文档库 最新最全的文档下载
当前位置:文档库 › 离心压缩机的基本原理

离心压缩机的基本原理

离心压缩机的基本原理
离心压缩机的基本原理

离心压缩机的基本原理

第一节离心压缩机概述

离心压缩机是产生压力的机械,是透平压缩机的一种。透平是英译音“TURBINE”,即旋转的叶轮。在全低压空分装置中,离心压缩机得到广泛应用,逐渐出现了离心压缩机取代活塞压缩机的趋势。

一、定义:

离心压缩机:指气体在压缩机中的运动是沿垂直于压缩机轴的径向进行的。

二、工作原理:是工作轮在旋转的过程中,由于旋转离心力的作用及工作轮中的扩压流动,使气体的压力得到提高,速度也得到提高。随后在扩压器中进一步把速度能转化为压力能。通过它可以把气体的压力提高。

三、特点:

离心压缩机是一种速度式压缩机,与其它压缩机相比较:

优点:⑴排气量大,排气均匀,气流无脉冲。

⑵转速高。

⑶机内不需要润滑。

⑷密封效果好,泄露现象少。

⑸有平坦的性能曲线,操作范围较广。

⑹易于实现自动化和大型化。

⑺易损件少、维修量少、运转周期长。

缺点:⑴操作的适应性差,气体的性质对操作性能有较大影响。在机组开车、停车、运行中,负荷变化大。

⑵气流速度大,流道内的零部件有较大的摩擦损失。

⑶有喘振现象,对机器的危害极大。

四、适用范围:

大中流量、中低压力的场合。

五、分类:

⑴按轴的型式分:单轴多级式,一根轴上串联几个叶轮。

双轴四级式,四个叶轮分别悬臂地装在两个小齿轮的两端,旋转靠电机通过大齿轮驱动小齿轮。

⑵按气缸的型式分:水平剖分式和垂直剖分式。

⑶按级间冷却形式分类:

级外冷却,每段压缩后气体输出机外进入冷却器。

机内冷却,冷却器和机壳铸为一体。

⑷按压缩介质分类:空气压缩机、氮气压缩机、氧气压缩机等。

第二节离心压缩机的工作原理分析

一、常用名词解释:

⑴级:每一级叶轮和与之相应配合的固定元件(如扩压器等)构成一个基本的单元,叫一个级。如:杭氧2TYS100+2TYS76氧气透平压缩机高低压气缸共有八个叶轮,就叫八级。

⑵段:以中间冷却器隔开级的单元,叫段。这样以冷却器的多少可以将压缩机分成很多段。一段可以包括很多级。也可仅有一个级。

⑶标态:0℃,1标准大气压。

⑷进气状态:一般指进口处气体当时的温度、压力。

⑸重量流量:一秒时间内流过气体的重量。

⑹容积流量:一秒时间内流过气体的体积。

⑺表压(G):以当地大气为基准所计量的压强。

⑻绝压(A):以完全真空为基准所计量的压强。

⑼真空度:与当地大气负差值。

⑽压比:出口压力与进口压力的比值。

二、压缩机级中的气体流动

叶轮被驱动机拖动而旋转,气体进入叶轮后,对气体作功。那么气体既随叶轮转动,又在叶轮槽中流动。反映出气体的压力↑,温度↑、比容↓。

叶轮转动(理解“转动”)的速度即气体的圆周速度,在不同的半径上有不同的数值,叶轮出口处的圆周速度最大。

气体在叶轮槽道内相对叶轮的流动(理解“流动”)速度为相对速度。因叶片槽道截面积从进口到出口逐渐增大,因此相对速度逐渐减少。

气体的实际速度是圆周速度与相对速度的合成,又称之为绝对速度。

第三节级内气体流动的能量损失分析

一、能的定义:

度量物质运动的一种物质量,一般解释为物质作功的能力。能的基本类型有势能、动能、热能、电能、磁能、光能、化学能、原子能等。一种能可以转化为另一种能。能的单位和功的单位相同。能也叫能量。

二、级内气体流动的能量损失分析

压缩机组实际运行中,通过叶轮向气体传递能量,即叶轮通过叶片对气体作功消耗的功和功率外,还存在着叶轮的轮盘、轮盖的外侧面及轮缘与周围气体的摩擦产生的轮阻损失,还存在着工作轮出口气体通过轮盖气封漏回到工作轮进口低压低压端的漏气损失。都要消耗功。这些损失在级内都是不可避免的,只有在设计中精心选择参数,再制造中按要求加工,在操作中精心操作使其尽量达到设计工况,来减少这些损失。

另外,还存在流动损失以及动能损失以及在级内在非工况时产生冲击损失。冲击损失增大将引起压缩机效率很快降低。还有高压轴端,如果密封不好,向外界漏气,引起压出的有用流量减少。

故此,我们有必要研究这些损失的原因,以便在设计、安装、操作中尽量减少损失,维持压缩机在高效率区域运行,节省能耗。

1、流动损失:

定义:就是气流在叶轮内和级的固定元件中流动时的能量损失。

产生的原因:主要由于气体有粘性,在流动中引起摩擦损失,这些损失又变成热量使气体温度升高,在流动中产生旋涡,加剧摩擦损耗和流动能量损失,因旋涡的产生就要消耗能量;在工作轮中还有轴向涡流等第二次流动产生,引起流量损失。在叶轮出口由于出口叶片厚度影响产生尾迹损失。弯道和回流器的摩擦阻力和局部阻力损失等。

2、冲击损失:定义:是一种在非设计工况下产生的流动损失。

叶轮进口叶片安装角β1A(实际)一般是按照设计气流的进口角β1(设计)来决定的。一般是β1=β1A,此时进气为无冲击进气。但是当工况发生偏离设计工况时,气流进口角β1大于或小于β1A将发生气流冲击叶片的现象。

习惯把叶轮进口叶片安装角β1A(实际)与设计气流的进口角β1(设计)之

差叫做冲击角,简称冲角。用i表示。

β1A<β1 ,i<0,叫负冲角。

β1A>β1 ,i>0,叫正冲角。

在正负冲角的情况下,都将出现气流与叶片表面的脱离,形成旋涡区,使能量损失。冲

击损失的增加与流量偏离设计流量的绝对值的平方成正比。

3、轮阻损失

叶轮的不工作面与机壳之间的空间,是充满气体的,叶轮旋转时,由于气体有粘性,也会产生摩擦损失。又由于旋转的叶轮产生离心力,靠轮的一边气体向上流,靠壳的一边气体向下流,形成涡流,引起损失。轮阻损失的计算,有实验公式,有兴趣可查书籍。

4、漏气损失:

包括内漏和外漏。

内漏气是指泄露的气体又漏回到压缩气体中。包括两种情况:一种是从叶轮出口的气体从叶轮与机壳的空间漏回到进口。另一种是单轴的离心压缩机,由于轴与机壳之间也有间隙,气体从高压的一边经过间隙流入低压一边。

外漏是指压缩气体通过轴与机壳密封处间隙或机体的间隙直接漏到大气中。

漏气损失是一个不可忽视的问题,我们在维修、操作中应特别注意,有些空压机出现气量打不到设计值就是内漏和外漏引起的。

第三章离心压缩机的基本结构

第一节离心压缩机系统组成

众说周知,整套离心压缩机组是由电气、机械、润滑、冷却、控制等部分组成的一个系统。虽然由于输送的介质、压力和输气量的不同,而有许多种规格、型式和结构,但组成的基本元件大致是相同的,主要由转子、定子、和辅助设备等部件组成。

第二节主机部件

一、离心压缩机的转子

转子是离心压缩机的关键部件,它高速旋转。转子是由叶轮、主轴、平衡盘、推力盘等部件组成。

叶轮

叶轮也叫工作轮,是离心式压缩机的一个重要部件,气体在工作路轮中流动,其压力、流速都增加,同时气体的温度也升高。叶轮是离心式压缩机对气体作功的唯一元件。

1.在结构上,叶轮典型的有三种型式:

