文档库 最新最全的文档下载
当前位置:文档库 › 利用大型蒸渗仪模拟土壤 2大气连续体水分蒸散 3

利用大型蒸渗仪模拟土壤 2大气连续体水分蒸散 3

利用大型蒸渗仪模拟土壤 2大气连续体水分蒸散 3
利用大型蒸渗仪模拟土壤 2大气连续体水分蒸散 3

土壤的入渗特性及渗吸速度测定_灌排工程学

第一部分 课程实验及指导 实验一:土壤的入渗特性及渗吸速度测定 一、实验目的 土壤渗吸速度是反映土壤透水性能的重要指标,它是农田水量平衡计算的重要依据。旱田在进行地面灌溉时,灌溉水在重力作用下自地表逐渐向下湿润。为保证最有效地利用灌溉水,既要使计划湿润层得到均匀的灌溉 水,又不产生多余的水量向深层渗漏,必须了解水向土中入渗的规律。 二、实验设备 渗吸速度测试仪、量杯、秒表等。 三、实验过程 1.取自然风干土碾碎过筛,要求碎块不大于2毫米,测筒底铺滤纸,装土至给定深度,适当沉实,再盖滤纸。 2.在量杯内灌水,并关闭放水管和通气管(如图所示),放在支架上。 3.实验开始时同时完成:掀动计时秒表,迅速使测试仪中土样上建立水层2厘 米。 图1-1-1土壤入渗特性实验装置 4.实验开始后,定时记载量杯中水量读数,时间间隔初期较短,以后逐渐加大。并填写表1-1-1: 表1-1-1 土壤入渗特性测定记录表 四、实验原理 在地面形成一定水层的入渗称为有压入渗,对于均质土的入渗强度,已有若干计算公 式,菲利普根据严格的数学推导,求的解析解为: f i t s i += -2/12 (1-1-1)

i —t 时刻的入渗强度; s —与土壤初始含水率有关的特性常数,称为吸水率; i f —稳定入渗率,即饱和土壤渗透系数。 考斯加可夫根据野外实测资料分析,发现入渗强度(渗吸速度)与时间之间呈指数关系,其形式为: α-=t i i 1 (1-1-2) 式中 i 1—第一个单位时间的入渗强度; α—反映土壤性质与入渗初始时土壤含水率的经验常数。 饱和与非饱和土壤水分运动均服从达西定律,所不同者,在饱和情况下,认为渗透系数是常数;而在非饱和情况下,渗透系数是变量,其值随土壤含水率而异,含水率越低,渗透系数越大。 五、实验要求 1.根据水室断面和测筒断面,求出△t 时间内测筒下渗的水量。 2.求出各时段平均入渗速度v 。 3.用坐标纸点绘渗吸速度随时间变化过程线。 4.分析确定供水开始时土壤渗吸速度i f 、渗吸系数及透水指数α值。 5.填写实验报告。 六、思考题 利用菲利普公式和考斯加可夫公式求s 或i 1时,讲选取第一个单位时刻的i 值,如何理解这第一个单位时刻的意思?它是根据i 的取值单位还是绘图时的取值单位?

四种观赏草在北京地区的蒸散规律 与适宜灌溉量研究

收稿日期:2008-03-18 基金项目:北京市科技计划项目(D08050600120802);北京市农业科技项目(20080803) 作者简介:袁小环(1975-),女,安徽砀山人,助理研究员,博士,主要从事园林植物研究。通讯作者:武菊英(1961-),女,河北保定人,研究员,主要从事草业科学研究。 四种观赏草在北京地区的蒸散规律 与适宜灌溉量研究 袁小环,滕文军,杨学军,武菊英 (北京草业与环境研究发展中心,北京 100097) 摘要:为了掌握多年生观赏草在北京地区的水分需求,2006年采用蒸散量反馈式灌溉方法,利用小型蒸渗仪研究了4种观赏草野古草、细茎针茅、宽叶拂子茅、蓝羊茅的蒸散规律。6-10月间,除10月外,4种观赏草间的蒸散量存在显著差异;除蓝羊茅外,同一种观赏草不同月份间蒸散量差异显著,野古草、细茎针茅、宽叶拂子茅、蓝羊茅6-10月的总蒸散量分别为812.84,642.26,524.02,333.49mm 。暖季型观赏草野古草和宽叶拂子茅9月蒸散量最高,冷季型观赏草细茎针茅和蓝羊茅7月蒸散量最高。根据2006年的实际降雨量,野古草和细茎针茅7-10月均需灌溉,宽叶拂子茅和蓝羊茅9、10月需灌溉,适宜灌溉总量分别为440.80,268.45,267.09,108.02mm 。利用Penman 2M onteith 蒸散量经验模型计算各月的潜在蒸散量ET 0,得出野古草、细茎针茅、宽叶拂子茅、蓝羊茅6-10月的作物系数分别为0.63~ 2.15、0.64~1.84、0.38~1.46、0.56~0.77。根据实测蒸发皿的蒸发量计算出野古草、细茎针茅、宽叶拂子茅、蓝羊茅6-10月的需水系数分别为1.02~ 3.40、0.94~2.47、0.61~2.31、0.89~0.98。对估算灌溉量的影响因素进行了讨论。 关键词:观赏草;蒸散;作物系数;需水系数;灌溉 中图分类号:S688.4;S161.4 文献标识码:A 文章编号:1000-7091(2009)03-0219-04 Evapotranspiration and R easonable Irrigation Amount of Four Ornamental G rasses in Beijing Y UAN X iao 2huan ,TE NG Wen 2jun ,Y ANG Xue 2jun ,WU Ju 2ying (Beijing Research &Development Center for G rass and Environment ,Beijing 100097,China ) Abstract :T o evaluate the water requirement of perennial ornamental grasses in Beijing ,the evapotranspiration of one 2year 2old Arundinella hirta ,Stipa tenuissima ,Calamagrostis brachytricha and Festuca glauca was measured in mini 2lysime 2ters from June to October in 2006,based on evapotranspiration feedback irrigation.T he evapotranspiration between different ornamental grasses differed significantly in every m onth except October.T he evapotranspiration of the same ornamental grass in different m onths differed significantly except Festuca glauca .T he total evapotranspiration of Arundinella tenuissima ,Sti 2 pa bungeana ,Calamagrostis brachytricha and Festuca glauca was respectively 812184,642126,524102and 333149mm.T he highest evapatranspiration of warm 2seas on Arundinella hirta and Calamagrostis brachytricha showed in Sem ptember ,and which of cold 2seas on Stipa tenuissima and Festuca glauca was in July.C ombined with the fact rain fall in 2006,irrigation was necessary from July to October for Arundinella hirta and Stipa tenuissima ,and from September to October for Calama 2 grostis brachytricha and Festuca glauca .T he reas onable irrigation am ount was respectively 440180,268145,267109and 108102mm.By means of Penman 2M onteith equation ,crop coefficients of Arundinella hirta ,Stipa tenuissima ,Calamagrostis brachytricha and Festuca glauca fromJune to October were respectively 0163—2115,0164—1184,0138—1146and 0156— 0177.Based on the evaporation of evaporation pan ,the water requirement coefficients of Arundinella hirta ,Stipa tenuissima , Calamagrostis brachytricha and Festuca glauca from June to October were respectively 1102—3140,0194—2147,0161— 2131and 0189—0198.T he factors in fluencing irrigation am ount evaluation were discussed. K ey w ords :Ornamental grass ;E vapotranspiration ;Crop coefficients ;W ater requirement coefficients ;Irrigation 华北农学报?2009,24(3):2192222

