文档库 最新最全的文档下载
当前位置:文档库 › 离心泵串并联实验讲义

离心泵串并联实验讲义

离心泵串并联实验讲义
离心泵串并联实验讲义

离心泵串并联实验

实验文档

一、

实验目的

(1)增进对离心泵并、串联运行工况及其特点的感性认识。 (2)绘制单泵的工作曲线和两泵并、串联总特性曲线。

二、实验原理

在实际生产中,有时单台泵无法满足生产要求,需要几点组合运行。组合方式可以有串联和并联两种方式。下面讨论的内容限于多台性能相同的泵的组合操作。基本思路是:多台泵无论怎样组合,都可以看作是一台泵,因而需要找出组合泵的特性曲线。 (1)泵的并联工作

当用单泵不能满足工作需要的流量时,可采用两台泵(或两台以上)的并联工作方式,如图所示。离心泵I 和泵II 并联后,在同一扬程(压头)下,其流量Q 并是这两台泵的流量之和,Q

并=

Q I +Q Ⅱ。并联后的系统特性曲线,就是在各相同扬程下,将两台泵特性曲线

()I H Q -和()II H Q -上的对应的流量相加,得到并联后的各相应合成流量Q 并,最后绘出()并H Q -曲线如图所示。图中两根虚线为两台泵各自的特性曲线()I H Q -和()II H Q -;实线为并联后的总特性曲线()并H Q -,根据以上所述,在()并H Q -曲线上任一点M ,其相应

的流量Q M 是对应具有相同扬程的两台泵相应流量Q A 和Q B 之和,即Q M =Q A +Q B 。

图 泵的并联工作

图 两台性能曲线相同的泵的并联特性曲线

上面所述的是两台性能不同的泵的并联。在工程实际中,普遍遇到的情况是用同型号、同性能泵的并联,如图所示。()I H Q -和()II H Q -特性曲线相同,在图上彼此重合,并联后的总特性曲线为()并H Q -。本实验台就是两台相同性能的泵的并联。

进行教学实验时,可以分别测绘出单台泵I 和泵II 工作时的特性曲线()I H Q -和

()II H Q -,把它们合成为两台泵并联的总性能曲线()并H Q -。再将两台泵并联运行,测出

并联工况下的某些实际工作点与总性能曲线上相应点相比较。 (2)泵的串联工作

当单台泵工作不能提供所需要的压头(扬程)时,可用两台泵(或两台上)的串联方式工作。离心泵串联后,通过每台泵的流量Q 是相同的,而合成压头是两台泵的压头之和。串联后的系统总特性曲线,是在同一流量下把两台泵对应扬程叠加起来就可得出泵串联的相应合成压头,从而可绘制出串联系统的总特性曲线()串H Q -如图所示。串联特性曲线

()串H Q -上的任一点M 的压头H M ,为对应于相同流量Q M 的两台单泵I 和II 的压头H A 和

H B 之和,即H M =H A + H B 。

教学实验时,可以分别测绘出单台泵泵I 和泵II 的特性曲线()I H Q -和()II H Q -,并将它们合成为两台泵串联的总性能曲线()串H Q -,再将两台泵串联运行,测出串联工况下的某些实际工作点与总性能曲线的相应点相比较。

图 两台泵的串联的特性曲线

三、 计算方法和公式: (1)泵的扬程用下式计算:

He=H 出口压力表-H 进口压力+H 0+(u 出2

-u 入2)/2g

式中:H 出口压力——泵出口处压力(米)

H 真空表——泵入口真空度(米)

H 0——压力表和真空表测压口之间的垂直距离(米) u 出——泵出口处液体流速(立方米/秒)

u入——泵入口处液体流速(立方米/秒)

g——重力加速度

四、实验装置与流程

(1)实验装置(天大提供)

泵的最小频率:1900转/分

泵的最大频率:2900转/分

泵的额定扬程:50米

泵的电机效率:90%

泵的进口管内径:41毫米

泵的出口管内径:41毫米

两测压口间垂直距离:0.3米

(2)实验流程

串并联实验装置流程图

五、实验步骤

先到参数设置画面进行泵的参数设置:主要是选泵和调节泵的转速。然后再进行实验。(1)单台泵I特性曲线()I

Q-的测定。

H

①关闭泵出口阀V2,开启泵的进水阀门V1;

②接通电源,启动泵Ⅰ;

③稍稍打开阀门V2,调节其流量,待真空表P1和压力P2稳定,记下压力表和真空表的读数和孔板流量计的流量,由此测得一个工况下的H和Q。

④开大阀门V2的开度,重复③的步骤,测得十组数据。

⑤依次关闭出水阀V2,关闭泵Ⅰ的电源,关闭泵进水阀V1。

(2)单台泵II特性曲线()II

H

Q-的测定。

①关闭泵出口阀V4,开启泵的进水阀门V3;

②接通电源,启动泵II;

③稍稍打开阀门V4,调节其流量,待真空表P3和压力P4稳定,记下压力表和真空表的读数和孔板流量计的流量,由此测得一个工况下的H和Q。

④开大阀门V4的开度,重复③的步骤,测得十组数据。

⑤依次关闭出水阀V4,关闭泵II的电源,关闭泵进水阀V2。

(3)两台泵并联工况下特性曲线()I

Q-的测定。

H

①并闭阀门V2、V4和V5,开启阀门V1和V3。

②接通电源,起动泵Ⅰ和泵Ⅱ。

③打开阀门V2和V4,调节其流量,使压力表P2和P4都指示在某一相同的压力,此时,记下孔板流量计的相应流量,由此测得一个工况下的H并和Q并。

④按上述的③的方法,再测试出几个不同并联工况下的H并和Q并,即改变H并,,测出相应的Q并。

⑤依次关闭泵Ⅰ出口阀V2、泵Ⅰ电源和进水阀V1;再依次关闭泵Ⅱ出口阀V4、泵Ⅱ电源和进水阀V3。

(4)两台泵串联工况下特性曲线()I

Q-的测定。

H

①关闭阀门V2、V4和V5,开启阀门V1和V3;

②接通电源,首先启动泵II,待其运行正常后,打开串联阀门V5,再启动泵I,待泵I 又运行正常后,关闭V3,最后打开泵II的出口阀门V4;