⑴闭式叶轮:由轮盘、轮盖、叶片三部分组成。

⑵半开式式叶轮:无轮盖、只有轮盘、叶片。

⑶双面进气式叶轮:两套轮盖、两套叶片,共用一个轮盘。

⒉叶轮的结构以叶片的弯曲形式来分:

⑴前弯叶片式叶轮:叶片弯曲方向与叶轮的旋转方向相同。叶片出口角>90°。

⑵后弯叶片式叶轮:叶片弯曲方向与叶轮的旋转方向相反,叶片出口角<90°。

⑶径向叶片式叶轮:叶片出口方向与叶轮的半径方向一致,叶片出口角=90°。

主轴

主轴的作用就是支撑安装其上的旋转零部件(叶轮、平衡盘等)及传递扭矩。在设计轴确定尺寸时,不仅考虑轴的强度问题,而且要仔细计算轴的临界转速。

所谓临界转速就是轴的转速等于轴的固有频率时的转速。

平衡盘推力盘

在多级离心压缩机中,由于每级叶轮两侧的气体作用力不一致,就会使转子受到一个指向低压端的合力,这个合力,我们称为轴向力。轴向力对于压缩机的正常运转是不利的,它使转子向一端窜动,甚至使转子与机壳相碰,发生事故。因此应设法平衡它,平衡盘就是利用它的两侧气体的压力差来平衡轴向力的零件。热套在主轴上,通常平衡盘只平衡一部分轴向力,剩余的轴向力由止推轴承来承受。

推力盘是固定在主轴上的止推轴承中的一部分,它的作用就是将转子剩余的轴向力通过油

膜作用在止推轴承上,同时还确定了转子与固定元件的位置。

二、离心压缩机的定子

定子是压缩机的固定元件,由扩压器、弯道、回流器、蜗壳及机壳组成。

扩压器

扩压器的功能主要是使从叶轮出来的具有较大动能的气流减速,把气体的动能有效地转化为压力能。

扩压器一般分为:无叶扩压器、叶片扩压器、直壁式扩压器。

弯道

其作用使气流转弯进入回流器,气流在转弯时略有加速。

回流器

其作用使气流按所须方向均匀的进入下一级。

蜗壳

其主要作用是把扩压器后面或叶轮后面的气体汇集起来,并把它们引出压缩机,流向输送管道或气体冷却器,此外,在会聚气体过程中,大多数情况下,由于蜗壳外径逐渐增大和流通面积的逐渐增大,也起到了一定的降速扩压作用。轴承

支撑轴承:用于支撑转子使其高速旋转。

止推轴承:作用是承受剩余的轴向力。

第三节辅助设备

㈠离心压缩机传动系统

空分装置中采用的离心压缩机由于转速高,一般采用电动机通过齿轮增速箱来拖动。

对于齿轮的材质要求相当高,一般采用优质合金钢,并经渗碳处理,以提高硬度,同时要求提高加工精度。在出厂前,并经严格的静、动平衡实验。

平衡:包括静平衡、动平衡两种。

静平衡是检查转子重心是否通过旋转轴中心。如果二者重合,它能在任意位置保持平衡;不重合,它会产生旋转,只有在某一位置时才能静止不动。通过静平衡实验,找出不平衡质量,可以在其对称部位刮掉相应的质量,以保持静平衡。

动平衡:经过静平衡试验的转子,在旋转时仍可能产生不平衡。因为每个零件的不平衡质量不是在一个平面内。当转子旋转时,他们会产生一个力矩,使轴线发生挠曲,从而产生振动,因此,转子还需要做动平衡试验。动平衡试验就是在动平衡机上使转子高速旋转,检查其不平衡情况,并设法消除其不平衡力矩的影响。

㈡离心压缩机的冷却系统

一、冷却的方式

主要有风冷、水冷。

二、冷却的主要方面

主电机、压缩后的气体、润滑油。

1、冷却主电机

主要为了防止电机过度温升、烧损。通常采用的冷却方式有风冷、水冷。有的大型电机兼而有之。

2、冷却压缩后的气体

主要为了降低各级压缩后气体的温度,减少功率消耗。

通常设置水冷却器。在一台机组上设有多个冷却器,有的一级一个。有的两级一个,这样根据冷却器的多少,又可以把压缩机分成几个段。

冷却器内介质流动情况:

⑴冷却器管程走气,壳程走水;如:英格索氮压机、杭氧氧透就是这样,同时可以减少噪音。

⑵冷却器管程走水,壳程走气。

3、冷却润滑油:

压缩机的油站设有油冷却器。降低油温和在一定范围内调节油温。

(三)机前进口过滤器相关知识

在工业区空气的含尘量一般每立方米1-5毫克(《氧气及相关气体规程》要求不大于每立方米30毫克)。灰尘粒度0.5-20微米,以10000制氧机的加工空气量计算,每天进入的灰尘就有10公斤之多。

固体杂质颗粒直径大于100微米的在重力作用下会自然降落,小于0.1微米的不致引起危害,故净除的对象是0.1---100微米的尘粒。显然。粒度越小越难清除。空气过滤器捕集的对象主要是0.1--10微米的尘粒。净除后空气中含尘量小于每立方米0.5毫克。

对空气过滤器考核的性能指标主要是除尘效率、阻力、及过滤器的容尘量。

除尘效率-----过滤器所捕集的尘量占气体带入过滤器总尘量的百分比。

阻力----就是气体通过过滤器的压降。当然随着捕集灰尘的积累,阻力越来越大。会影响空气量。

容尘量---表示过滤器滤料开始工作到需要更换滤料的时间内,过滤器单位面积所捕集的尘量,这一指标反映了过滤材料的消耗,过滤器的制作成本及气体净化成本。

为了防止不洁净介质进入压缩机组,造成设备部件磨损、叶轮和气体冷却器污染从而降低效率。同时氧透机组又为了防止因摩擦导致着火、爆炸重大事故发生。故此设置机前过滤器。

第四节离心压缩机润滑油系统

(一)润滑油介绍

润滑根据其存在状态可分为:固体润滑剂、气体润滑剂、液体润滑剂、和半固体润滑剂等。

一、润滑油

1、定义:润滑油是用在各种类型机械上以减少摩擦,保护机械及加工件的液体润滑剂。

2、润滑油的作用

⑴润滑减摩:防止机件干摩擦,减少摩擦阻力,在零件表面形成油膜。

⑵冷却降温:通过润滑油的循环带走热量防止烧结。

⑶清洁:通过润滑油的流动冲洗零件工作表面摩擦产生的金属和其它脏物。

⑷密封:减少外界的污染物进入。

⑸锈防蚀:能吸咐在零件表面防止水、空气、酸性物质及害气体与零件的接触。

⑹减震缓冲:压缩机运行负荷很大,这个负荷经过轴承的传递润滑,使承受的冲击负荷起到缓冲的作用。

3、润滑油的性能指标、定义

⑴粘度:表示油品流动性大小的指标。粘度越小,流动性就越好;粘度越大,流动性就越差。粘度的常见单位是厘斯(cSt)。

⑵运动粘度:表示液体在重力作用下流动时内摩擦力的量度,其值为相同温度下液体的动力粘度与其密度之比,在国际单位制中以mm2/s表示。

⑶粘度指数:表示油品的粘度随温度变化的特性。粘度指数越大,油品的粘度随温度的变化越小。通过加大粘度指数可以提高油品在不同温度下使用性能。一般以VI表示。

⑷密度:表示在规定温度下的单位体积内所含物质的质量。一般以KG/L或kg/m3表示.