蒸发计算方法综述

蒸发计算方法综述 摘要:蒸发是地球表面水量和能量平衡中的重要分量,对于区域气候、旱涝变化趋势,水资源形成及变化规律,水资源评价等方面的研究有着重要作用。本文列举了常用的几种蒸发计算方法,对每种方法的优缺点进行了简要概括,并提出了未来蒸发计算方法的发展方向。 关键词:蒸发计算方法 1 关于蒸发的几个概念 蒸发(Evaporation)是水循环和水平衡的基本要素之一。水分从液态变为汽态的过程称为蒸发。它涉及地球表层中能量循环和物质转化最为强烈的活动层——土壤-植物-大气系统(SPAC),常受下垫面条件(如地形、土壤质地、土壤水分状况等)、植物生理特性(如植物种类、生长过程等)和气象因素(如太阳辐射、温度、湿度、风速等)等诸多因素的影响。因此,蒸发蒸腾问题成为水文学、气象学、农学等多个学科领域的关注焦点。 发生在海洋、江河、湖库等水体表面的蒸发,称为水面蒸发,它仅受太阳辐射等气象因素的热能条件制约,故又可称为蒸发能力。发生在土壤表面或岩体表面的蒸发,通常称为土壤蒸发。发生在植物表面的蒸发,称为植物蒸腾或植物蒸散发。发生在一个流域或区域内的水面蒸发、土壤蒸发和植物蒸腾的总和称为流域蒸散发或陆地蒸发。陆地蒸发不仅取决于热能条件,还取决于可以供应蒸发的水分条件,即供水条件。 蒸发蒸腾(Evaportranspiration,简称ET)包括土壤蒸发和植被蒸腾,在全球水文循环中起着重要的作用。 ET):为一种假想参考作物的蒸发蒸腾速率。假想作物的参考作物蒸发蒸腾量( 高度为0.12m,固定的叶面阻力为70s/m,反射率为,非常类似于表面开阔、高度一致、 ET的计量单位以水深表示,生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。 单位为mm;或用一定时段内的日平均值表示,单位为mm/d。 2 直接测定法 蒸发皿测定法 1687年英国天文学家Halley使用蒸发器测定蒸发量揭开了水面蒸发观测的序幕。蒸

土壤入渗速度测定实验

实验一 土壤入渗速度的测定实验 一、实验目的 1.测定特土壤的垂直入渗特性曲线。 2.掌握测定土壤吸渗与入渗速度的操作方法。 二、实验原理 考斯加可夫公式:i t =i 1t -a ---------------------------- (1) i t ——入渗开始后时间t 的入渗速度; i 1——在第一个单位时间土壤的渗透系数,相当于t =l 时的土壤下渗速度; a —指数。 对公式(1)取对数得 lgi t =lgi 1-a·lgt ----------------------- (2) 实测的lgi t ,lgt 点应成直线关系,取t=1时的i 值,极为i 1,该直线的斜率为a 值。 计算时t a ,t b 时刻对应i a ,i b ,代入下式得 b a b a t t i i a lg lg lg lg --= ----------------------- (3) 若已知i 1,a 值也可以按下述方法推求,有式(1)积分得 a t a t t a i dt t i idt I ---= ==??110 10 1 ----------------------- (4) I 为时间t 内总入渗量(累积入渗量),由实测数据得出,由于i 1已知,故a 可以求出。该法的缺点时很难测定第一个单位时间的入渗强度。 三、实验设备 1.土壤入渗仪:一套; 2.秒表:一只 3.量筒、滤纸、烧杯 4.排水管 5.接渗瓶 四、实验步骤 1.装土:将玻璃管从入渗仪上取下,底部放入一片滤纸,然后装土,在装土期间,