③调节阀门V4到一定开度,即调到某一扬程H串和流量Q串的工况,在此工况下测读压力表P1和P4的扬程值,并测得孔板流量计的流量,计算出Q串。

④按上述③的方法,再测试出几个不同串联工况下的H串和Q串。

⑤依次关闭泵Ⅱ出口阀V4,泵Ⅱ电源,串联阀V5,泵I电源,泵I进水阀V1。

六、注意事项:

(1)先开进水阀,再打开泵,否则会发生气缚现象;

(2)当出口阀全开的情况下启动泵,可能会发生烧泵事故。

七、报告要求:

将实验中所测得的数据H 、Q 记入记录表中,并以Q 为横座标,H 为纵座标,由实验数据在座标系中绘出一系列实验点,再将这些点光滑地分别连成单泵I 和II 的()I H Q -和

()II H Q -特性曲线,再分别合成为并联和串联的总特性曲线()并H Q -和()串H Q -如图所

示。最后,再把并联和串联工况下实际测出的一些工作点在合成的总特性曲线周围标出,以示比较。

图 实验结果的Q-H 图

实验数据记录和处理:

(1)单台泵I 特性曲线()I H Q -的测定。 泵一的真空表读数(Mpa ,表压); 泵一的压力表读数(Mpa ,表压); 泵一的真空表(m ,绝压); 泵一的压力表(m ,绝压); 泵一的压头(m ); 总管路的流量(m3/h ); (2)单台泵II 特性曲线()I H Q -的测定。 泵二的真空表读数(Mpa ,表压); 泵二的压力表读数(Mpa ,表压); 泵二的真空表(m ,绝压); 泵二的压力表(m ,绝压); 泵二的压头(m ); 总管路的流量(m3/h );

(3)两台泵并联工况下特性曲线()I H Q -的测定。

泵一的真空表读数(Mpa,表压);

泵一的压力表读数(Mpa,表压);

泵一的真空表(m,绝压);

泵一的压力表(m,绝压);

泵二的真空表读数(Mpa,表压);

泵二的压力表读数(Mpa,表压);

泵二的真空表(m,绝压);

泵二的压力表(m,绝压);

两泵并联的压头(m);

总管路的流量(m3/h);

(4)两台泵串联工况下特性曲线()I

Q-的测定。

H

泵一的真空表读数(Mpa,表压);

泵一的真空表(m,绝压);

泵二的压力表读数(Mpa,表压);

泵二的压力表(m,绝压);

两泵串联的压头(m);

总管路的流量(m3/h);

基本数据:

泵的进口管内径:41毫米;

泵的出口管内径:41毫米;

两侧压口间垂直距离:0.3米;

水温:25摄氏度。

思考题

1.离心泵调节流量方法中经济性最差的是()调节。

A 节流

B 回流

C 变速

D 视具体情况而定

答案:a

2.当离心泵内充满空气时,将发生气缚现象,这是因为( )

A. 气体的粘度太小

B. 气体的密度太小

C. 气体比液体更容易起漩涡

D. 气体破坏了液体的连续性

答案:b

3.两台不同大小的泵串联运行, 串联工作点的扬程为H串, 若去掉其中一台, 由单台泵运行时, 工作点扬程分别为H大或H小,则串联与单台运行间的扬程关系为()

A.H串= H大+ H小

B. H串>H大+ H小

C. H大

D. H小

答案:c

4.采用离心泵串并联可改变工作点,对于管路特性曲线较平坦的低阻管路,采用( )组合可获得较高的流量和压头;而对于高阻管路,采用( )组合较好;对于(ΔZ+ΔP/ρ)值高于单台泵所能提供最大压头的特定管路,则采用( )组合方式.

A.串联 B.并联

答案:b,a,a

5.从你所测定的特性曲线中分析,你认为以下哪项措施可以最有效的增加该泵的流量范围?()

A.增加管路直径

B.增大出口阀开度

C.增大泵的转速 D.减小泵的转速

答案:c

6.以下哪项设备本实验没有使用?()

A.真空表 B.压力表

C. 孔板流量计

D.u型压差计

答案:d

7.以下哪种方法能改变离心泵的特性曲线?()

A.改变泵的转速

B.改变出口阀的开度

C.改变入口阀的开度

D.改变泵输入管路的粗细

答案:a

8.离心泵启动和关闭之前,为何要关闭出口阀?()

A.否则容易发生气缚;

B.否则容易发生气蚀;

C.否则容易因为功率过大,引起烧泵;

D.否则容易引起倒吸。

答案:c

9.离心泵的液体是由以下哪种方式流入流出的?()

A.径向流入,轴向流出;

B.轴向流入,径向流出;

C.轴向流入,轴向流出;

D.径向流入,径向流出。

答案:b

10.以下哪项不属于离心泵的优点?()

A.结构简单,易操作;

B.流量大,流量均匀;

C.泵送的液体粘度范围广;

D.有自吸能力。

答案:d

11.随流量增大,泵的压力表及真空表的数据有什么变化规律?()

A.压力表读数增大,真空表读数增大;

B.压力表读数减小,真空表读数减小;

C.压力表读数减小,真空表读数增大;

D.压力表读数增大,真空表读数减小。

12.某同学进行离心泵特性曲线测定实验,启动泵后,出水管不出水,泵进口处真空计指示真空度很高,他对故障原因作出了正确判断,排除了故障,你认为以下可能的原因中,那一个是真正的原因_______。

A.水温太高

B.真空计坏了

C.吸入管路堵塞

D.排出管路堵塞

答案d

13.用一输送系统将江水送到敞口高位槽。设管内为完全湍流,试分析随着江中水位的下降(设泵仍能正常工作),而其他条件不变,泵的压头H______,系统的输送能力______。

A.增大

B. 减小

C.不变

D.先增大,后减小

答案:b,b

强化系统界面

离心泵设备:

离心泵设备是本实验的核心设备,将起外观细化,如下图所示:

离心泵串并联实验台:可参考下图现场设备:

以及模拟图:

阀门:

通用的开关阀和旋拧阀(流量调节阀)即可。仪表:

压力表:(表压)量程从0kpa—500kpa。

真空压力表:(表压)量程从-100kpa—500kpa。孔板流量计:

正面图:

侧面图:

插入管路中:

离心泵串并联在长输管道水试压施工中的作用

离心泵串并联在长输管道水试压施工中的作用 摘要:本文通过综合分析相同性能的离心泵串并联时所产生的不同的注水效果,结合不同试压段的地势情形,来选择离心泵的组合方式,以提高试压注水的工作效率。 abstract: through analysis on different injection effects of centrifugal pump series-parallel with the same property,the paper selects the combination forms of centrifugal pump according to terrain situations of different pressure test section, so as to increase pressure test water injection efficiency. 关键词:长输管道;离心泵;串并联;试压施工 key words: long-distance pipeline;centrifugal pump;series-parallel;pressure test construction 中图分类号:u175 文献标识码:a 文章编号:1006-4311(2013)13-0062-02 0 引言 长输管道工程具有线路长、地貌复杂和高差不一的特点,在向管道中注水的过程中,通常采用设置多台上水泵串联或并联的工作方式来适应不同地势条件下管道中的注水速度和注水量[1]。 1 离心泵特性曲线及应用 在长输管道水试压施工中,离心泵是指叶轮出水的水流方向是径向流的水泵,是叶片式水泵的一种,液体质点在叶轮中流动时主要

北京化工大学离心泵性能实验报告

报告题目:离心泵性能试验 实验时间:2015年12月16日 报告人: 同组人: 报告摘要 本实验以水为工作流体,使用了额定扬程He为20m,转速为2900 r/min IS 型号的离心泵实验装置。实验通过调节阀门改变流量,测得不同流量下离心泵的各项性能参数,流量通过计量槽和秒表测量。实验中直接测量量有P真空表、P 压力表、电机功率N电、孔板压差ΔP、计量槽水位上升高度ΔL、时间t,根据上述测量量来计算泵的扬程He、泵的有效功率Ne、轴功率 N轴及效率η,从而绘制He-Q、Ne-Q和η-Q三条曲线即泵的特性曲线图,并根据此图求出泵的最佳操作范围;又由P、Q求出孔流系数C0、Re,从而绘制C0-Re曲线图,求出孔板孔流系数C0;最后绘制管路特性曲线H-Q曲线图。 本实验数据由EXCEL处理,所有图形的绘制由ORIGIN来完成 实验目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 基本理论 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图4-3中的曲线。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头小,且难以通过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、N-Q和η-Q三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为选泵的依据。

化工原理实验报告_离心泵

离心泵特性曲线的测定 一、实验目的 1.学习离心泵的操作。 2.测定单级离心泵在固定转速下的特定曲线。 二、实验原理 离心泵的性能一般用三条特性曲线来表示,分别为H-Q 、N-Q 和-Q 曲线,本实验利用 如图1所示的实验装置进行测定工作。 泵的压头用下式计算 g u u h H H H 22 1 220-+++=真空表压力表 其中压力表H 及真空表H 分别表示离心泵出口压力表和进口真空表的读数换算成米液柱的数值,0h 表示进、出口管路两测压点间的垂直距离,可忽略不计,21u u =,故 真空表压力表H H H += g QH N e ρ=/(36001000) 效率%100?= N N e η, 式中:e N ——泵的有效功率,kW ; N ——电机的输入功率,由功率表测出,kW ; Q ——泵的流量,-13h m ?。

图1. 实验装置流程图 1-底阀 2-入口真空表 3-离心泵 4-出口压力表 5-充水阀 6-差压变送器 7-涡轮流量计 8-差压变送器 9-水箱 离心泵入口和出口管的规格为 1#~2#装置,入口内径为,出口内径为 3#~8#装置,入口内径为41mm,出口内径为48 三、实验步骤 1.打开充水阀向离心泵泵壳内充水。 2.关闭充水阀、出口流量调节阀,启动总电源开关,启动电机电源开关。 3.打开出口调节阀至最大,记录下管路流量最大值,即控制柜上的涡轮流量计的读数。 4.调节出口阀,流量从最大到最小测取8次,再由最小到最大测取8次,记录各次实验数据,包括压力表读数、真空表读数、涡轮流量计的读数、功率表的读数。 5.测取实验用水的温度。 6.关闭出口流量调节阀,关闭电机开关,关闭总电源开关。 注意事项:离心泵禁止在未冲满水的情况下空转。 四、数据处理与讨论 水温:℃,离心泵型号规格: 序流量泵入口压力(表压)泵出口压力(表压)电机功率扬程效率

离心泵串并联实验讲义

离心泵串并联实验讲义 一、 实验目的 1. 增进对离心泵并、串联运行工况及其特点的感性认识。 2. 绘制单泵的工作曲线和两泵并、串联总特性曲线。 二、 实验原理 在实际生产中,有时单台泵无法满足生产要求,需要几点组合运行。组合方式可以有串联和并联两种方式。下面讨论的内容限于多台性能相同的泵的组合操作。基本思路是:多台泵无论怎样组合,都可以看作是一台泵,因而需要找出组合泵的特性曲线。 1. 泵的并联工作 当用单泵不能满足工作需要的流量时,可采用两台泵(或两台以上)的并联工作方式,如图所示。离心泵I 和泵II 并联后,在同一扬程(压头)下,其流量Q 并是这两台泵的流量之和,Q 并=Q I +Q Ⅱ。并联后的系统特性曲线,就是在各相同扬程下,将两台泵特性曲线()I H Q -和()II H Q -上的对应的流量相加,得到并联后的各相应合成流量Q 并,最后绘出()并H Q -曲线如图所示。图中两根虚线为两台泵各自的特性曲线()I H Q -和()II H Q -;实线为并联后的总特性曲线()并H Q -,根据以上所述,在()并H Q -曲线上任一点M ,其相应的流量Q M 是对应具有相同扬程的两台泵相应流量Q A 和Q B 之和,即Q M =Q A +Q B 。 图 泵的并联工作

图 两台性能曲线相同的泵的并联特性曲线 上面所述的是两台性能不同的泵的并联。在工程实际中,普遍遇到的情况是用同型号、同性能泵的并联,如图所示。()I H Q -和()II H Q -特性曲线相同,在图上彼此重合,并联后的总特性曲线为()并H Q -。本实验台就是两台相同性能的泵的并联。 进行教学实验时,可以分别测绘出单台泵I 和泵II 工作时的特性曲线()I H Q -和 ()II H Q -,把它们合成为两台泵并联的总性能曲线()并H Q -。再将两台泵并联运行,测出并 联工况下的某些实际工作点与总性能曲线上相应点相比较。 2. 泵的串联工作 当单台泵工作不能提供所需要的压头(扬程)时,可用两台泵(或两台上)的串联方式工作。离心泵串联后,通过每台泵的流量Q 是相同的,而合成压头是两台泵的压头之和。串联后的系统总特性曲线,是在同一流量下把两台泵对应扬程叠加起来就可得出泵串联的相应合成压头,从而可绘制出串联系统的总特性曲线()串H Q -如图所示。串联特性曲线()串H Q -上的任一点M 的压头H M ,为对应于相同流量Q M 的两台单泵I 和II 的压头H A 和H B 之和,即H M =H A + H B 。 教学实验时,可以分别测绘出单台泵泵I 和泵II 的特性曲线()I H Q -和()II H Q -,并将它们合成为两台泵串联的总性能曲线()串H Q -,再将两台泵串联运行,测出串联工况下的某些实际工作点与总性能曲线的相应点相比较。