⑸倾点:用温度表示油品在储运和使用时的低温流动性的指标。倾点越低,油品的低温性就越好。在某种程度上也表示了油品脱蜡精制的深度。以℃表示。

⑹闪点:用温度表示油品在高温下蒸发性及着火危险性的指标。一般来说,闪点越高,油品的使用温度也越高,油品中混入汽油或柴油时,闪点会明显降低。以℃表示。

⑺抗氧化安定性:表示油品在使用和储存过程中,在高温和金属催化下,油品抗氧化作用的能力。抗氧化安定性越好,油品的使用寿命就越长。

⑻总碱值:表示在规定条件下,中和存在于1g油品中全部碱性组分所需的酸量,以相当的氢氧化钾毫克数表示。是测定油品中有效添加剂成分的指标,表示内燃机油的清净性与中和能力。

二、润滑脂:

1、定义:是将稠化剂分散于液体润滑剂中所形成的一种稳定的半固体。

2、作用:润滑脂涂于机械摩擦部位,在机械表面形成一定强度的油膜,以减小摩擦磨损,还可以防止金属氧化,填充机件空隙,防止漏气、漏油、漏水,保证设备正常运转。

3、润滑脂的选用要根据机械的工作温度、运转速度、负荷大小、工作环境和供脂方式的不同,综合考虑,一般应考虑以下四个方面的因素:

⑴温度。温度对润滑脂的影响很大,环境温度高和机械运转温度高的,应选用耐高温的润滑脂,一般润滑脂的是温度都应低于其滴点20~30摄氏度。

⑵转速。高速运转的机件温升高,温升快,易使润滑脂变稀而流失,使用时应选用稠度较大的润滑脂。

⑶负荷。根据负荷选用润滑脂是保证润滑的关键之一。润滑脂锥入度的大小关系到使用时所能承受的负荷。负荷大应选用锥入度小(稠度较大)的润滑脂。如果既承受重负荷又承受冲击负荷,应选用含有极压添加剂的润滑脂,如含有二硫化钼的润滑脂。

⑷特殊部位的要求。机械工作环境的不同,应选用不同的润滑脂,在潮湿环境下应选用具有抗水性能的润滑脂;在尘土较多的环境下,可选用浓稠的含有石墨的润滑脂;在含酸的环境下可选用经基脂;如对密封有特殊要求,应选用钡基脂。

(二)离心空压机的润滑系统

为了保证压缩机组的安全运行,离心压缩机组需要配备完善的润滑油系统。用以向压缩机组的轴承、齿轮、增速机、电机轴承供油,使机组动件与静件在相对运行过程中实现液体(油膜)与固体的摩擦,并带走产生的热量以及微小的金属粒子。另外还有部分机组使用的轴位移计,是依靠压力油工作。

一、离心式压缩机组润滑油系统组成:

整个润滑油系统由以下主要机件组成:油箱、泵前过滤器、油泵、油冷却器、油过滤器、油气分离器、排烟风机、高位油箱、阀门及连接管路。一般组装在油箱的上面及周围,构成一集中式的供油系统。由操作员通过仪、电控制系统完成作业。

⑴主路线:油箱油→泵前过滤器→油泵加压→油冷却器→油过滤器→调压阀→各润滑点→油箱

⑵辅助路线:油过滤器→高位油箱→窥镜→油箱

高位油箱→各润滑点→油箱

二、各机件分叙如下:

⑴油箱:用钢板焊成的储存润滑油的箱体。设有液位计、低液位报警开关、就地温度计、电加热器、以及充油口、排油阀等。⑵泵前过滤器:防止机械杂质进入油泵磨损部件。

⑶油泵:介绍两种情况:

A、润滑油系统装有两台相同流量和压力的油泵,均用电机拖动,一个是主油泵、另一个是辅助油泵。正常工作时,只需一个油泵运行,就能满足整个油系统的需要。运行中的主油泵在工作中必须保证连续运转,辅助油泵是靠“当前油压值低于设定的油压值”自投的。

B、润滑油系统装有两台油泵,一台小电机拖动,另一台靠大电机(压缩机配套的主电

机)拖动。因大电机拖动的油泵一般装在电机主轴的一端,我们习惯称之为“轴头泵”。正常工作时,靠“轴头泵”运行来满足整个油系统的需要,压缩机启动前和停车后靠小电机拖动的油泵供油。

⑷油冷却器:在一定范围内用来降低和调节油温。

⑸油过滤器:一般设置两个。介绍两种情况:

A、一个使用,一个备用。可以定期倒换,但是在机组开车前应作实验,确定是否会造成油压降低,防止运行中造成停车。

B、两个并联使用。

⑹调压阀:用来控制总油管的压力,以保证润滑系统油压的稳定。

⑺油气分离器、排烟风机:

油气分离器装在油箱盖上,把润滑系统产生的油雾中的油气分开,分离出的油回到油箱,烟气排至大气中。一般油气分离器的排出口连接排烟风机。

⑻高位油箱:用于停电停泵造成事故停车时的供油,以保证机组惰转过程中各润滑点的供油,确保安全。

正常运转时油泵向高位油箱供油,油满后经上部溢流管会油箱,这样始终保持高位油箱充满油。

⑼油管路:上油油管的材质为不锈钢。油管路上设有压力和温度表,以及通过相关仪控系统,必要时发出报警,启动辅助油泵和联锁停车。

三、机组启动前,润滑油系统的相关调试

离心压缩机组在安装、检修结束后,正式启动前,应对润滑油系统进行全面、认真的调试工作,为离心压缩机组在运行周期内运行正常打下坚实的基础。调试工作主要包括油泵试运转,仪电控系统的完善,油泵互投试验,油压联锁报警、停车的相关试验,高位油箱的静、动态试验。

1、油泵试运转

启动油泵之前应严格按照油泵启动前的准备工作进行,特别需要注意的是氧透和氮透机组需要先通入密封气,并按要求调整密封气的压力至正常范围。

为保证油泵的安全供油,应分别轮换启动两台油泵。

启动油泵后,应进行相关的检查:

⑴检查油泵运行中的振动、声音是否正常,以便及时处理泵体、以及安装、调试存在的问题。例如:基础螺丝松动、泵体与电机对中不好、泵体本身调压阀开度不合适引起的振动过高,噪音过大等等。

⑵检查电机的电流是否过载,检验电机的配置是否合适。

⑶对油温、油压进行调整:

a.调整油温可以通过控制油冷却器的水量和开、停电加热器来达到设计要求的参数,需要注意的是启动电加热器时应启动油泵,防止加热器周围油温传热不良而皂化,破坏油的质量。氧透系统正常运行中也可以是依靠自力式调温阀自动完成对油温的调节。

b.调整机组总供油压可以通过油路系统的设置的手动回流阀、低压安全阀、自力式调压阀以及泵体本身带有调压阀进行调节和控制。例如:氧透系统正常运行中是依靠自力式调压阀自动完成对油压的调节;空透系统配置的是螺杆式油泵,泵体本身就带有调压阀,可以通过调整该阀对出油泵的油压进行调整。

c.压缩机组各润滑点的供油压力,可以通过分别设置在润滑油系统各供油管道上的节流阀进行调节。在机组启动前,应通过节流阀将各润滑点油压调整到说明书要求的“设定运行压力+60kPa”。但是需要注意的是,在机组启动后应根据机组正常运行中的实际油压再做最终调整。

2、仪电控系统的完善

随着制氧机各系统稳定性的不断提高,对离心式压缩机自动控制系统也提出了更高的要求。鉴于润滑油系统的重要性,要求其仪、电控制必须设计严密、安全可靠、满足工艺要求。在压缩机组正式启动前,应参照机组说明书对润滑油系统油泵互投、联锁控制等相关参数的进行认真核对和检查,避免因参数设定错误而导致事故

3、油泵互投试验:

油泵互投是在机组正常运行时,运行油泵故障或断油时,备用油泵能够及时投运的仪电联合联锁控制。油泵互投的安全、可靠将直接关系到机组的安全性,可以避免因机组断油而导致烧瓦等事故的发生。因此,在机组启动前,必须对润滑油系统的油泵互投进行系统、全面的试验,确保机组正常运行时的安全性。

4、油压联锁报警、停车的相关试验:

油压联锁报警、停车的相关试验的目的是:通过模拟压缩机正常运行时,油压降低后,微机可以立刻发出声光报警和信息提示;备用油泵联锁启动后,油压是否能够马上稳定并上升到正常值,避免机组停运;一旦油泵互投没有及时启动,机组是否能够及时停运,以达到保护机组的作用。

5、高位油箱的静、动态试验:高位油箱的设置,是为了保证因断油导致压缩机停车后,机组惰转时转子与轴承的润滑,防止烧坏轴瓦。高位油箱的安装一般高于压缩机组转轴中心线6米--9米以内的位置,在回油管线上设置透明窥镜,便于检查高位油箱工作是否正常。

在压缩机组初次安装或年度检修后,应对高位油箱供油情况作相应“静态”与“动态”的实验,原则上高位油箱供油的时间应大于压缩机惰转时间3倍以上。

四、润滑油系统的操作

⑴油泵的操作、倒泵的操作

⑵油过滤器的倒换

⑶加油

五、润滑系统的维护:

⑴油箱检查:

油位:保证各机组运行中,主油箱油位在2/3以上。对于氮压机,因主电机轴承依靠轴承油箱内无压油润滑,应注意电机油箱油位偏低时及时补加。

油质:根据规定,3个月化验一次油质。

⑵油泵检查:无异常声响,测量振动速度应<2.8mm/s。

⑶油冷却器检查:油温可以在规定范围内调节,油冷却器工作正常,无跑、冒、渗、漏,并在年度检修时对油冷却器清洗。

⑷油过滤器检查:油过滤器阻力<0.15MPa,并在年度检修时清洗或更换油过滤器滤芯。

⑸注意季节、昼夜温差对润滑油温的变化,要缓慢调整,以免对压缩机组振动造成大的影响。

⑹注意润滑油路系统的跑、冒、滴、漏对运行参数的影响。

第四节安全保护系统

为了保证压缩机的安全稳定运行,必须设置一个完整的安全保护系统。

温度保护系统

观察、控制压缩机各缸、各段间的气体温度、冷却系统温度、润滑系统油温、主电机定子温度以及各轴承温度,当达到一定的规定值就发出声光讯号报警和联锁停机。

压力保护系统

观察、控制压缩机各缸、各段间的气体压力、冷却系统压力、润滑系统油压、当达到一定的规定值就发出声光讯号报警和联锁停机。

流量保护系统

观察、控制压缩机冷却系统水流量,当达到一定的规定值就发出声光讯号报警。

机械保护系统

⒈轴向位移保护

离心式压缩机产生轴向位移,首先是由于有轴向力的存在。而轴向力的产生过程如下:在气体通过工作轮后,提高了压力,使工作轮前后承受着不同的气体压力。由于轮子两侧从外径D2到轮盖密封圈直径Df的轴向受力是互相抵消的,因此,它的轴向力由以下三部分组成:⑴F1---在轮盘背部从直径Df到轴颈密封圈直径df这块面积上所承受的气体的力。

⑵F2---在工作轮进口部分,从直径Df到d这块面积上所承受的气体压力。⑶F3---进口气流以一定的速度对轮盘所产生的冲击力。在一定的情况下,F1>(F2+F3),所以每个叶轮的轴向推力都是有叶轮的轮盘侧指向进口侧(轮盘侧)。如果所有叶轮同向安装,则总轴向力相当可观。从机组设计、制造、安装方面为了平衡压缩机的轴向力,通常采取了:⑴设置平衡盘⑵设置止推轴承⑶采用双进气叶轮⑷叶轮背靠背安装。

但是在运行中由于平衡盘等密封件的磨损、间隙的增大、轴向力的增加、推力轴承的负荷加大,或润滑油量的不足,油温的变化等原因,使推力瓦块很快磨损,转子发生窜动,静动件发生摩擦、碰撞、损坏机器。为此压缩机必须设置轴向位移保护系统,监视转子的轴向位置的变化,当转子的轴向位移达到一定规定值时就能发出声光讯号报警和联锁停机。

常见的轴向位移保护器的类型及工作原理如下:

⑴电磁式:当转子发生轴向窜动时,间隙变动而引起磁组变化,时两侧铁芯磁极绕组产生不同电势,经继电器传给指示仪表。

⑵电触式:转子窜动时,触动电触点,即发出报警或停车信号。

⑶电涡流式:由传感器、交换器和指示器三部分组成。传感器是一个电感应线圈,由于高频信号的激励,产生一高频交变磁场,轴表面相应产生交变磁场相交链的电涡流磁场。由于间隙的变化,引起阻抗的变化,导致输出电压的变化。由变换器完成轴向位移与电压间的转换,通过指示器发出讯号。

⑷液压式:喷嘴与转子凸缘的间隙△S变化时,输出的油压发生变化,由曲线P=F(△S),得知相应的轴向位移。曲线P=F(△S)由实验测的。

⒉机械振动保护

离心压缩机是高速运转的设备,运行中产生振动是不可避免的。但是振动值超出规定范围时的危害很大。对设备来说,引起机组静动件之间摩擦、磨损、疲劳断裂和紧固件的松脱,间接和直接发生事故。对操作人员来说,振动噪音和事故都会危害健康。故此,压缩机必须设置机械振动保护系统,当振动达到一定规定值时,就能发出声光讯号报警和联锁停机。

目前,大型机组普遍应用了在线的微机处理技术,可以通过测量的数据进行采集、存储、处理、绘图、分析和诊断。为压缩机的运行维护、科学检修、专业管理提供可靠依据。

另外,我们还针对旋转设备应用手持式测振仪实行动态检测。

⒊防喘振保护系统

离心压缩机是一种高速旋转的叶片式机械,它的特性是在一定的转速下运行,随着输气量的改变,排气压力、功率消耗和效率也会相应发生变化,当压缩机在某个转速下运行。压缩机的流量减少到一定程度时,会出现喘振现象,对于离心式压缩机有着很严重的危害。造成:⑴压缩机性能恶化,工艺参数大幅波动。⑵对轴承产生冲击。⑶机组静动件碰撞,机器破坏。

⑷密封破坏,尤其是氧气压缩机,严重时大量气体外逸,引起爆炸恶性事故。

为此,设置防喘振保护系统。目前大型压缩机组都设有手动和自动控制系统。即可自动和手动打开回流阀或放空阀,确保压缩机不发生喘振现象。

第四章离心压缩机的运行、维护、管理

第一节概述

离心压缩机组的系统结构比较复杂,其运行状况决定于机组本身的特性、工艺管网的配合性能和安装质量等条件外,同时,在生产过程中,操作员主要应作到:

1、严格按照按照编制的规程精心操作,正确开、停机组,确保安全运行。

由于压缩机组的类型和驱动方式不同、用途不同、开停车的操作方法不同、运行条件也不完全相同,所以应根据机组的特性、厂家的使用说明书、以及试车的记录情况等编制出自己的操作规程和维护规程。

2、在生产过程中,加强观察机组各类检测仪表显示的参数并做好记录。并按照点检标准要求点检。

3、加强设备运行中的维护。

4、配合检修人员作好大、中检修工作。查处设备存在的隐患并及时处理。然后对其进行总结。

第二节试运行

试车的目的

安装及检修完毕后,必须进行严格试运转,其主要目的:

⑴检查设备各系统的装置是否符合设计要求。

⑵检验和调整机组各部分的运动机构是否达到设计要求。

⑶检验和调整电气,仪表自动控制系统及其配套装置的正确性和灵敏性。

⑷检验机组的油冷系统,工艺管路系统及其设备的严密性,并进行吹扫。

⑸检验机组的振动、轴位移、轴温、压力等工艺参数指标及其设备设计、制造和安装质量进行全面的考核。

另外:⑹由于氧气压缩机对安全性的特殊要求,必须进行严格的以氮气为介质的试运转,在试车中应严格把求质量关,对发现的问题应查找原因,积极处理。以保证在绝对安全可靠的条件下进行氧气试运转。

试运前的准备

⑴试运人员的组织培训,作好试运方案。

⑵单体试运。

⑶机组安装或检修后机械方面具备试运条件。

⑷工艺管路的吹扫。

⑸油系统的清洗调试。

⑹工艺、电器、仪表系统的检查。

试运中及试运后的检查

压缩机组进行试运中及试运后,应对机组进行全面的检查、处理.主要包括:

试运中:

加强对电机、压缩机运行参数的检查、到现场的检查与检测,能够及时发现处理,并作好记录。

试运后:根据试车情况

机械:检查轴承、齿轮接触面、密封、连接对中等情况,检查试车中的异常部位。

仪控:仪控联锁是否灵敏安全可靠。

电控:对主电机检查。

综合:处理发现的问题

压缩机组经检查后,还要进行再次负荷试车,稳定性试车,试车时间达到规程要求,经有关人员认定合格,即可填写合格记录,办理交接手续,交付生产.