用木棒稍捣,要求土样均匀,装土至玻璃管即可,再在土样上部放入一张滤纸,把玻璃管与入渗仪连接好。 2.加水:关闭水阀,打开排气阀,用烧杯向加水槽加水,使量桶里的水位到达到一定刻度处,然后关闭排气阀。 3.建立水头开始实验:用烧杯迅速向玻璃管加水至玻璃管上标线,水头建立后,立即打开供水阀,同时打开秒表计时,三者要求同时进行,动作要迅速、准确、细心。 4.记数:实验开始后秒表不能中断,要求每隔1分钟1次,共读10次,再每隔2分钟读1次,共读10次,再每隔3分钟读1次,共读5次,以后每隔5分钟读1次,直到两相邻时段内,读数差值相等,说明土壤入渗已经达到稳定,即停止实验,记录项目为记录表中的第l项与第2项。 土壤非饱与垂直入渗率测定表 日期: 土质: 垂直入渗仪横断面面积(mm2): 马氏瓶横断面面积(mm2): 五、实验资料整理 1.根据实验数据,将记录的马氏瓶读数算为毫升,再计算为水层深度。 2.计算时段平均入渗速度。

蒸发计算方法综述

蒸发 摘要:蒸发是地球表面水量和能量平衡中的重要分量,对于区域气候、旱涝变化趋势,水资源形成及变化规律,水资源评价等方面的研究有着重要作用。本文列举了常用的几种蒸发计算方法,对每种方法的优缺点进行了简要概括,并提出了未来蒸发计算方法的发展方向。 关键词:蒸发 计算方法 1 关于蒸发的几个概念 蒸发(Evaporation )是水循环和水平衡的基本要素之一。水分从液态变为汽态的过程称为蒸发。它涉及地球表层中能量循环和物质转化最为强烈的活动层——土壤-植物-大气系统(SPAC ),常受下垫面条件(如地形、土壤质地、土壤水分状况等)、植物生理特性(如植物种类、生长过程等)和气象因素(如太阳辐射、温度、湿度、风速等)等诸多因素的影响。因此,蒸发蒸腾问题成为水文学、气象学、农学等多个学科领域的关注焦点。 发生在海洋、江河、湖库等水体表面的蒸发,称为水面蒸发,它仅受太阳辐射等气象因素的热能条件制约,故又可称为蒸发能力。发生在土壤表面或岩体表面的蒸发,通常称为土壤蒸发。发生在植物表面的蒸发,称为植物蒸腾或植物蒸散发。发生在一个流域或区域内的水面蒸发、土壤蒸发和植物蒸腾的总和称为流域蒸散发或陆地蒸发。陆地蒸发不仅取决于热能条件,还取决于可以供应蒸发的水分条件,即供水条件。 蒸发蒸腾(Evaportranspiration ,简称ET )包括土壤蒸发和植被蒸腾,在全球水文循环中起着重要的作用。 参考作物蒸发蒸腾量(0ET ):为一种假想参考作物的蒸发蒸腾速率。假想作物的高度为0.12m ,固定的叶面阻力为70s/m ,反射率为0.23,非常类似于表面开阔、高度一致、生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。0ET 的计量单位以水深表示,单位为mm ;或用一定时段内的日平均值表示,单位为mm/d 。 2 直接测定法 2.1 蒸发皿测定法 1687年英国天文学家Halley 使用蒸发器测定蒸发量揭开了水面蒸发观测的序幕。蒸发皿测定法主要包括大型蒸发池和小型蒸发器。大型蒸发池(20E 面积20m 2或100E 面积100m 2)的蒸发资料虽然能够代表大水体的实际水面蒸发,但由于造价太高,不可能所

土壤入渗理论与方法(改)

西南林业大学 硕士研究生文献综述 论文题目:土壤入渗理论与方法 学院:环境科学与工程学院 年级: 2014级 成员:冯晓月阮书鹏曹向文 指导教师:宋维峰 2015年4 月25 日

摘要 入渗是水文学中重要的基本概念,定量确定土壤入渗性能对认识水循环及水利用具有重要的理论意义和实践价值。当然,从不同角度出发去探讨土壤入渗也有不同的科研意义。本文试图通过对目前国内外对土壤入渗的研究做一个系统性归纳与对比,从而为下一步的学术论文打下基础。 关键词 土壤入渗;方法;模型;影响因素

Abstract Infiltration is a vital basic concepts in hydrology, qualitatively analysis soil infiltration capability has important theoretical significance and practical value in the water cycle and use. Of course, using different angle of view to discuss soil infiltration also have different research significance. This article attempts to do a systematic induction and comparison through the study of soil water infiltration at home and abroad, which lays the foundation for the next academic paper. Key words soil infiltration;methods; the influence of factors

土壤水分溶质动力学实验报告实验报告(DOC)

博士□基地班硕士□ 硕博连读研究生□兽医硕士专业学位□ 学术型硕士?工程硕士专业学位□ 农业推广硕士专业学位□全日制专业学位硕士□ 同等学力在职申请学位□中职教师攻读硕士学位□ 高校教师攻读硕士学位□风景园林硕士专业学位□ 西北农林科技大学 研究生课程结课论文封面 (课程名称:土壤水分溶质动力学) 学位课?选修课? 研究生年级、姓名 2 vccccccccccccc 研究生学号 XXXXXXXXXXX 所在学院(系、部) XXXXXXXXXXXXXXX学院 专业学科农业工程 任课教师姓名 XXXXXXXX 考试日期 考试成绩 评卷教师签字处