离心泵性能实验报告记录(带数据处理)

离心泵性能实验报告记录(带数据处理)

————————————————————————————————作者:————————————————————————————————日期:

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

离心泵特性曲线实验报告

化工原理实验报告 实验名称:离心泵特性曲线实验报告:克川 专业:化学工程与工艺(石油炼制)班级:化工11203 学号:201202681

离心泵特性曲线实验报告 一、 实验目的 1. 了解离心泵的结构与特征,熟悉离心泵的使用。 2. 测定离心泵在恒定转速下的特征曲线,并确定离心泵的最佳工作围。 3. 熟悉孔板流量计的构造与性能以及安装方法。 4. 测量孔板流量计的孔流系数C 岁雷诺数R e 变化的规律。 5. 测量管路特性曲线。 二、 基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒 定转速下泵的扬程H 、功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵流动规律的宏观表现形式。由于泵部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 2.1扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: z 1+ P 1ρg +U 12 2g +H=z 2+ P 2 ρg +U 22 2g +∑h f (1-1) 由于两截面间的管子较短,通常可忽略阻力项∑h f ,速度平方差也很小,故也可忽略,则有 H=(z 1-z 2)+ p 1?p 2ρg =H 1+H 2(表值)+H 3 (1-2) 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.2轴功率N 的测量与计算 N=N 电k(w) (1-3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取0.90 2.3效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间流体经过泵时所获得的实际功率,轴功率N 是单位时间泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne 可用下式计算: N e =HQ ρg (1-4) η= HQρg N ×100% (1-5)

离心泵的串并联讲义

离心泵的串并联实验讲义 一、实验目的 1.了解离心泵结构与特性,学会离心泵的操作 2.测量不同转速下离心泵的特性曲线。 3.测量离心泵串联时的压头和流量的关系。 4.测量离心泵并联时的压头和流量的关系。 二、实验原理 1.单台离心泵的特性曲线 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量V 之间的关系曲线,它是流体在泵内流动规律的外部表现形式。由于泵内部流动情况复杂,不能用数学方法计算这一特性曲线,只能依靠实验测定。 1)扬程H 的测定与计算 在泵进、出口取截面列柏努利方程: g u u Z Z g p p H 221221212-+-+-=ρ 式中:p 1,p 2——分别为泵进、出口的压强 N/m 2 ρ——流体密度 kg/m 3 u 1, u 2——分别为泵进、出口的流量m/s g ——重力加速度 m/s 2 当泵进、出口管径一样,且压力表和真空表安装在同一高度,上式简化为: g p p H ρ'1'2-= 由上式可知:只要直接读出真空表和压力表上的数值,就可以计算出泵的扬程。 2)轴功率N 的测量与计算 轴的功率可按下式计算: w N ?=94.0 式中,N —泵的轴功率,W w —电机输出功率,W

由上式可知:测定泵的轴功率,只需测定电机的输出功率,乘上功率转换中的倍率即可。 3)效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间内流体自泵得到的功,轴功率N 是单位时间内泵从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。 泵的有效功率Ne 可用下式计算: Ne=HV ρg 故η=Ne/N=HV ρg/N 4)离心泵性能参数的换算 泵的特性曲线是在指定转速下的数据,就是说在某一特性曲线上的一切实验点,其转速都是相同的。但是,实际上感应电动机在转矩改变时,其转速会有变化,这样随着流量的变化,多个实验点的转速将有所差异,因此在绘制特性曲线之前,须将实测数据换算为平均转速下的数据。换算关系如下: 流量 n n V V '=' 扬程 2)(n n H H '=' 轴功率 3)( n n N N '=' N 效率 ηρρη=='''='N g VH N g H V 2.离心泵在不同转速下的性能参数 打开变频开关,调节离心泵的转速,在新转速条件下测定离心泵的特性曲线。 3.离心泵串并联的压头和流量的关系 在实际的工业生产过程中,往往单台泵无法满足流体输送任务,此时需要采用离心泵的串并联操作。 对于两台相同的离心泵进行串联操作时,由于每台泵的压头和流量均相同,因此在同一流量下,两台串联的压头为单台泵的两倍。因此根据单台离心泵特性曲线,在保持横坐标(Q )不变的情况下,使纵坐标(H )加倍,由此得到离心泵的串联特性曲线。 对于两台相同的离心泵进行并联操作时,在同一压头下,两台并联泵的流量等于单台泵的两。因此根据单台离心泵特性曲线,在保持纵坐标(H )不变的情况下,使横坐标(Q )加倍,由此得到离心泵的并联特性曲线。

离心泵特性实验报告

离心泵特性测定实验报告 一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.测定离心泵在恒定转速下的操作特性,做出特性曲线; 3.了解电动调节阀、流量计的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ; ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。