第四节运行检查、维护与管理

离心压缩机是一种庞大、结构复杂、高速运转、高压、大流量的机器设备,日常必须进行全

员的综合检查、维护与管理,包括以下内容。

㈠运行检查、维护严格按照操作规程与岗位维护规程作业。

1、检查机组运行参数、信号指示、运行设备

进、出口工艺气体参数(温度、压力、流量、压差);

机组振动值、轴位移、轴承温度;

机组气、油、水路阀门、导叶开度;

检查油、水系统的压力、温度以及油路压差等

微机阀门、运行设电器以及就地盘指示灯。

厂房、隔音罩通风机的运行情况。

2、现场运行点检、日检、周检以及综合检查

机组在正常运行中,要不断的监视运行变化,经常注意运行的变化趋势,防止事故的发生,确保安全运行。

3、冷却系统的操作、维护与调整

⑴参阅操作规程作业,正确调节开关阀门、调整水量、水压、水温至正常范围。

⑵维护与调整

A、风冷:主要是电机除灰。

B、水冷方面,日常工作中,经常遇到很多问题,如:

中间冷却器水侧结垢、水侧堵塞、气侧脏污、水流量减少、进水温度升高,这些情况出现时,都会影响冷却器的换热效果。需要检修清洗。

4、润滑系统的维护:

⑴油箱检查:

油位:保证各机组运行中,主油箱油位在2/3以上。对于氮压机,因主电机轴承依靠轴承油箱内无压油润滑,应注意电机油箱油位偏低时及时补加。

油质:根据规定,3个月化验一次油质。

⑵油泵检查:无异常声响,测量振动速度应<2.8mm/s。

⑶油冷却器检查:油温可以在规定范围内调节,油冷却器工作正常,无跑、冒、渗、漏,并在年度检修时对油冷却器清洗。

⑷油过滤器检查:油过滤器阻力<0.15MPa,并在年度检修时清洗或更换油过滤器滤芯。

⑸注意季节、昼夜温差对润滑油温的变化,要缓慢调整,以免对压缩机组振动造成大的影响。

⑹注意润滑油路系统的跑、冒、滴、漏对运行参数的影响。

总之,在压缩机组的辅助装置中,润滑油系统发挥着不可忽视的重要作用。做为操作、维护压缩机组的相关人员,应该在机组检修后,对润滑油系统进行全面、认真的调试工作;在机组正常运行时,认真点检、加强维护、按照规程操作。

5、尽量避免带负荷紧急停车、

机组运行中,尽量避免带负荷紧急停车、只有发生运行规定的情况,才能紧急停车。当采取紧急停车措施后,应严格按照紧急停车规程检查。

附录:操作工的日常工作部分择录

⑴环境温度高时,应检查空透的冷凝水排放、空气过滤器的排灰情况。

⑵振动曲线趋势图的绘制。

⑶气体冷却器温度、油温、油压的调整。

⑷主电机振动速度的测量。

⑸机组润滑油的补充。

⑹设备卫生的清洁。应注意:擦设备时不要靠近运转部位;不要用有油污的布擦气体的管路、缸体;不要触动仪控线路等。

㈡管理

1、建立压缩机主辅机的设备档案,主要包括:

⑴压缩机主辅机的规格、型号、制造厂家、出厂编号及日期、设备重量、价格。

⑵设备主要系统、结构、零部件图纸

⑶主要技术参数及其性能曲线

⑷主要部件的材牌号、成分、机械性能、耐热、耐腐蚀性能。

⑸安装前质量检查、安装记录、日期和验收记录。

⑹试运记录、次数以及累积运行时数。

⑺开车投产记录、日期。

⑻设备规程

⑼润滑记录

⑽设备检修方案、记录以及总结等。

设备技术档案要及时、准确、清晰、完整。

2、设备备品、备件的管理

每台压缩机皆应根据实际具体情况。编制备品备件储备定额和消耗定额。储备足够数量备品备件,加强分类保管和管理,防止变形、锈蚀和损坏。

3、开展设备技术改造、提高设备升级

组织各人员开展设备技术改造,但改造前必须进行详细的设计计算和科学的分析,经过严格的审批。逐步消灭设备存在的不足,不断提高设备的完好程度。

4、设备故障、事故总结

及时总结问题,加强交流,吸取经验,防止类似故障、事故发生。

离心式压缩机说明书

目录第0章前言 第1章概述 1.1 一般说明 1.2产品规格及主要参数 1.3离心压缩机性能曲线 第2章离心压缩机本体结构介绍 2.1 离心压缩机型号的意义 2.2 定子 2.3 转子 2.4 支撑轴承 2.5 止推轴承 2.6 轴端密封 2.7 联轴器 2.8 联轴器护罩 2.9 底座 2.10 轴监视 第3章离心压缩机安装 3.1 基础 3.2 安装和灌浆 3.3 找正与联接

第4章离心压缩机的操作 4.1 启动之前要采取的措施 4.2 启动 4.3 运行期间监督 4.4 正常停机 4.5 非正常停机(跳闸停机) 4.6 运行期间的故障 4.7 长期运行前的准备 4.8 不运行期间的维护 第5章离心压缩机维修 5.1 维修说明 5.2 检查一览表 5.3 压缩机在运转中的故障排除 5.4 维修要点 5.5组装 5.6安装在压缩机上的调节装置和仪表的拆、装 5.7 离心压缩机运输的防护措施 5.8 干气密封(见干气密封使用说明书) 第6章备件说明书 6.1 订购备件 6.2 备件长期保管

6.3 危险备件 6.4 零件返修 第7章润滑油系统 7.1 润滑油系统的用途 7.2 润滑油系统的组成 7.3 润滑油系统中各组部件的结构特征及使用维护 7.3.1 油箱 7.3.2 油泵 7.3.3 冷油器 7.3.4 滤油器 7.3.5 压力调节阀 7.3.6 安全阀 7.3.7 润滑油站内部连接管路 7.3.8润滑油高位油箱 7.4 润滑油系统开车过程 7.4.1 开车前的检查工作 7.4.2 油箱注油 7.4.3 加热润滑油并启动油泵 7.4.4 向冷油器提供冷却水 7.5油系统参数 7.6 润滑油性能参数

MVR-机械式蒸汽再压缩知识汇总.