土壤入渗实验报告 一、垂直入渗实验 1、实验目的 测定土壤的垂直入渗特征曲线,掌握测定方法。了解土壤一维入渗特性,确定入渗条件下土壤累积入渗量曲线以及入渗速率数学表达式,用不同的入渗经验公式描述入渗速率并绘制相应的图表。 2、实验要求 (1)土柱圆筒高约29cm ,内径10cm 。控制装土容重为1.43g/cm 。垂直入渗过程中,进水端的水位由马氏瓶控制。入渗过程中,观测不同时间的累积入渗量。(2)根据实验数据在方格纸上点绘入渗过程线(速度~入渗时间),确定饱和入渗速度k 值。 (3)根据实验数据在双对数纸上点绘入渗曲线,确定α及k 值,写出该种土壤的入渗公式。 (4)略述土壤入渗过程,入渗性强弱,分析原因。 3、实验原理 (1)实验利用马氏瓶供水并维持稳定水压; (2)对于均质土的入渗强度,已有若干计算公式,菲利普根据严格的数学推导,求得解析解为: f 2 1 i t 2i += S 式中,i ——t 时刻的入渗速率; S ——与土壤初始含水率有关的特性常数,成为吸水率; f i ——稳定入渗率,即饱和土壤渗透系数。 在非饱和土壤入渗初期,S 起主要作用,所以菲利普公式可以改写为:

土壤学实验报告3

实验报告 课程名称: 土壤学实验 指导老师: 谢晓梅 成绩:__________________ 实验名称: 土壤有机质的测定 同组学生姓名: 金璐 一、实验目的和要求 二、实验内容和原理 三、实验材料与方法 四、实验步骤 五、实验数据记录和处理 六、实验结果与分析 七、讨论、心得 八、参考文献 一、实验目的和要求 1、了解土壤有机质测定对于农业生产的意义; 2、 掌握土壤有机质含量的测定方法。 二、实验内容和原理 1、实验内容:用稀释热法测定土壤有机质的含量。 2、实验原理: ①土壤有机质是指存在于土壤中的所以含碳有机物质,包括各种动植物残体,微生物及其分解和合成的各种有机物质(生命体和非生命体)。它是土壤的重要组成部分。并且土壤有机质的作用巨大,它是土壤肥力高低的一个重要指标,对生态环境中有机污染及全球碳平衡方面也有重要意义。 分析测定土壤有机质含量,包括部分分解很少的动植物残体、动植物残体的半分解产物及微生物代谢物和腐殖质类物质。并且不同土壤中有机质含量差异很大,低的不足0.5%,高的可达20-30%。其中,>20%称有机质土壤,<20%称矿质土壤。一般的,耕作土壤有机质含量<5%。 ②稀释热法是利用浓重铬酸钾迅速混合所产生的热来氧化有机质,剩余重铬酸钾用硫酸亚铁滴定,从所消耗的重铬酸钾量,计算有机碳的含量。但由于热量较低,对有机质的氧化程度较低,只有77%。 氧化过程: K 2Cr 2O 7 + C + H 2SO 4→K 2SO 4 + Cr 2(SO 4)3 + CO 2 + H 2O 橙色 绿色 滴定过程: K 2Cr 2O 7 + FeSO 4 + H 2SO 4→K 2SO 4 + Cr 2(SO 4)3 + Fe 2(SO 4)3 + H 2O 橙色 浅绿色 绿色 浅黄色 实验使用邻啡啰啉试剂作为指示剂,显示氧化还原状态。邻啡啰啉试剂与不同价态的铁形成不同颜色的络合物。 [(C 2H 8N 2)3Fe]3+?[(C 2H 8N 2)3Fe]2+ 淡蓝色 红色 滴定开始时以重铬酸钾的橙色为主,滴定过程中渐现Cr 3+的绿色,快到终点时变为灰绿色,如果标准亚铁溶液过量半滴,即变成红色,说明终点已到。 三、实验材料与方法 1、实验材料

土壤入渗实验指导书

《水文学原理》实验指导书 天津农学院水利工程系 2006.9

实验一土壤渗透系数的测定 [实验目的]: 1.掌握土壤下渗的物理过程及下渗机理; 2.测量土壤渗透系数K; 3.学习正确使用渗透筒。 [实验原理]: 下渗过程一般划分为三个阶段。第一阶段为渗润阶段,这阶段,土壤含水量较小,分子力和毛管力均很大,再加上重力的作用,所以此时土壤吸收水分的能力特别大,以致初始下渗容量很大,而且由于分子力和毛管力随土壤含水量增加快速减小,使得下渗容量迅速递减。第二阶段为渗漏阶段,土壤颗粒表面已形成水膜,因此分子力几乎趋于零,这时水主要在毛管力和重力作用下向土壤入渗,下渗容量比渗润阶段明显减小,而且由于毛管力随土壤含水量增加趋于减小阶段,所以这阶段下渗容量的递减速度趋缓。第三阶段为渗透阶段,在这一阶段,土壤含水量已达到田间持水量以上,这时不仅分子力早已不起作用,毛管力也不再起作用了。控制这一阶段下渗的作用力仅为重力。与分子力和毛管力相比,重力只是一个小而稳定的作用力,所以在渗透阶段,下渗容量必达到一个稳定的极小值,称为稳定下渗率。 [实验仪器]: 1.渗透筒(渗透环)一套——渗透筒是用金属做的一套无底同心圆柱筒,筒底 具刀口,同心环内管的横截面积为1000cm2,内径35.8cm,高30-50cm,外筒内径60cm(亦可用土埂围堰代替外筒); 2.量筒500ml和1000ml各一个; 3.水桶2个;温度计1支(刻度0-50℃);秒表(普通钟表)1块;量水测针或 木制厘米尺一个;席片或塑料薄膜(灌水时防止冲刷用)。 [实验步骤]: 1.选取具有代表性的地块,把渗透筒的内筒插入土中,深度10cm左右,同时插 好外筒。如无外筒,可筑埂围堰,高度和内筒高相平,埂顶宽20cm,并捣实之。 2.同内外插入量水测针或木制厘米尺各一支,筒内水层厚度一般保持5cm。 3.把席子或塑料薄膜放入筒底,同时把温度计插入筒内。在开始灌水时,土壤 吸水速度较快,为使筒内达到一定水层,第一次灌水要快,同时视水层下降

