrated Drive Electronics”,即“电子集成驱动器”,它的本意是指把“硬盘控制器”与“盘体”集成在一起的硬盘驱动器。把盘体与控制器集成在一起的做法减少了硬盘接口的电缆数目与长度,数据传输的可靠性得到了增强,硬盘制造起来变得更容易,因为硬盘生产厂商不需要再担心自己的硬盘是否与其它厂商生产的控制器兼容。对用户而言,硬盘安装起来也更奖恪DE这一接口技术从诞生至今就一直在不断发展,性能也不断的提高,其拥有的价格低廉、兼容性强的特点,为其造就了其它类型硬盘无法替代的地位。 IDE代表着硬盘的一种类型,但在实际的应用中,人们也习惯用IDE来称呼最早出现IDE类型硬盘ATA-1,这种类型的接口随着接口技术的发展已经被淘汰了,而其后发展分支出更多类型的硬盘接口,比如ATA、Ultra ATA、DMA、Ultra DMA等接口都属于IDE硬盘。图片 2、SATA硬盘 使用SATA(Serial ATA)口的硬盘又叫串口硬盘,是未来PC机硬盘的趋势。2001年,由Intel、APT、Dell、IBM、希捷、迈拓这几

硬盘的内部结构图解

硬盘的内部结构图解 平时大家在论坛上对硬盘的认识和选购,大都是通过产品的外型、性能指标特征和网站公布的性能评测报告等方面去了解,但是硬盘的内部结构究竟是怎么样的呢,所谓的磁头、盘片、主轴电机又是长什么样子呢,硬盘的读写原理是什么,估计就不是那么多人清楚了。所以我就以一块二手西数硬盘WD200BB为例向大家讲解一下硬盘的内部结构,让硬件初学者们能够对硬盘有一个更深的认识。 在动手之前,先了解一些硬盘的结构理论知识。总得来说,硬盘主要包括:盘片、磁头、盘片主轴、控制电机、磁头控制器、数据转换器、接口、缓存等几个部份。所有的盘片都固定在一个旋转轴上,这个轴即盘片主轴。而所有盘片之间是绝对平行的,在每个盘片的存储面上都有一个磁头,磁头与盘片之间的距离比头发丝的直径还小。所有的磁头连在一个磁头控制器上,由磁头控制器负责各个磁头的运动。磁头可沿盘片的半径方向动作,而盘片以每分钟数千转到上万转的速度在高速旋转,这样磁头就能对盘片上的指定位置进行数据的读写操作。由于硬盘是精密设备,尘埃是其大敌,所以必须完全密封。 现在先贴上今日的主角西数WD200BB硬盘的“玉照”,它是容量为20G的7200转的普通3.5寸IDE硬盘,属于比较常见的产品,也是用户最经常接触的。除此之外,硬盘还有许多种类,例如老式的普通IDE硬盘是5.25英寸,高度有半高型和全高型,还有体积小巧玲珑的笔记本电脑,块头巨大的高端SCSI硬盘及非常特殊的微型硬盘。

在硬盘的正面都贴有硬盘的标签,标签上一般都标注着与硬盘相关的信息,例如产品型号、产地、出厂日期、产品序列号等,上图所示的就是WD200BB的产品标签。在硬盘的一端有电源接口插座、主从设置跳线器和数据线接口插座,而硬盘的背面则是控制电路板。从下图中可以清楚地看出各部件的位置。总得来说,硬盘外部结构可以分成如下几个部份: 一、硬盘接口、控制电路板及固定面板: (1)、接口。接口包括电源接口插座和数据接口插座两部份,其中电源插座就是与主机电源相连接,为硬盘正常工作提供电力保证。数据接口插座则是硬盘数据与主板控制芯片之间进行数据传输交换的通道,使用时是用一根数据电缆将其与主板IDE接口或与其它控制适配器的接口相连接,经常听说的40针、80芯的接口电缆也就是指数据电缆,数据接口主要分成IDE接口、SATA接口和SCSI接口三大派系。 (2)、控制电路板。大多数的控制电路板都采用贴片式焊接,它包括主轴调速电路、磁头驱动与伺服定位电路、读写电路、控制与接口电路等。在电路板上还有一块ROM芯片,里面固化的程序可以进行硬盘的初始化,执行加电和启动主轴电机,加电初始寻道、定位以及故障检测等。在电路板上还安装有容量不等的高速数据缓存芯片,在此块硬盘内结合有2MB 的高速缓存。 (3)、固定面板。就是硬盘正面的面板,它与底板结合成一个密封的整体,保证了硬盘盘片和机构的稳定运行。在面板上最显眼的莫过于产品标签,上面印着产品型号、产品序列号、产品、生产日期等信息,这在上面已提到了。除此,还有一个透气孔,它的作用就是使硬盘内部气压与大气气压保持一致。