MVR ——机械式蒸汽再压缩技术 第一章 MVR概述 MVR:(mechanical vapor recompression )的简称。MVR 是重新利用它自身产生的二次蒸汽的能量,从而减少对外界能源的需求的一项节能技术. 1、原理 利用高能效蒸汽压缩机压缩蒸发系统产生的二次蒸汽,提高二次蒸汽的焓,提高热焓的二次蒸汽进入蒸发系统作为热源循环使用,替代绝大部分生蒸汽,生蒸汽仅用于系统初启动用、补充热损失和补充进出料温差所需热焓,从而大幅度降低蒸发器的生蒸汽消耗,达到节能目的。 MVR 的理论基础是波义耳定律 推导而出,即PV/T = K,其含义是一定质量的气体的压强*体积/温度为常数,也就意味着当气体的体积减小,压强增大时,气体的温度也会随即升高; 根据此原理,当稀薄的二次蒸汽在经体积压缩后其温度会随之升高,从而实现将低温、低压的蒸汽变成高温高压的蒸汽,进而可以作为热源再次加热需要被蒸发的原液,从而达到可以循环回收利用蒸汽的目的。

2、工艺流程

浓缩液 图1 机械式蒸汽再压缩技术原理图图2机械式蒸汽再压缩工艺流程图第二章压缩机详解

一、压缩机 用来压缩气体借以提高气体压力或输送气体的机械称为压缩机。也有把压缩机称为“压气机”和“气泵”的。提升的压力小于0.2MPa 时,称为鼓风机。提升压力小于0.02MPa 时称为通风机。 1、压缩机分类 1.1按工作原理分类 (1)容积式压缩机直接对一可变容积中的气体进行压缩,使该部分气 体容积缩小、压力提高。其特点是压缩机具有容积可周期变化的工作腔。 (2)动力式压缩机它首先使气体流动速度提高,即增加气体分子的动 能;然后使气流速度有序降低,使动能转化为压力能,与此同时气体容积也相应减小。其特点是压缩机具有驱使气体获得流动速度的叶轮。动力式压缩机也称为速度式压缩机。

循环压缩机操作规程(标准版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 循环压缩机操作规程(标准版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

循环压缩机操作规程(标准版) 1、启动前的准备: (1)检查管线连接状况,阀门开启情况特别要注意出气阀门是否开启。 (2)检查机内润滑油应在正常油位,若不足应予补充。 (3)检查气液分离罐内的残液是否超过正常液位,若超过正常液位则应排除。 (4)打开循环压缩机前、后进、排气阀。 (5)由一人手动皮带轮,检查循环压缩机内有无卡、涩、松动现象;禁止二人同时操作,防止转动部位绞伤。 2、启动运转: (1)打开启动器,检查循环压缩机转动方向应符合要求。 (2)检查循环压缩机应无杂音、过热、漏油、漏气现象。

(3)检查压力表、温度计等仪表的指示值应与工作状况相适应。 (4)观察排气温度应不超过100℃。 (5)油压表的压力应超过曲轴箱中的压力值,国产压缩机润滑油压力大于0.1MPa。 (6)发现异常情况,应立即停车检查处理。 3、停车: (1)关闭进、排气阀。 (2)关闭启动器。 云博创意设计 MzYunBo Creative Design Co., Ltd.

离心式压缩机工作原理及结构图介绍

离心式压缩机工作原理及结构图 2016-04-21 zyfznb转自老姚书馆馆 修改分享到微信 一、工作原理 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。二、基本结构 离心式压缩机由转子及定子两大部分组成,结构如图1所示。转子包括转轴,固定在轴上的叶轮、轴套、平衡盘、推力盘及联轴节等零部件。定子则有气缸,定位于缸体上的各种隔板以及轴承等零部件。在转子与定子之间需要密封气体之处还设有密封元件。各个部件的作用介绍如下。

1、叶轮 叶轮是离心式压缩机中最重要的一个部件,驱动机的机械功即通过此高速回转的叶轮对气体作功而使气体获得能量,它是压缩机中唯一的作功部件,亦称工作轮。叶轮一般是由轮盖、轮盘和叶片组成的闭式叶轮,也有没有轮盖的半开式叶轮。 2、主轴 主轴是起支持旋转零件及传递扭矩作用的。根据其结构形式。有阶梯轴及光轴两种,光轴有形状简单,加工方便的特点。 3、平衡盘 在多级离心式压缩机中因每级叶轮两侧的气体作用力大小不等,使转子受到一个指向低压端的合力,这个合力即称为轴向力。轴向力对于压缩机的正常运行是有害的,容易引起止推轴承损坏,使转子向一端窜动,导致动件偏移与固定元件之间失去正确的相对位置,情况严重时,转子可能与固定部件碰撞造成事故。平衡盘是利用它两边气体压力差来平衡轴向力的零件。它的一侧压力是末级叶轮盘侧间隙中的压力,另一侧通向大气或进气管,通常平衡盘只平衡一部分轴向力,剩余轴向力由止推轴承承受,

离心式冷水机组的结构及原理

离心式冷水机组的结构及原理 目前,用于中央空调的离心式冷水机组,主要由离心制冷压缩机、主电动机、蒸发器(满液式卧式壳管式)、冷凝器(水冷式满液式卧式壳管式)、节流装置、压缩机入口能量调节机构、抽气回收装置、润滑油系统、安全保护装置、主电动机喷液蒸发冷却系统、油回收装置及微电脑控制系统等组成,并共用底座。其外形和系统组成如图4.13及图4.14所示。

1.离心式冷水机组特点 离心式冷水机组属大冷量的冷水机组,它有以下主要优点: (1)压缩机输气量大,单机制冷量大,结构紧凑,重量轻,单位制冷量重量小,相同制冷量下比活塞式机组轻80%以上,占地面积小; (2)性能系数高; (3)叶轮作旋转运动,运转平稳,振动小,噪声较低; (4)调节方便,在较大的冷量范围内能较经济地实现无级调节; (5)无气阀、填料、活塞环等易损件,工作比较可靠。 离心式冷水机组的缺点主要是: (1)由于转速高,对材料强度、加工精度和制造质量要求严格; (2)单级压缩机在低负荷时易发生喘振; (3)当运行工况偏离设计工况时,效率下降较快; (4)制冷量随蒸发温度降低而减少的幅度比活塞式快,制冷量随转数降低而急剧下降。 2.离心式冷水机组的组成 构成离心式冷水机组的部件中,区别于活塞式、螺杆式冷水机组的主要部件是离心压缩机,此外,其他主要辅助设备比如换热设备、润滑油系统、抽气回收装置等均有自己特点,在这进行简单介绍。 1)压缩机 空调用离心式冷水机组,通常都采用单级压缩,除非单机制冷量特别大(例如4500kW以上),或者刻意追求压缩机的效率,才采用2级或3级压缩。单级离心制冷压缩机由进口调节装置、叶轮、扩压器、蜗室组成;多级离心制冷压缩机除了末级外,在每级的扩压器后面还有弯道和回流界,以引导气流进入下一级。图4.15示出了离心式制冷压缩机的典型结构。 图4.15 离心式制冷压缩机的典型结构 (a)单级离心式制冷压缩机;(b)多级离心制冷压缩机的中间级 1一齿轮箱体;2一机壳门;3一轮盖密封座;1一叶轮;2一扩压器; 4一叶轮;5一叶片调节机构;6—进口壳体;3一弯道;4一回流器; 7一轮盖密封;8一轮盘密封;9一右轴承;5一级内密封;6一中间加气孔 10一左轴承;11一推力盘;12—后壳体 由于离心式冷水机组在实际使用中的一些特殊要求,使得离心式制冷压缩机在结构上有其一些特点: ①离心式冷水机组采用的制冷剂的分子量都很大,音速低,在压缩机流道中的马赫数M比较高(特别是在叶轮进口的相对速度马赫数和叶轮出口的绝对速度马赫数一般都达到亚音速甚至跨音速),这就要求在叶轮构型时特别注意气流组织,避免或减少气流在叶轮流遭中产生激波损失,同时适应制冷剂气体的容积流量在叶轮内变化很大的特点。