推求Gardner-Russo持水曲线模型参数的简单入渗法

基金项目 作者简介 湖北监利人博士生 主要研究方向为地面水资源与地下水资源及环境 推求持水曲线模型参数的简单入渗法 薛绪掌张仁铎 武汉大学水资源与水电工程科学国家重点实验室湖北武汉 国家农业信息化工程技术研究中心 北京 中山大学环境科学与工程学院广东 广州 摘要本文基于水平一维非饱和土壤水分运动规律 推求了 用模拟的结果进行拟合其决定系数 为 利用数值模拟数据和实验数据检验该方法将用此方法 结果表明本研究所求得的参数有较高的精度关键词土壤水分渗流运动 参数数值模拟 等和 直接测量土壤水分特征曲线和非饱和土壤导水率的方法 土壤水力特性土壤质地资料被成功地用来预测非饱和土壤水力特性 和 描述非饱和土壤水力特性模型中的参数该方法是在假 等模型中的参 法来推求更多描述土壤水分运动模型中的参数基本理论 水平一维非饱和土壤水分运动建立在 其表达式为

其表达式如下 是土壤饱和体积 方程描述如下 式中 其初始和边界条件其中为土壤初始体积含水率 式中为任意位置 则湿润峰位置的土壤水基质势 很低有 式中为湿润峰 由于 可得 变化的函数表达式 该式右边须乘以一个 参数 式中 当时入渗通量 和湿润峰厚度

此公式相似于表征的水分入渗模型 当土壤湿润峰为时其相对应的土壤水累积入渗量 其中 其中 其中 土壤饱和水 力传导度和土壤饱和体积含水率取 风干土含水量和 根据入渗率和湿润峰之间的关系 ?利用迭代法求得可得参数 和

本研究应用程序 模拟中用到列出了土柱长度为 用到 分别为和 体积含水率和土壤饱和导水率和后借助求解 和为了验证所推导的计算 算得到的参数值和输入的参数值进行比较和参数敏感性分析并将参数估计值代入模型中得到的 表土壤类型水力特性参数 土壤??? 实验方法年 验室温度控制在土壤为风干散装土系采自北京昌平小汤山国家精准农业基地个土壤剖面层 次和土壤样品自然风干且过表 表供试土壤的基本性质 土壤剖面层次深度有机质团粒结构状况 将各种供试土壤按照装土容重分成 在实验前取自然分干土样利用烘干法测定供试土壤的重 和初始体积含水率 在实验室内进行了传统的的有机 试验土柱是界面直径为将供试土壤按设 计容重分层均匀装入圆筒在实验过程中 结果和讨论 数值分析湿润峰 为了验证其结果将模拟结果点绘在二维坐标中和图 图和图分别描述了 其拟合结果见表

降雨和灌水入渗条件下土壤水分运动2.docx

第五章降雨和灌水入渗条件下土壤水分运 动 第一节水向土中入渗过程 一、概述 降雨和灌水入渗是田间水循环的重要环节,与潜水蒸发一样,是水资源评价和农田水分 状况调控的重要依据。 水渗入土壤的强度主要取决于降雨或灌水的方式和强度以及土壤渗水性能。如果土壤渗水性能较强,大于外界供水强度,则入渗强度主要决定于外界供水强度,在入渗过程中土壤表面含水率随入渗而逐渐提高,直至达到某一稳定值。如果降雨或灌水强度较大,超过了土壤渗水能力,入渗强度就决定于土壤的入渗性能,这样就会形成径流或地表积水。这两种情况可能发生在入渗过程的不同阶段,如在稳定灌溉强度(例如喷灌)下,开始时灌溉强度小于土壤入渗能力,入渗率等于灌溉强度;但经过一定时间后,土壤入渗能力减少,灌水强度大于土壤入渗能力,于是产生余水,如图2-5- 1所示的降雨或灌水条件下的入渗过程。开始时入渗速率较高,以后逐渐减小。土壤的入渗能力随时间而变化,与土壤原始湿度和土壤 水的吸力有关,同时也与土壤剖面上土质条件、结构等因素有关。一般来说,开始入渗阶段,土壤入渗能力较高,尤其是在入渗初期,土壤 比较干燥的情况,然后随土壤水的入渗速率逐 渐减小,最后接近于一常量,而达到稳定入渗 阶段。 在较干旱的条件下,土壤表层的水势梯度 较陡。所以,入渗速率较大,但随着入渗水渗 入土中,土壤中基模吸力下降。湿润层的下移 使基模吸力梯度减小。在垂直入渗情况下,如 供水强度较大,使土壤剖面上达到饱和,当入 渗强度等于土壤饱和水力传导度时,将达到稳 定入渗阶段。如供水强度较小,小于饱和土壤 水力传导度时,达到稳定入渗阶段的入渗强度将等于该湿度条件下的非饱和土壤水力传导 度。 入渗过程中,土壤剖面上水分分布与土表入渗条件有关。根据 Coleman和Bodman 的研 究, 当均质土壤地表有积水入渗时,典型含水率分布剖面可分为四个区,即表层有一薄层为饱和带,以下是含水率变化较大的过渡带,其下是含水率分布较均匀的传导层,以下是湿润程度随深度减小的湿润层,该层湿度梯度越向下越陡,直到湿润锋。随着入渗时间延续,传导层 会不断向深层发展,湿润层和湿润锋也会下移,含水率分布曲线逐渐变平缓。