硬盘分区介绍

2008年03月15日星期六 15:47 前言:Symantec 收购PowerQuest公司后,现在PartitionMagic 8.05 终于以新名字发布了!PowerQuest PartitionMagic是一个优秀硬盘分区管理工具。该工具可以在不损失硬盘中已有数据的前提下对硬盘进行重新分区、格式化分区、复制分区、移动分区、隐藏/重现分区、从任意分区引导系统、转换分区(如FAT<-->FAT32 )结构属性等。功能强大,可以说是目前在这方面表现最为出色的工具。是一款很强大的工具,而且这个版本是在windows环境下直接运行的,并不需要像其他版本或者工具一样进去dos来进行冗繁的操作。。。 就是说,上手很快。 根据软件的提示,我们可以很简单的操作,重新划分磁盘分区并且不会对磁盘已经有的数据损失。我自己实践的结果也证明了这个,只是有些操作需要重启,中间需要等待。这个时候大家不要着急。它是在运行着的。。。要是最后出现某个什么英文提示,而前面的进度也变成100%的时候,需要注意一下。去查查那英文单词,是叫手动重启的意思(就是下面教程里面的第九步)。这个时候自己重启一下电脑,打开之后,磁盘分区变更已经成功了。 好了,我在多特找的下载地址、4兆多的,蛮实用。大家可以去看看,也可以自己搜索(搜索关键字Norton PartitionMagic V8.05 Build 1371 简装汉化版)。 软件的多特页面介绍是是:https://www.wendangku.net/doc/b47061283.html,/soft/696.html 下载地址(大家可以自己去看,多特是大站,有好多下载地址的):https://www.wendangku.net/doc/b47061283.html,/nortonpartitionmagic.exe 好了,以下教大家怎么使用:以下文章为转载: 朋友装机,调试、修理电脑总会碰到各种各样的问题。经常碰到的一个问题就是硬盘空间不够用啦!晕死,后来发现很多刚接触电脑的朋友都会碰到这个问题。比如,一个朋友40G的硬盘,分了4个区其中C盘空间有10G,安装好XP系统和其他应用软件,硬盘上还剩余4-5个G的空间、可是没过多久,这家伙打电话来说硬盘没空间了。跑去一看,好家伙C盘上还剩余120M空间。而其它的D、E、F、根本没动过,还有至少25G的空间。原来我的朋友装了很多软件、通常这些软件的默认安装路径都是 C:Program Files*****所以一路回车按下去是我朋友最拿手的,自然空间全用完了。被我一顿爆埋怨后,问题总归要解决的。我朋友说要不要重新格式化,然后把C盘的空间调大点啊?! 不用不用,用PartitionMagic 8.0就能搞定。不用重新分区,可以直接在WIN系统中调整分区大小…来,座我旁边,好好看着怎么用,省的以后老找我,嘿嘿~~~ 一:主要功能(分区空间容量调整)打开PartitionMagic 8.0汉化版后的界面。 第一步:单击左侧任务栏选项中的(调整一个分区容量)如下图所示: 第二步:出现该对话框点击下一步。如下图所示:

硬盘内部硬件结构和工作原理详解

硬盘内部硬件结构和工作原理详解 一般硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标、型号、序列号、生产日期、容量、参数和主从设置方法等。这些信息是正确使用硬盘的基本依据,下面将逐步介绍它们的含义。 硬盘主要由盘体、控制电路板和接口部件等组成,如图1-1所示。盘体是一个密封的腔体。硬盘的内部结构通常是指盘体的内部结构;控制电路板上主要有硬盘BIOS、硬盘缓存(即CACHE)和主控制芯片等单元,如图1-2所示;硬盘接口包括电源插座、数据接口和主、从跳线,如图1-3所示。 图1-1 硬盘的外观 图1-2 控制电路板 图1-3 硬盘接口 电源插座连接电源,为硬盘工作提供电力保证。数据接口是硬盘与主板、内存之间进行数据交换的通道,使用一根40针40线(早期)或40针80线(当前)的IDE接口电缆进行连接。新增加的40线是信号屏蔽线,用于屏蔽高速高频数据传输过程中的串扰。中间的主、从盘跳线插座,用以设置主、从硬盘,即设置硬盘驱动器的访问顺序。其设置方法一般标注在盘体外的标签上,也有一些标注在接口处,早期的硬盘还可能印在电路板上。 此外,在硬盘表面有一个透气孔(见图1-1),它的作用是使硬盘内部气压与外部大气压保持一致。由于盘体是密封的,所以,这个透气孔不直接和内部相通,而是经由一个高效过滤器和盘体相通,用以保证盘体内部的洁净无尘,使用中注意不要将它盖住。