离心压缩机操作规程

离心压缩机操作规程 一、启动前的准备和检查 (一)启动条件的确认 1、管线系统已经吹扫(N2)置换合格,驱动机、变速系统、润滑油系统、干气密封系统经试运合格,管线、阀门、机体各连接部位紧固良好,无泄漏现象。 2、动力正常供应。 3、冷却水通畅。 4、控制空气(仪表空气)没有油、水份和杂物。残留水份不可超过20ppm。 5、所有仪表安装完毕经检验合格。 6、系统内的所有过滤器元件清洗干净。 7、消防器材齐备,符合质量要求;不安全的因素或隐患已消除。 (二)检查润滑油系统 1、确认润滑油箱已注入适量的润滑油,油箱内无冷凝水。在系统管线充满油后液位在液面计1/2~2/3之间。检查主油箱油温不得低于35℃,如果小于35℃,则开动油加热器,使油箱的油温达到45℃。 2、检查油冷却器和油过滤器切换管件是否在正确的位置上。 3、打开油泵吸入阀、排出阀。 4、打开油侧通风口和油过滤器上注入管线准备好操作。 5、打开用于油冷却器的冷却水回水阀。 6、打开油压平衡阀前后阀门。 7、关闭至油压平衡阀旁通阀。 8、在油系统冲洗之前,取下油过滤器前面可能已安装的任何粗虑器。 二启动 1、检查 (1)检查油压,当必要时通过调节阀调节进油总管中的主油压及各供油支管上的油压, 推力轴承润滑油压力。 (2)检查各个出口点的观察玻璃以确保油正在流动。 (3)通过关闭主油泵,检查辅助油泵(电动机驱动)是否正常。

(4)当达到较低的油压限制值时,辅助油泵必须自动地接入。在这之后,油压必须再次达到设定值。在主油泵已再次打开之后,手动关闭辅助泵。 2 、压缩机的启动 压缩机启动之前,必须遵照下列说明为该装置启动作好准备: (1)盘车2∽3圈,检查有无偏重、卡涩。 (2)油系统启动。 (3)进气阀打开,气体注入该压缩机。 (4)建立必要的气体压差:如干气密封压差。 (5)按照主驱动机厂的说明书,使主驱动机投入运行; 注意:无论如何,避免速度小于200 转/分,因为这将在轴承内引起混合的摩擦情况。在非常低或非常高转速下,无控制的反向转动也必须避免。 (6)进行系统调节 a.当主泵在运行,手动切断辅助油泵。 b.调节密封气体流量(关于设定点值,请见“压缩机的技术数据”)。 c.检查轴承温度。 d.在流入油冷却器的油温超过45℃前,不管冷却水阀是否打开,不得关闭油箱加热。 e.通过压力平衡阀或通过轴承上游的节流阀,调节油压。 f.检查各油排放点的观察玻璃看油流是否均匀。 三运行期间监护 1、检查测量仪表。 压缩机装置的正确运行要通过下面列出的监视数据来检查。在头 3 个月运行期间,以不少于1 个小时的间隔在工作日记上记下读出的实际数据,在头3 个月之后,要以4 个小时间隔作工作日记记录: a.进口压力 b.进口温度 c.出口压力 d.出口温度 e.油冷却器前的(=油泵后的)油压

蒸汽压缩机工作原理

蒸汽压缩机工作原理 压缩系统 蒸汽压缩机压缩形式根据原理不同,是由一个整体的齿轮装置驱动的单级离心压缩机。根据不同的需求压缩机的形式也不尽相同,一般常见的有罗茨式压缩机(容积式)、离心式压缩机(速度式)等。 蒸汽降温器 蒸汽降温器是一个特别设计的喷嘴,它安装在回收蒸汽管中。使流动中的蒸汽使尽量多的水雾化为蒸汽。通向降温器的供水流量由降温器后的蒸汽的温度来控制。 润滑系统 润滑系统包括油罐、两个并联的水冷式冷却器、一套并联的油过滤器和两个油泵。主油泵是一个螺杆泵,直接由低速齿轮轴驱动。备用油泵由电机驱动在启动时使用。油冷却器是一个管状的换热器,油在换热管中流动。油罐上安装有油除沫器和电加热器,润滑油通过油冷却器和油过滤器从油罐泵送到齿轮箱,油的温度由油冷却器旁路的温度控制器调节。油过滤器上有压差指示器,以检测过滤器中的污染物。 蒸汽压缩机形式 根据流体通过蒸汽压缩机叶轮的方向,将相关设备称为轴流、混流或离心式压缩机。最适用的压缩机类型取决于相关应用的操作条件。关键参数是需要达到的温升和待压缩蒸汽的流量。 在蒸发工业中,经常是在真空范围内操作,加热表面负荷中等,温差小,所以通常采用离心式和罗茨式蒸汽压缩机。 目前应用于水蒸气压缩的蒸汽压缩机类型主要包括有罗茨式与离心式两种。对于罗茨式的蒸汽压缩机而言其优势主要在于其压比高,稳定性较高。从机械的角度来看越低的转速其稳定性越高,通常情况下,罗茨式的蒸汽压缩机为980rmp-1450rmp之间,而离心压缩机转速通常在9000rmp以上,然而对于罗茨式蒸汽压缩机而言,其体积流过小、单机效率低是其先天缺陷。从技术角度分析罗茨式蒸汽压缩机轮子往往加工精度要求较高,才能把漏气率降低到可接受的范围之内,而漏气率是与整体的效率成反比的。相同加工精度的离心压缩机

制冷压缩机安全操作规程正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.制冷压缩机安全操作规程 正式版

制冷压缩机安全操作规程正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加 施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事 项。文档可以直接使用,也可根据实际需要修订后使用。 一、开机前的准备工作: 1.检查电源电压是否在360V~400V之间,启动水泵、冷却塔风机,观察水压、电流情况。 2.检查系统阀门状态,是否根据需要该开的,该关的关了。 二、开机 1.关闭均压阀,开油泵20秒后开启压缩机主机,调整油压高出排出压力0.15~0.3MPa; 2.按20%的级差增载或减载,同时调整吸、排气阀,保证吸气压力、排气压力在

设备正常工作范围内,且主电动机不超载运行; 3.调整油冷却器制冷剂流量,保持油温在40~55℃; 4.满载后,打开经济器供液截止阀,调整经济器节流阀开启度,使经济器出气温度高于经济器管程压力对应饱和温度3~6℃为宜。 5.每两个小时作运行记录一次,记录内容如下:油温、油压、电流、电压、吸气压力、排气压力、补气压力。 二、停机 1.正常停机 ⑴调整吸、排气阀,保证吸气压力、排气压力在设备正常工作范围内,压缩机

离心式压缩机原理教程

离心式压缩机原理教程 §1 离心式压缩机的结构及应用 排气压力超过×104N/m2以上的气体机械为压缩机。压缩机分为容积式和透平式两大类,后者是属于叶片式旋转机械,又分为离心式和轴流式两种。透平式主要应用于低中压力,大流量场合。 离心式压缩机用途很广。例如石油化学工业中,合成氨化肥生产中的氮,氢气体的离心压缩机,炼油和石化工业中普遍使用各种压缩机,天然气输送和制冷等场合的各种压缩机。在动力工程中,离心式压缩机主要用于小功率的燃气轮机,内燃机增压以及动力风源等。 离心压缩机的结构如图8-1所示。高压的离心压缩机由多级组成,为了减少后级的压缩功,还需要中间冷却,其主要可分为转子和定子两大部分。分述如下: 1.转子。转子由主轴、叶轮、平衡盘、推力盘、联轴器等主要部件组成。 2.定子。由机壳、扩压器、弯道、回流器、轴承和蜗壳等组成。 图8-1 离心式压缩机纵剖面结构图

(1:吸气室 2:叶轮 3:扩压器 4:弯道 5:回流器 6:涡室 7,8:密封 9:隔板密封 10:轮盖密封 11: 平衡盘12:推力盘 13:联轴节 14:卡环 15:主轴 16:机壳 17:轴承 18: 推力轴承 19:隔板 20:导流叶片 ) §2 离心式压缩机的基本方程 一、欧拉方程 离心式压缩机制的流动是很复杂的,是三元,周期性不稳定的流动。我们在讲述基本方程一般采用如下的简化,即假设流动沿流道的每一个截面,气动参数是相同的,用平均值表示,这就是用一元流动来处理,同时平均后,认为气体流动时稳定的流动。 根据动量矩定理可以得到叶轮机械的欧拉方程,它表示叶轮的机械功能变成气体的能量,如果按每单位质量的气体计算,用表示,称为单位质量气体的理论能量: (8-1) 式中和分别为气体绝对速度的周向分量,和叶轮的周向牵连速度,下标1和2分别表示进出口。利用速度三角形可以得到欧拉方程的另一种形式: (8-2) 二、能量方程 离心式压缩机对于每单位质量气体所消耗的总功,可以认为是由叶轮对气 体做功,内漏气损失和轮组损失所组成的。