利用精确的田间实验资料对几个常用根系吸水模型的评价与改进

利用精确的田间实验资料对几个常用根系吸水模型的评价与改进 罗毅,于强,欧阳竹,唐登银,谢贤群 中国科学院地理研究所、禹城综合试验站 摘要:本文利用大型蒸渗仪测得的作物腾发量、中子水分仪观测的土壤水分和准确测定的根系密度分布资料,对常用的几个宏观的权重因子类的根系吸水模型-Molz-Remson(1970)模型,Feddes(1978)模型,Selim-Iskan-dar(1978)模型以及作者对上述模型进行修正所得的几个根系吸水模型进行了验证和评价;利用修正的Feddes模型的计算结果对根系从不同土层吸水的分布进行了分析。结果表明,Molz-Remson(1970)模型、Feddes模型以及Selim-Iskandar模型模拟根系吸水所得的土壤水分剖面与实测值之间存在比较严重的偏差;利用Feddes模型中的土壤水势影响函数(Feddes reduction function)对Molz-Remson模型和Selim-Iskandar模型进行修正后结果没有得到改善;利用根系密度函数对Feddes模型进行修正后,计算结果与实测值吻合很好,总体偏差由修正前的24.7%降低为5.7%. 关键词:根系吸水模型;土壤水;冬小麦;蒸腾 本文于1999年9月8日收到,国家自然科学基金9.5重大项目资助(49890330);中国博士后基金资助;中科院特别支持项目资助(KZ95-A1-301,KZ95T-04-01) 植被覆盖区构成了地球水文系统的重要组成部分,而植物根系与土壤界面是重要的水文界面。超过蒸发量50%的水量要流经根土界面[1]。研究根系吸水具有重要的水文学意义。 描述根系吸水的数学模型分为微观模型与宏观模型两类。在实际应用中,微观模型存在许多困难,而宏观模型具有许多优越性[2]。在目前开展土壤植物大气连续体的模拟研究中,根系吸水在水流连续方程中常作为一个吸水项处理,即广泛采用根系吸水的宏观模型。 宏观模型又大体上可以分为两类。一类是基于电学模拟法建立的模型[3~5]。这类模型要求计算根系的水势,土壤和根系对水流的阻力。根系水势与根系的生理特性有关,并且随作物蒸腾强度的变化而变化;根系对水流阻力与根系生理特性有关;土壤对水流的阻力与土壤性质和含水量有密切的关系。准确确定根系水势、根系和土壤对水流的阻力在应用中往往存在很大困难。所以,尽管这模型具有较强的机理性,但其应用并不广泛。另一类模型将根系吸水与作物蒸腾联系起来,将蒸腾量在根系层土壤剖面上按一定的权重因子进行分配来建立根系吸水函数,可以称这类模型为权重因子类模型,这类模型经验性较强。权重因子通常定义为土壤含水量、土水势、导水率、扩散率和根系密度的函数。由于权重因子中所涉及的变量基本上是在构造土壤植物大气连续体水流方程时所涉及的,所以这类模型虽然经验性较强,但是应用相当广泛。值得一提的是邵明安[7]所建立的根系吸水模型虽然也是一个经验性的权重因子类模型,但是在其权重因子中加入了根土水势和根土水流阻力的影响,因而具有电学模拟和权重因子类模型的优点。

土壤入渗实验报告

一、实验目的 1.加深对土壤渗吸速度变化的一般规律的了解。 2.了解土壤质地对土壤渗吸速度的影响。 3.掌握土壤渗吸速度的常规测定方法及装置原理。 二、实验设备 水在土壤中入渗分为有压入渗和无压入渗。如漫灌、畦灌和沟灌都属于有压入渗。喷灌、滴灌属于无压入渗。本试验是模拟有压入渗条件下,土壤渗吸速度的测定。 本试验为室内试验,试验装置如图4-1-1。试验仪器大体分为由两部分,即试样渗吸桶和供水马氏瓶。双环入渗试验的外环外径为15cm,内径14cm;内环的外径直径10cm,内径直径9cm,高15cm。安装后要求内环环顶端与渗吸筒齐平,下端插入土内10cm。试验桶正上方为自动供 水箱(即为马氏瓶),使内环保持稳定的水层深度。供水马氏瓶外径6cm,内 径5cm。此外再配备秒表、水桶、水勺和刮土板等试验用具。 三、实验方法及步骤 1.实验准备工作 a.人员分工 每组实验人员3~5人,其中一人计时兼指挥,一人读取供水水位数 值,一人加水,其余人员做记录和观察渗吸规律。 b.准备工作 和内环一并称重, (1)测量试样桶容积V,按欲模拟土壤干容重 干 M。 计算出干土重' (2)将筛网贴紧桶底铺好,然后开始填装。土样一般分5~6次填装, 均匀夯实,层间要“打毛”。土样全部装好后用刮板刮平表面,最后将马 氏瓶安装好待用。 (3) 关闭供水箱(马氏瓶)的出水口,向水箱内注水,然后用胶塞密 封注水进水口。图4-1-1 试验装置示意图 (4) 在试样图环内表层铺塑料薄膜,向环内注入约5cm深的水层,打 开供水箱开关,用注射器抽水,直至马氏瓶能正常供水(目的是调节马氏瓶)。 (5) 检查秒表是否正常及回零位。 (6) 记录供水箱原始水位读数。 2. 实验方法及步骤 试验人员必须精力集中,认真负责,在统一指挥下,分工协作,作好记录。 a.迅速抽取塑料薄膜,并开始记时水位数值。 b.读取第一分钟末供水箱的水位,按试验要求读取水位数值。 c.实验至渗吸速度稳定后(即每两次水位读数差相同),实验结束。 3. 注意事项 a.供水箱出水口必须淹没在内环水面以下0.5~1.0cm。 b.水位读数要读取每分钟末的数值,该数是计算渗吸规律重要的参数之一。 c.试验开始时迅速向外环加水至0.5~1.0cm时,使内外环水位大致保持相同水深,但外环加水不计入总量。 d.内环的供水量,由水箱上的标尺读数换算获取。 四、试验原理及资料分析整理