1.2 硬盘的内部结构 硬盘的内部结构通常专指盘体的内部结构。盘体是一个密封的腔体,里面密封着磁头、盘片(磁片、碟片)等部件,如图1-4所示。 图1-4 硬盘内部结构 硬盘的盘片是硬质磁性合金盘片,片厚一般在0.5mm左右,直径主要有1.8in (1in=25.4mm)、2.5in、3.5in和5.25in 4种,其中2.5in和3.5in盘片应用最广。盘片的转速与盘片大小有关,考虑到惯性及盘片的稳定性,盘片越大转速越低。一般来讲,2.5in硬盘的转速在5 400 r/min~7 200 r/ min之间;3.5in 硬盘的转速在4 500 r/min~5 400 r/min之间;而5.25in硬盘转速则在3 600 r/min~4 500 r/min之间。随着技术的进步,现在2.5in硬盘的转速最高已达15 000 r/min,3.5in硬盘的转速最高已达12 000 r/min。 有的硬盘只装一张盘片,有的硬盘则有多张盘片。这些盘片安装在主轴电机的转轴上,在主轴电机的带动下高速旋转。每张盘片的容量称为单碟容量,而硬盘的容量就是所有盘片容量的总和。早期硬盘由于单碟容量低,所以,盘片较多,有的甚至多达10余片,现代硬盘的盘片一般只有少数几片。一块硬盘内的所有盘片都是完全一样的,不然控制部分就太复杂了。一个牌子的一个系列一般都用同一种盘片,使用不同数量的盘片,就出现了一个系列不同容量的硬盘产品。 盘体的完整构造如图1-5所示。

硬盘构造的基本原理

目前流行的硬盘储存器都具有非常完善而先进的内置式程序保障系统,它包括硬盘微处理器执行码和大量硬盘运行所需的各种各样的数据表。硬盘内置式程序总的容量大小可以达到几个Mbit。一旦硬盘的这种程序出现被损坏情况,那么,即使硬盘的整个机械装置和电子器件完好无损,硬盘还是会出现部分或完全的工作故障。 本篇文章描述了硬盘程序保障的基本原理,硬盘的结构和地址分配。 硬盘的空间结构 对一个硬盘来说,不是所有的空间都用来储存用户的数据信息。有相当一部分空间对用户来说是看不见的,它包括服务区(Service Area)和备用区(Reserve Area)(详见图1)。 图1 服务区是用来储存服务信息,即硬盘的内部程序和一些辅助表格。备用区是用来替换用户工作区内的故障扇区和磁道。这两个区域在硬盘正常工作状态下是访问不到的。用户只能访问到工作区的数据(通常情况下,这个区域被称为硬盘的逻辑空间),而硬盘的容量标签中标注的正是这一部分空间的容量,如HDD160G LBA:320173056。一个LBA(逻辑块地址)就等于一个扇区,即512bit。这样一来,知道了一个硬盘的LBA总体数量,也就知道了硬盘容量的大小。