离心泵串并联实验讲义

离心泵串并联实验 实验文档 一、 实验目的 (1)增进对离心泵并、串联运行工况及其特点的感性认识。 (2)绘制单泵的工作曲线和两泵并、串联总特性曲线。 二、实验原理 在实际生产中,有时单台泵无法满足生产要求,需要几点组合运行。组合方式可以有串联和并联两种方式。下面讨论的内容限于多台性能相同的泵的组合操作。基本思路是:多台泵无论怎样组合,都可以看作是一台泵,因而需要找出组合泵的特性曲线。 (1)泵的并联工作 当用单泵不能满足工作需要的流量时,可采用两台泵(或两台以上)的并联工作方式,如图所示。离心泵I 和泵II 并联后,在同一扬程(压头)下,其流量Q 并是这两台泵的流量之和,Q 并= Q I +Q Ⅱ。并联后的系统特性曲线,就是在各相同扬程下,将两台泵特性曲线 ()I H Q -和()II H Q -上的对应的流量相加,得到并联后的各相应合成流量Q 并,最后绘出()并H Q -曲线如图所示。图中两根虚线为两台泵各自的特性曲线()I H Q -和()II H Q -;实线为并联后的总特性曲线()并H Q -,根据以上所述,在()并H Q -曲线上任一点M ,其相应 的流量Q M 是对应具有相同扬程的两台泵相应流量Q A 和Q B 之和,即Q M =Q A +Q B 。 图 泵的并联工作 图 两台性能曲线相同的泵的并联特性曲线 上面所述的是两台性能不同的泵的并联。在工程实际中,普遍遇到的情况是用同型号、同性能泵的并联,如图所示。()I H Q -和()II H Q -特性曲线相同,在图上彼此重合,并联后的总特性曲线为()并H Q -。本实验台就是两台相同性能的泵的并联。 进行教学实验时,可以分别测绘出单台泵I 和泵II 工作时的特性曲线()I H Q -和 ()II H Q -,把它们合成为两台泵并联的总性能曲线()并H Q -。再将两台泵并联运行,测出 并联工况下的某些实际工作点与总性能曲线上相应点相比较。 (2)泵的串联工作 当单台泵工作不能提供所需要的压头(扬程)时,可用两台泵(或两台上)的串联方式工作。离心泵串联后,通过每台泵的流量Q 是相同的,而合成压头是两台泵的压头之和。串联后的系统总特性曲线,是在同一流量下把两台泵对应扬程叠加起来就可得出泵串联的相应合成压头,从而可绘制出串联系统的总特性曲线()串H Q -如图所示。串联特性曲线 ()串H Q -上的任一点M 的压头H M ,为对应于相同流量Q M 的两台单泵I 和II 的压头H A 和 H B 之和,即H M =H A + H B 。 教学实验时,可以分别测绘出单台泵泵I 和泵II 的特性曲线()I H Q -和()II H Q -,并将它们合成为两台泵串联的总性能曲线()串H Q -,再将两台泵串联运行,测出串联工况下的某些实际工作点与总性能曲线的相应点相比较。 图 两台泵的串联的特性曲线

离心泵的串并联实验-

流体输送系统实训离心泵的串并联输送

班级: 学号: 姓名: 组成员: 指导老师: 一、实训目的: ①.熟悉工艺生产过程中离心泵的串并联工作流程、工作原理; ②.熟悉离心泵的工作原理; ③.了解离心泵串并联流量不同的原因。 二、实训装置:

高位槽、低位槽、离心泵A、离心泵B、流量计 三、实训操作流程 1、离心泵串联输送操作步骤 开机前准备 ①.打开高位槽罐顶进口阀、溢流阀及放空阀; ②.打开低位槽出口阀、溢流阀及放空阀; ③.检查并调整低位槽液位不低于25 cm(液位计的一半); ④.检查并调整高位槽液位不高于10 cm(若高于 10 cm,打开高位槽底阀和低位槽进口阀;当高位槽液位低于10 cm时,关闭高位槽底阀和低位槽进口阀); ⑤.选择一种流量计,全开计前阀和旁路阀; ⑥.打开A泵的泵前阀; ⑦.打开A泵、B泵的前真空表、后压力表;

⑧.打开A泵和B泵之间的串联阀。 开机 ①.启动A泵开关; ②.打开A泵的泵后阀; ③.启动B泵开关; ④.打开B泵的泵后阀; ⑤.调节流量计的旁路阀至流量为800 L/h; ⑥.等高位槽液位到达20 cm时,开始停机。 停机 ①.全开流量计的旁路阀,至主路上没有流量; ②.先关B泵泵后阀,再关B泵; ③.先关A泵泵后阀,再关A泵; ④.恢复其他阀门至初始状态(包括A、B泵前真空

表、后压力表,A、B泵之间的串联阀,A泵的泵前阀,流量计的计前阀和旁路阀); ⑤.关闭低位槽出后阀、溢流阀及放空阀; ⑥.关闭高位槽进口阀、溢流阀及放空阀。 2、离心泵并联输送操作步骤 开机前准备 ①.打开高位槽罐顶进口阀、溢流阀及放空阀; ②.打开低位槽出口阀、溢流阀及放空阀; ③.检查并调整低位槽液位不低于25 cm(液位计的一半); ④.检查并调整高位槽液位不高于10 cm(若高于 10 cm,打开高位槽底阀和低位槽进口阀;当高位槽液位低于10 cm时,关闭高位槽底阀和低位槽进口阀);

离心泵性能实验报告(带数据处理)

实验三、离心泵性能实验姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日 同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵 预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图: 图5 离心泵性能实验装置流程图

离心泵串并联及工况调节综合实验

离心泵串并联及工况调节综合实验 一、实验目的 1.绘制两台离心泵串联运行工况调节图; 2.绘制两台离心泵并联运行工况调节图(共用管路节流调节方式): 二.实验装置 1.离心泵、电动机、管路系统(包括管路、阀门、水箱等); 2.真空表、压力表;玻璃转子流量计 三.实验原理 离心泵实验系统布置图如下图 图1 离心泵实验系统布置图 1—电动机;2—离心式水泵;3—压力表;4—转子流量计;5—2”弯头;6—真空表 7—三通;8—闸阀;9—水箱;;10—逆止阀 四.实验步骤

1.检查管路是否接好,流量计中水是否充满。 2.离心泵阀门全开,联好线路,打开电源开关。 3.将管路调制离心泵串联运行,稳定后,从小到大调节阀门开度,观察记录压力表,真空表和流量计的读数,流量每次增加3~5格,共做十一次。 4.将管路调制离心泵并联运行,稳定后,从小到大调节共用管路阀门开度,观察记录压力表,真空表和流量计的读数,流量每次增加3~5格,共做十一次。 五.实验数据记录与处理 1.原始数据 当地重力加速度:g= m/s2;水池距离地面高度: cm; 测试水温:t= ℃;该温度下水的密度:ρ= kg/m3(查表); 1#离心泵出口截面中心与进口截面中心的高度差?z= m; 2#离心泵出口截面中心与进口截面中心的高度差?z= m; 2实验数据记录与处理

表2 3.两台离心泵串联运行工况调节图 4.两台离心泵并联运行工况调节图(共用管路节流调节) 六、注意事项 1.实验过程中,禁止沙粒抽进泵体。 2.长期停用时,开启前请先拨动叶片,确定转动灵活再接电源。 3.越冬前,请排净泵内积水一方冻裂。