利用大型蒸渗仪模拟土壤_植物_大气连续体水分蒸散_陈建耀

利用大型蒸渗仪模拟土壤-植物-大气连续体水分蒸散 * 陈建耀** 刘昌明 吴 凯 (中国科学院地理研究所, 北京100101) 【摘要】 在农田水量转化各分量中,蒸散与潜水蒸发是最难测定的.在地下水浅埋地区,地下水通过毛管上升 而补给包气带土壤水的作用十分明显,对作物生长意义重大.利用大型蒸渗仪、波文比、水力蒸发器等仪器,获得了大量水平衡因子的试验数据和土壤-植物-大气连续体(SPAC )模型中的有关参数.以大型蒸渗仪实测值为基准,验证了农田土壤-植物-大气连续体模型的模拟值,并主要就蒸散和潜水蒸发量,对实测与模拟值作了比较分析,探讨了导致两者差异的原因. 关键词 土壤-植物-大气连续体 蒸散 大型蒸渗仪 试验 模拟 Evapotranspiration of soil -plant -atmospheric continuum -a simulation study with lysimeter .Chen Jiany ao ,Liu Changming and W u Kai (Institute of Geo graphy ,Academia Sinica ,Beijing 100101).-Chin .J .Appl .Ecol .,1999,10(1):45~48.Evapotranspira tio n (ET )and evapo ratio n from ground water surface (Eg )are the tw o factors most difficult to deter -mine in all components of field water balance .I n regions with shallow g round water ,the g round water play s an obvi -ous ro le o n supply ing the soil wa ter in unsa turated zone by capillary rise ,which is of sig nificant importance to the crop grow th .T he experimental data of w ater balance co mponents and relevant parameters of soil -plant -atmospheric contin -uum model were obtained by ly simeter ,Bowen ratio meter ,hydraulic ev apotranspirometer ,etc .Based on the da ta measured by lysimeter ,the simulation v alue of soil -plant -atmospheric continuum mo del w as v erified .T he observ ed da -ta of ET and Eg were comparatively analyzed with their simulation data ,and the causes of difference between them were discussed . Key words Soil -plant -atmospheric continuum ,Evapotranspiration ,Lysimeter ,Experiment ,Simulatio n . *国家自然科学基金重大资助项目(49391602). **通讯联系人. 1998-02-23收稿,1998-06-29接受. 1 引 言 作物蒸散是农田水分运移、转化的一个重要环节.国内外对作物蒸散的计算与实验模拟作了大量实验研究,提供了多种理论和经验的计算方法,如Penman -M onteith 公式.Penman 在1953年通过对气孔蒸腾的研究,首次提出了计算单个叶片气孔蒸腾的模型;Cov -ey 在1959年提出了冠层整体气孔阻力的概念;1965年Monteith 在Penm an 和Covey 等人的研究基础上,提出了考虑边界层阻力的作物蒸散计算模式,即Pen -man -Monteith 公式.1966年澳大利亚水文与土壤物理学家菲利普(Philip )在总结和分析前人成果的基础上,提出了土壤-植物-大气连续体(SPAC )的概念,将作物蒸散作为SPAC 系统的重要环节或过程来研究.之后,此研究得到不断发展,尤其是80年代后期兴起的国际地圈-生物圈计划(IGBP ),把水文循环的生物圈方面(BAHC )作为四大核心课题之一,更加促进了SPAC 系统研究的深入.水分从土壤/地下水经植物体向大气层的运移,是现代水文学理论中一个崭新的前沿课题[1].在SPAC 系统中,蒸散发过程是最为关键的环节之一,对其进行研究具有重要的理论和实际意义. 以土壤水为中心的大气降水、地表径流、土壤水和 地下水之间的转化是调控水循环和农田水分有效利用的理论依据.在水量转化各分量中,蒸散与潜水蒸发是最难测定的.在以往的SPAC 系统研究中,由于潜水蒸发难于测定,往往简单忽略了事.菲利普1966年提出的SPAC 系统的一个缺陷就是没有很好考虑地下水在整个系统中的作用.在地下水浅埋地区,地下水通过毛管上升而补给包气带土壤水的作用十分明显,对作物生长意义重大,上述忽略在此类地区是不适宜的.本文利用中国科学院禹城综合试验站内的大型蒸渗仪、波文比、水力蒸发器等仪器,获得了大量水平衡因子的试验数据和SPAC 模型中的有关参数.以大型蒸渗仪实测值为基准,验证了农田土壤-植物-大气连续体模型的模拟值,并主要就蒸散和潜水蒸发量,对实测与模拟值作了比较分析,探讨了两者差异的原因.2 材料与方法 农田蒸散的测定方法较多,禹城试验站采用大型蒸渗仪、微气象技术、实验红外遥感技术、植物生理测定技术、水量平衡方法等等.上述方法中,大型蒸渗仪测定值一般是作为基准来 应用生态学报 1999年2月 第10卷 第1期 CHIN ESE JO U RNA L OF A PPL IED ECOLOG Y ,Feb .1999,10(1)∶45~48