硬盘在正常工作(用户)状态下,对工作区(连续不断的逻辑扇区)的访问是通过LBA进行,即在0到最大LBA之间进行。 要想接触到服务区,只有在一种专门的工作状态下,即技术工作状态下才可能实现。而要想进入这一工作状态,则需要一把“钥匙”指令,给出了“钥匙”指令之后,就可以打开一组补充的技术指令。借助这些技术指令就可以进行诸如读/写服务区的扇区信息、获取服务区模块和表格配置图、获取扇区分配表、进行LBA与PCHS (Physical Cylinder Head Sector)(物理磁柱-磁头-扇区)互换、进行低级格式化,以及读/写硬盘的闪存器等操作。 服务信息 服务信息对硬盘运行来说是必须要有的,它可以分为以下几类: ——微程序的管理模块(overlay); ——配置和设置表; ——缺陷表; ——工作记录表(SelfScan, Calibrator程序的工作结果)。 硬盘微处理器的工作程序属于硬盘工作所必需的一组程序。它包括初始诊断程序、伺服电机旋转控制程序、磁头定位程序、与硬盘控制器及缓冲存储器的信息交换程序等。所有这些合起来称作硬盘程序。在有些型号的硬盘中,工作程序被配置在微控制器的内部存储器或外部闪存器中(如2.5"的“TOSHIBA”硬盘)。但是,对大部分型号的硬盘来说,它的部分工作程序存储在磁盘的服务区上,而在电路板的缓冲存储器中,存储的是初始化程序、定位程序,以及从磁盘服务区向内存储器读与复制的工作程序初始加载器。由于程序是从服务区向微处理器的缓冲存储器中重新加载,而这里也是微处理器的工作地点,所以,它们的名字叫做“管理程序或overlay程序”(详见图2)。

ATA硬盘接口技术

ATA硬盘技术 编者按:随着电脑配件日新月异地发展,硬盘除了容量增大以外,采用的新技术也越来越多。总的来看,硬盘使用的技术包括降噪技术、硬盘磁头技术、盘片技术、接口技术、数据保护技术、震动保护系统和各类检测技术等等。在这些技术中,一些技术是在原有技术的基础上优化更新推出的,也有一些新技术是完全新创的。下面我们先来看看IDE硬盘的降噪技术。 主流IDE硬盘降噪技术 硬盘的噪音也许在夜深人静时最明显,对家人的影响也是很大的。虽然噪音的大小并不是直接衡量硬盘性能优劣的标准,但纵观硬盘的发展历史,可以发现硬盘的噪音实际上是和硬盘的转速成正比的:转速每提高一个档次,噪音等级就会相应提高。在5400rpm硬盘“横行”的时候,噪音问题还不那么突出,随着7200rpm硬盘成为主流,噪音问题的解决迫在眉睫。 我们还是先来了解一下硬盘噪音是怎么产生的。通常硬盘内部有两个马达,一个是驱动硬盘旋转的主轴马达。早期的主轴马达采用的是滚珠轴承,随着硬盘转速的不断提高,带来了磨损加剧、温度升高、噪声增大等一系列问题,主轴马达的噪音曾是硬盘噪音的主要来源。但目前很多厂家开始使用液态轴承马达,它使用的是黏膜液油轴承,以油膜代替滚珠,这样做可以避免金属之间的直接摩擦,使噪声及发热量大大降低,同时油膜也可有效吸收震动,使硬盘的抗震能力得到提高,此外还能减少磨损,提高硬盘的寿命。另外一个是寻道马达。寻道马达采用的是步进电机,其工作噪音的波形接近方波,因此声音听起来节奏分明,穿透力也强过主轴马达。我们平时听到硬盘发出的“哒,哒”声,就是由它发出的。由于技术和成本上的原因,该马达还没有采用液态轴承,因此目前来看,寻道马达所发出的噪音是硬盘噪音的主要来源。面对硬盘噪音,各个硬盘厂商都使出了浑身解数,有的从采用新型硬盘主轴马达入手,有的则以改进硬盘的封装结构为切入点,有的则利用软件调节硬盘的寻道速度,从而达到降低噪音的目的。 1.希捷(Seagate) 曾几何时,希捷公司的IDE硬盘几乎成了大噪音硬盘的代名词,不过这一切都随着酷鱼四代硬盘的推出而烟消云散,声音屏蔽技术(SBT)的应用使希捷硬盘摇身一变成为了目前最为“安静”的IDE硬盘,声音屏蔽技术包括如下几项:(图) 液态轴承(Fluid Dynamic Bearing)技术: SoftSonic电机是希捷硬盘的声音屏蔽技术(SBT)的核心,也是一项获得各类电脑用户赏识的技术突破。在采用业内标准进行测试时,酷鱼四代单盘模型在旋转时所发出的噪声仅为20分贝,寻道时的噪声仅为24分贝。事实上,1996年希捷生产了世界上第一台FDB电机,而目前FDB电机已经发展到了第四代产品,可见如今FDB 电机的技术相当成熟。 盖板及隔音泡沫: SeaShield盖板即硬盘电路一面的金属挡板,该挡板与隔音泡沫都起到了进一步减少噪音外泄的可能性。

相关文档