离心泵特性测定实验报告

离心泵特性测定实验报告 姓名:刘开宇 学号:1410400g08 班级:14食品2班 实验日期:2016.10.10 学校:湖北工业大学 实验成绩: 批改教师:

一、实验目的 1.了解离心泵结构与特性,熟悉离心泵的使用; 2.掌握离心泵特性曲线测定方法; 3.了解电动调节阀的工作原理和使用方法。 二、基本原理 离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H 、轴功率N 及效率η与泵的流量Q 之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。 1.扬程H 的测定与计算 取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程: f h g u g p z H g u g p z ∑+++=+++222 2222111ρρ (1-1) 由于两截面间的管长较短,通常可忽略阻力项f h ∑,速度平方差也很小故可忽略,则有 (=H g p p z z ρ1 212)-+ - 210(H H H ++=表值) (1-2) 式中: 120z z H -=,表示泵出口和进口间的位差,m ;和 ρ——流体密度,kg/m 3 ; g ——重力加速度 m/s 2; p 1、p 2——分别为泵进、出口的真空度和表压,Pa ; H 1、H 2——分别为泵进、出口的真空度和表压对应的压头,m ; u 1、u 2——分别为泵进、出口的流速,m/s ; z 1、z 2——分别为真空表、压力表的安装高度,m 。 由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。 2.轴功率N 的测量与计算 k N N ?=电 (W ) (1-3) 其中,N 电为电功率表显示值,k 代表电机传动效率,可取95.0=k 。 3.效率η的计算 泵的效率η是泵的有效功率Ne 与轴功率N 的比值。有效功率Ne 是单位时间内流体经过泵时所获得的实际功,

水泵的串联和并联

水泵的串联运行 有时一台水泵的扬程不够,更换一台扬程高一点的离心泵又没有合适的,这时可以用两台扬程较低的水泵串联起来工作,所谓两台水泵串联就是第一台水泵的出口接第二台水泵的入口,但不是随便两台泵都能串联工作的,兴崛供水设备水泵的串联运行必须具备以下条件: 1 两台泵的流量基本上相等,至少两台水泵的最大流量基本上相等。 2 后一台泵的强度应能承受两台泵的压力总和。 串联运行后的总扬程是两台泵扬程的总和,其流量还是一台泵的流量。串联对应把扬程低的那一台放在前面,扬程高的那一台放在后面,这样有利于泵对压力的承受,若串联的两台泵扬程都很高,后一台泵的强度不能承受两台泵的扬程总和时,可采取第一台泵将水送到一定高度后,再接第二台泵。 水泵的并联运行 水泵的并联运行就是一台泵的流量不够,或者输水管道流量变化很大时,可以用两台或几台泵的出水管合用一条输水管道,水泵并联运行也并不是随便几台泵都能并联工作的。水泵并联运行的条件是:并联运转的几台水泵的扬程基本上相等,并且扬程曲线是下降的,不然的话,扬程低的水泵不能发挥作用,甚至从扬程低的那台泵倒流。并联运行后,水泵的扬程不变,流量是几台并联泵流量的总和。 并联运行安装时,在汇合点前各台泵的管路阻力最好都一样,各台泵的出口均应安装一个闸阀,以便一台泵有故障时,其他泵还可以运行。 泵并联运行时,不但可以节省输水管用量,缩小占地面积,而且当一台泵有故障时,送水不中断,还可以用开泵的台数调节流量。

李白写的“举头望明月,低头思故乡”,看月亮,必须得抬头看,不然你看见的月只是水中月,而思故乡,必须得低头,看着脚下的土地,土地连结深情,传递的思念感应才会自然。可见,李白对抬头和低头,有看似经典的认识,只是李白的脖颈不听使唤,该低头时却抬头,该抬头时却低头,搞得李白一辈子光碰头,有时被摔的鼻青脸肿的,但这时的李白爱喝酒,喝了酒就疯疯癫癫的,于是,李白就借着痛感籍着癫意把一肚子的酒吐出来,成就了“君不见黄河之水天上来……”的诗句。 元萨都剌《北人冢上》诗:“低头下拜襟尽血,行路人情为惨切。”可见,古人从心里是不喜欢低头的,喜欢的是抬头。 记得我以前在学校操场里喜欢低头,体育老师说我是一个没有自信的学生,还说我是一个没有阳光心态的人。记得体育老师说过这样的一句话:“瓜子之所以长的粒粒饱满,那是因为向日葵始终抬头向着太阳。” 记得我第一次去应聘工作,应聘的工作人员看我低着头,直接就叫我回去了。 那我就抬起头吧,进家门的时候,由于我抬起头,我的头一下子就被碰出了血来,搞得我在家里好几天就不想出门的。 我走下坡的时候,依然是抬起头,这样显得自己有自信,冷不防,我一连向下栽了好几个跟斗,摔的我头破血流的。 我的头招谁惹谁了?干嘛都跟我的头过不去呢? 我究竟是该抬头做人还是该低头做人呢? 有人说走下坡路就必须低头,言下之意就是人走背时运的时候要低着头,就像罪犯低着头接受审判一样。那当年毛泽东同志遭到王明等人的排挤时干嘛就不低头呢?那当年红军第五次反围剿失败后被迫长征干嘛就不低头举起手来呢?那赵一曼和江姐被敌人抓去明知只有无尽的酷刑干嘛就不低头屈服呢?那当年的灾荒岁月里全中国人民饿的吃粗糠啃树皮干嘛就不低头消沉下去呢?那有人第九次高考依然名落孙山干嘛就不低头认命了呢?有人写文章写了一百篇写了一千零一夜依然是没有读者依然是没有一个读者看好时干嘛就不低头呢?李嘉诚当初做生意是做一次亏一次时干嘛就不低头呢?你、我、他经过了这么多的困苦折磨干嘛还要坚强的活下去呢?我们的人类和整个社会经常就处在风雨飘摇里干嘛还要坚定不移向前进呢? 人的一生,几乎有过半的时候是在走下坡路,低着头走下坡路确实是不摔跟斗,但低着头只能看见脚下的一方寸路,却看不见天上的太阳和高空的明月,特别是最容易忽视身边的风景。 有人说走上坡路低着头最好,言下之意就是人走好运的时候要低调要谦虚谨慎。确实低着头走上坡路由于身体前倾走起路来更有劲而且更能看清脚下的路,但太阳会照在低头者的脸上吗?天上的神仙们真的就喜欢这些整天低着头的人吗?你看,孙悟空低着头只能做弼马温,但孙悟空抬起头来就成了齐天大圣;你看,刘邦把头低着,低了48年,只能是个混混,但刘邦把头一抬起来,三五年之后就开创了汉朝;你看,朱元璋低着头只能做乞丐,因为抬起头来是讨不到饭的,但朱元璋后来把头索性抬起来,结果就建立了明朝;当年美国有核武器,而中国没有,但毛泽东领导的中国人民就是不低头,中国人民就是要把头抬起来,抬起头的中国人民没有多久也有了属于自己的核武器……