渗透试验报告

双环渗透 8.1试验的目的 双环法试验是野外测定包气带非饱和松散岩层的渗透系数的常用的简易方法,试验的结果更接近实际情况。利用这个试验资料研究区域性水均衡以及水库、灌区、渠道渗漏量等都是十分重要的。 8.2试验的适用范围 对砂土和粉土,可采用试坑法或单环法,对粘性土应采用试坑双环法 8.3试验的基本原理 水在土中的流动符合达西定律,水在土的孔隙中流动时,大多数情况下流速较小,可以认为属于层流(即水流流线相互平行的流动)。则渗透速度与水力坡降成正比。当水力坡降为1时的渗透速度称为土的渗透系数。对于饱和土的渗透现象常用达西定律来表示。即 v= k =或 kIF q I 在一定的水文地质边界以内,向地表松散岩层进行注水,使渗入的水量达到稳定,即单位时间的渗入水量近似相等时,再利用达西定律的原理求出渗透系数(K)值。在坑底嵌入两个高约50cm,直径分别为0.25m和0.50m的铁环,试验时同时往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜,由于外环渗透场的约束作用使内环的水只能垂向渗入,因而排除了侧向渗流的误差,因此它比试坑法和单环法的精度都高。 8.4 试验仪器及制样工具 双环、铁锹、水平尺、量筒、笔直的树枝 双环:(外环:上底0.5m,下底0.5m,高0.25m;内环:上底0.25m,下底0.25m,高0.25m)。 8.5试验的操作步骤 (1)选择试验场地,最好在潜水埋藏深度大于5m的地方为好。如果潜水埋深小于2m时,因渗透路径太短,测得的渗透系数不真实,就不要使用渗水试验; (2)按双环法渗水试验示意图,安装好试验装置。 (3)往内、外铁环内注水,并保持内外环的水柱都保持在同一高度,以0.1m为宜。 (4)按一定的时间间隔观测渗入水量。开始时因渗入量大,观测间隔时间要短,

二维吸渗与入渗条件下土壤水力特性参数反演方法研究

二维吸渗与入渗条件下土壤水力特性参数反演方法研究 土壤水力特性参数取值是影响非饱和土壤水运动数值计算精度的关键。采用数值模拟、理论分析和室内试验对比相结合的技术路线,综合运用土壤水动力学、数值模拟与数值反演、多目标优化、代理模型和多种计算机语言综合集成技术,开展土壤二维负压吸渗、积水入渗水分运动参数的反演方法研究,取得以下主要结果:(1)提出了一种新的土壤水力特性参数反演方法,即“两步法”。第一步,以吸渗/入渗结束时刻的土壤含水率(θfinal),即ψ(θ final)最小作为目标函数,采用遗传算法反演饱和含水率;第二步, 以累积吸渗/入渗量ψ(Q)和吸渗/入渗速率ψ(v)最小作为目标函数,采用由多向量遗传算法和粒子群算法所构建的混合算法反演水力特性参数α、n和 Ks;与传统的加权和多目标反演方法相比,所提方法能够有效解决不同目标函数权重系数难以确定的问题,且具有高的求解效率和强的稳健性。(2)以所提“两步法”为基础,分别对二维吸渗和积水入渗条件下多种典型土壤、不同初始含水量条件下的van Genuchten–Mualem模型中水力特性参数进行了反演。 结果表明所得土壤水力特性参数反演值与典型土壤参考值(以RETC软件给出的典型值为比较时的参考值)具有好的一致性,说明所提反演方法具有高的可靠性;采用反演所得土壤水力特性参数分别绘制土壤水分特征曲线和导水率曲线,并与参考值绘制的曲线进行比较,结果表明两者具有高的一致性,说明反演所得 参数可较为精确的估算土壤水分特征曲线和导水率曲线;量化比较了考虑土壤含水率和累积入渗量存在测量误差条件下反演所得水力特性参数估算土壤水分特 征曲线和导水率曲线和参考值曲线,结果表明两者间具有小的差异和满意的估算精度,说明了所提反演方法具有强的稳健性;对积水入渗土壤垂直剖面含水率非 均一分布条件下水力特性参数进行了反演,结果表明典型土壤不同含水率分布模式下所得水力特性参数估算值与参考值差异较小,且采用反演结果绘制的土壤水分特征曲线和导水率曲线与参考值绘制的土壤水分特征曲线和导水率曲线基本 一致,说明所提反演范围具有较为广泛的使用范围,可用于生产实践。(3)建立了基于Kriging代理模型的土壤水力特性参数反演模型。根据土壤积水入渗的累积入渗量和最终含水率对土壤水力特性参数进行了反演估算,结果表明反演结果与典型土壤参考值具有高的一致性;量化比较了考虑土壤含水率和累积入渗量存在

相关文档