离心泵性能实验报告

北京化工大学化工原理实验报告 实验名称:离心泵性能实验 班级:化工100 学号:2010 姓名: 同组人: 实验日期:2012.10.7

一、报告摘要: 本次实验通过测量离心泵工作时,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P 、电机输入功率Ne 以及流量Q(V/t )这些参数的关系,根据公式 H e H 真空表H 压力表H0、N轴N 电电转、 Ne Q He以及 Ne 可以得出 102N 轴 离心泵的特性曲线;再根据孔板流量计的孔流系数 C 0u 0 / 2 p 与雷诺数 Re du 的变化规律作出C0Re 图,并找出在Re 大到一定程度时 C 0不随Re变化时的 C0值;最后测量不同阀门开度下,泵入口真空表P真、泵出口压力表P压、孔板压差计两端压差P ,根据已知公式可以求出不同阀门开度下的H e Q 关系式,并作图可以得到管路特性曲线 图。 二、目的及任务 ①了解离心泵的构造,掌握其操作和调节方法。 ②测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 ③熟悉孔板流量计的构造、性能及安装方法。 ④测定孔板流量计的孔流系数。 ⑤测定管路特性曲线。 三、基本原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构、叶轮形式及转速。其中理论压头与流量的关系, 可通过对泵内液体质点运动的理论分析得到。由于流体流经泵时,不可避免地会遇到各种阻力,产生能量损失,诸如摩擦损失、环流损失等,因此,实际压头比理论压头笑,且难以通 过计算求得,因此通常采用实验方法,直接测定其参数间的关系,并将测出的He-Q、 N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,曲线也可以求出泵的最佳操作范围,作为选泵的 依据。 (1)泵的扬程He:H e H 真空表H 压力表H 0 式中: H 真空表——泵出口的压力,mH 2O , H 压力表——泵入口的压力,mH 2 O H 0——两测压口间的垂直距离,H 00.85m。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入

化工原理实验报告离心泵的性能试验北京化工大学

北京化工大学 化工原理实验报告 实验名称:离心泵性能实验 班级:化工13 姓名: 学号: 20130 序号: 同组人: 实验二:离心泵性能实验 摘要:本实验以水为介质,使用离心泵性能实验装置,测定了不同流速下,离心泵的性能、孔板流量计的孔流系数以及管路的性能曲线。实验验证了离心泵的扬程He随着流量的增大而减小,且呈2次方的关系;有效效率有一最大值,实际操作生产中可根据该值选取合适的工作范围;泵的轴功率随流量的增大而增大; 当Re大于某值时,C 0为一定值,使用该孔板流量计时,应使其在C 为定值的条 件下。 关键词:性能参数(N H Q, , , )离心泵特性曲线管路特性曲线C0一.目的及任务

1.了解离心泵的构造,掌握其操作和调节方法。 2.测定离心泵在恒定转速下的特性曲线,并确定泵的最佳工作范围。 3.熟悉孔板流量计的构造,性能和安装方法。 4.测定孔板流量计的孔流系数。 5.测定管路特性曲线。 二. 实验原理 1.离心泵特性曲线测定 离心泵的性能参数取决于泵的内部结构,叶轮形式及转速。其中理论压头与流量的关系,可通过对泵内液体质点运动的理论分析得到,如图1中的曲线。由于流体流经泵时,不可避免的会遇到种种阻力,产生能量损失,诸如摩擦损失,环流损失等,因此通常采用实验方法,直接测定参数间的关系,并将测出的He-Q,N-Q 和η-Q 三条曲线称为离心泵的特性曲线。另外,根据此曲线也可以求出泵的最佳操作范围,作为泵的选择依据。 图1.离心泵的理论压头与实际压头 (1)泵的扬程He He=0真空表压力表H H H ++ 式中 H 压力表——泵出口处的压力,mH 2o ; H 真空表——泵入口处的真空度,mH 2o ; H 0——压力表和真空表测压口之间的垂直距离,H 0=。 (2)泵的有效功率和效率 由于泵在运转过程中存在种种能量损失,使泵的实际压头和流量较理论值为低,而输入泵的功率又比理论值为高,所以泵的总效率为 轴 ηN Ne = 102 QHe Ne ρ = 式中 Ne ——泵的有效功率,kW ;

12离心泵试题

选择题 1、水泵的及水高度是指通过泵轴线的水平面与(C )的高差。当水平下降致超过最大吸水高度时,水泵将不能吸水。 A、水泵排口 B、水泵泵体出口 C、吸水平面 2、当水泵叶片入口附近压强降至该处水开始(A ),水泵将产生汽蚀现象,使水泵不能正常工作。 A、汽化成汽泡 B、凝结成冰 3、水泵运转中,由于叶轮前、后底盘外表面不平衡压力和叶轮内表面水动压力的轴向分力,会造成指向(B)方向的轴向力。 A、吸水口 B、吸水口方向 4、油泵的吸油高度比水泵小得多的原因主要是(C) A、油泵的结构使其吸力比水泵小 B、油液比重比水大得多 C、油液比水更易于汽化而产生汽蚀 5、水泵的标定扬程为150m,当实际扬程达到160m时该水泵将(B) A、不能把水扬送不能到位 B、能把水扬位,但流量、效率将会发生变化 6、离心泵在额定转速下运行时,为了避免启动电流过大,通常在( C ) A.阀门稍稍开启的情况下启动 B.阀门半开的情况下启动 C.阀门全关的情况下启动 D.阀门全开的情况下启动 7、两台同性能泵并联运行,并联工作点的参数为q v并、H并。若管路特性曲线不变,改为其 中一台泵单独运行,其工作点参数为q v单、H单。则并联工作点参数与单台泵运行工作点参数关系为( B ) A.q v并=2q v单,H并=H单 B.q v并<2q v单,H并>H单 C.q v并<2q v单,H并=H单 D.q v并=2q v单,H并>H单 8、对一台q v—H曲线无不稳区的离心泵,通过在泵的出口端安装阀门进行节流调节,当将 阀门的开度关小时,泵的流量q v和扬程H的变化为( C ) A.q v与H均减小 B.q v与H均增大 C.q v减小,H升高 D.q v增大,H降低 9、离心泵,当叶轮旋转时,流体质点在离心力的作用下,流体从叶轮中心被甩向叶轮外缘, 于是叶轮中心形成( B ) A.压力最大 B.真空 C.容积损失最大 D.流动损失最大 10、具有平衡轴向推力和改善汽蚀性能的叶轮是( C ) A半开式B开式C双吸式。 11、一般轴的径向跳动是:中间不超过( A ),两端不超过( A ) A0.05毫米0.02毫米B0.1毫米0.07毫米C0.05毫米0.03毫米 12、水泵各级叶轮密封环的径向跳动不许超过( A ) A0.08毫米B0.06毫米C0.04毫米 13、离心泵的效率等于( B ) A机械效率+容积效率+水力效率B机械效率×容积效率×水力效率C(机械效率+容积效率) 14、水泵发生汽蚀最严重的地方是( A ) A 叶轮进口处B.叶轮出口处C叶轮轮毂 15、输送水温高的水泵启动时,应注意( B )

离心泵串并联实验讲义教学提纲

离心泵串并联实验讲 义

离心泵串并联实验讲义 一、实验目的 1.增进对离心泵并、串联运行工况及其特点的感性认识。 2.绘制单泵的工作曲线和两泵并、串联总特性曲线。 二、实验原理 在实际生产中,有时单台泵无法满足生产要求,需要几点组合运行。组合方式可以有串 联和并联两种方式。下面讨论的内容限于多台性能相同的泵的组合操作。基本思路是:多台 泵无论怎样组合,都可以看作是一台泵,因而需要找出组合泵的特性曲线。 1.泵的并联工作 当用单泵不能满足工作需要的流量时,可采用两台泵(或两台以上)的并联工作方式, 如图所示。离心泵 I 和泵 II 并联后,在同一扬程(压头)下,其流量 Q并是这两台泵的流量之和,Q并=Q I+QⅡ。并联后的系统特性曲线,就是在各相同扬程下,将两台泵特性曲线 (Q - H )I 和 (Q - H )II上的对应的流量相加,得到并联后的各相应合成流量 Q并,最后绘出 (Q - H )并曲线如图所示。图中两根虚线为两台泵各自的特性曲线 (Q - H )I和 (Q - H )II;实线为并联后的总特性曲线 (Q - H )并,根据以上所述,在 (Q - H )并曲线上任一点 M,其相应的流量 Q M是对应具有相同扬程的两台泵相应流量 Q A和 Q B之和,即 Q M=Q A+Q B。 图泵的并联工作

精品资料 真 -515图两台性能曲线相同的泵的并联特性曲线 上面所述的是两台性能不同的泵的并联。在工程实际中,普遍遇到的情况是用同型号、 同性能泵的并联,如图所示。 (Q - H )I和 (Q - H )II特性曲线相同,在图上彼此重合,并联后的总特性曲线为 (Q - H )并。本实验台就是两台相同性能的泵的并联。 进行教学实验时,可以分别测绘出单台泵 I 和泵 II 工作时的特性曲线 (Q - H )I和 (Q - H )II,把它们合成为两台泵并联的总性能曲线 (Q - H )并。再将两台泵并联运行,测出并联工况下的某些实际工作点与总性能曲线上相应点相比较。 2.泵的串联工作 当单台泵工作不能提供所需要的压头(扬程)时,可用两台泵(或两台上)的串联方式 工作。离心泵串联后,通过每台泵的流量 Q是相同的,而合成压头是两台泵的压头之和。串 联后的系统总特性曲线,是在同一流量下把两台泵对应扬程叠加起来就可得出泵串联的相应 合成压头,从而可绘制出串联系统的总特性曲线 (Q - H )串如图所示。串联特性曲线 (Q - H )串上的任一点 M 的压头 H M,为对应于相同流量 Q M的两台单泵 I 和 II 的压头 H A和 H B之和,即 H M=H A+ H B。 教学实验时,可以分别测绘出单台泵泵 I 和泵 II 的特性曲线 (Q - H )I和 (Q - H )II, 并将它们合成为两台泵串联的总性能曲线 (Q - H )串,再将两台泵串联运行,测出串联工况下 的某些实际工作点与总性能曲线的相应点相比较。

离心泵性能实验报告[带数据处理]

实验三、离心泵性能实验 姓名:杨梦瑶学号:1110700056 实验日期:2014年6月6日同组人:陈艳月黄燕霞刘洋覃雪徐超张骏捷曹梦珺左佳灵预习问题: 1.什么是离心泵的特性曲线?为什么要测定离心泵的特性曲线? 答:离心泵的特性曲线:泵的He、P、η与Q V的关系曲线,它反映了泵的基本性能。要测定离心泵的特性曲线是为了得到离心泵最佳工作条件,即合适的流量范围。 2.为什么离心泵的扬程会随流量变化? 答:当转速变大时,,沿叶轮切线速度会增大,当流量变大时,沿叶轮法向速度会变大,所以根据伯努力方程,泵的扬程: H=(u22- u12)/2g + (p2- p1) / ρg + (z2- z1) +H f 沿叶轮切线速度变大,扬程变大。反之,亦然。 3.泵吸入端液面应与泵入口位置有什么相对关系? 答:其相对关系由汽蚀余量决定,低饱和蒸气压时,泵入口位置低于吸入端液面,流体可以凭借势能差吸入泵内;高饱和蒸气压时,相反。但是两种情况下入口位置均应低于允许安装高度,为避免发生汽蚀和气缚现象。 4.实验中的哪些量是根据实验条件恒定的?哪些是每次测试都会变化,需要记录的?哪些 是需要最后计算得出的? 答:恒定的量是:泵、流体、装置; 每次测试需要记录的是:水温度、出口表压、入口表压、电机功率; 需要计算得出的:扬程、轴功率、效率、需要能量。 一、实验目的: 1.了解离心泵的构造,熟悉离心泵的操作方法及有关测量仪表的使用方法。 2.熟练运用柏努利方程。 3.学习离心泵特性曲线的测定方法,掌握离心泵的性能测定及其图示方法。 4.了解应用计算机进行数据处理的一般方法。 二、装置流程图:

相关文档