离心式压缩机工作原理

离心式压缩机的工作原理是什么,为什么离心式压缩机要有那么高的转速? 答:离心式压缩机用于压缩气体的主要工作部件是高速旋转的叶轮和通流面积逐渐增加的扩压器。简而言之,离心式压缩机的工作原理是通过叶轮对气体作功,在叶轮和扩压器的流道内,利用离心升压作用和降速扩压作用,将机械能转换为气体压力能的。 更通俗地说,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。 显然,叶轮对气体作功是气体压力得以升高的根本原因,而叶轮在单位时间内对单位质量气体作功的多少是与叶轮外缘的圆周速度u2密切相关的:u2数值越大,叶轮对气体所作的功就越大。而u2与叶轮转速和叶轮的外径尺寸有如下关系: 式中 D2--叶轮外缘直径,m; n--叶轮转速,r/min。 因此,离心式压缩机之所以要有很高的转速,是因为: 1)对于尺寸一定的叶轮来说,转速n越高,气体获得的能量就越多,压力的提高也就越大; 2)对于相同的圆周速度(亦可谓相同的叶轮作功能力)来说,转速n越高,叶轮的直径就可以越小,从而压缩机的体积和重量也就越小; 3)由于离心式压缩机通过一个叶轮所能使气体提高的压力是有限的,单级压比(出口压力与进口压力之比)一般仅为1.3~2.0。如果生产工艺所要求的气体压力较高,例如全低压空分设备中离心式空气压缩机需要将空气压力由0.1MPa提高到0.6~0.7MPa,这就需要采用多级压缩。那么,在叶轮尺寸确定之后,压缩机的转速越高,每一级的压比相应就越大,从而对于一定的总压比来说,压缩机的级数就可以减少。所以,在进行离心式压缩机的设计时,常常采用较高的转速。但是,随着转速的提高,叶轮的强度便成了一个突出的矛盾。目前,采用一般合金钢制造的闭式叶轮,其圆周速度多在300m/s以下。 另外,对于容量较小的离心式压缩机而言,由于风量较小,叶轮直径也较小,可采用较高的转速;而容量较大的压缩机,由于叶轮直径较大,相应地转速也应低一些。例如,为国产3200m3/h

离心压缩机小知识

1. 离心式压缩机的效率比活塞式低且不适于气量太小及压力较高的场合,稳定工况较窄,经济性较差。 2. “级”就是一个叶轮和其相匹配的固定元件所构成的基本单元。 3. 首级由吸气室、叶轮、扩压器、弯道、回流器组成;末级由叶轮扩压器和蜗壳组成。 4. 段是以中间冷却器作为分段标志,气流从吸入被冷却。 5. 缸是将一个机壳称为一缸 6. 离心式压缩机的主要性能参数有排气压力、排气量、压缩比、转速、功率、效率。 7. 选择和合理使用压缩机的重要依据是主要性能参数。 8. 主轴按结构分三种:阶梯式节鞭式和光轴。 9. 开式叶轮是由轮毂和径向叶片组成。 10. 叶轮及轴上零件与主轴的配合一般采用过盈配合。 11. 轴向力最终由推力盘来承担。 12. 轴向力的危害是影响轴承的使用寿命,严重烧轴瓦,转子窜动时使转子上的零件和固定元件碰撞以致机器损坏。 13. 平衡轴向力的方式有叶轮对称排列、平衡盘装置、叶轮背面加筋。 14. 轴套的作用防止叶轮轴向窜动、还起密封作用。 15. 扩压器分三种无叶片扩压器、有叶片扩压器和直臂扩压器。 16. 无叶片扩压器的气体从叶轮中通过环形流道流出达到减速增压的目的。 17. 弯道和回流器的作用是把扩压器后的气体引导到下一级延续压缩。 18. 离心式压缩机轴承分径向轴承和止推轴承两大类。 19. 滑动轴承的按工作原理分静压轴承和动压轴承两类。 20. 动压轴承是由依靠轴颈本身的旋转把有带入轴颈和轴瓦间形成楔状油楔,油楔受到负荷挤压而产生油压,使轴和轴瓦分开形成油膜。 21. 动压轴承按结构形成分为圆瓦轴承、可倾瓦轴承和椭圆瓦轴承。 22. 可倾瓦轴承在任何情况下都有利于形成最佳油膜,不易产生油膜震荡。 23. 止推轴承分米楔尔轴承、金丝伯雷轴承。 24. 止推瓦块之间受力不均匀的轴承是米楔尔轴承。 25. 金丝伯雷轴承活动部分由扇形止推块、上摇块、下摇块三层叠加而成。 26. 止推块和上摇块为球面接触。 27. 金丝伯雷轴承承载力能力大允许推力盘有较大的线速度,磨损慢,使用寿命长,更适宜用于高速重载离心式压缩机。 28. 金丝伯雷轴承的缺点轴向尺寸较大,制造工艺复杂。 29. 金丝伯雷轴承又称浮动叠层式轴承。金丝伯雷轴承广泛应用于高速高压的离心式压缩机。 30. 米楔尔轴承由止推瓦块、基环和副推力瓦块组成。 31. 在推力盘的两侧分主推力瓦和副推力瓦,正常运动时,轴的轴向力是由主推力瓦来承受,然后,才是通过基环传动给轴承座。 32. 副推力瓦块是在启动或停机时可能出现的反向轴向力时起作用。 33. 米楔尔轴承的止推盘的轴向位置是止推轴承来保证的,即由止推盘和止推轴承的间隙位置来确定的。 34. 推力盘和瓦块间的间隙称为推力间隙和轴子的工作窜量。 35. 离心式压缩机密封分内部密封和外部密封,内部密封如轮盖、定距套、平衡盘上的密封一般为迷宫式密封;外部密封有毒有害易燃易爆气体,采用液体密封、机械密封、干气密封,对于无毒无危险的介质可采用迷宫式密封。

机械式蒸汽再压缩技术(MVR)蒸发零排放详解

机械式蒸汽再压缩技术(MVR)蒸发零排放详解 1、MVR原理 MVR是机械式蒸汽再压缩技术(Mechanical Vapor Recompression)的简称,是利用蒸发系统自身产生的二次蒸汽及其能量,将低品位的蒸汽经压缩机的机械做功提升为高品位的蒸汽热源。如此循环向蒸发系统提供热能,从而减少对外界能源需求的一项节能技术。 为使蒸发装置的制造尽可能简单和操作方便,可使用离心式压缩机、罗茨式压缩机。这些机器在1∶1.2到1∶2压缩比范围内其体积流量较高。 2、机械蒸汽再压缩蒸发器(MVR蒸发器) 其工作过程是低温位的蒸汽经压缩机压缩,温度、压力提高,热焓增加,然后进入换热器冷凝,以充分利用蒸汽的潜热。除开车启动外,整个蒸发过程中无需生蒸汽。 如图所示,将蒸发过程中产生的二次蒸汽进行压缩,然后返回蒸发器作为加热蒸汽。

蒸发产生的二次蒸汽温度较低,但含有大量潜热,二次蒸汽经压缩机压缩提高温度(压力)后,送回原蒸发器的换热器用作热源,使料液维持沸腾状态,而加热蒸汽本身则冷凝成水。这样原来要废弃的蒸汽就得到充分的利用,回收潜热,提高热效率,经济性相当于多效蒸发的20效。 ·MVR蒸发器主要特点: 1)无需生蒸汽 2)低能耗、低运行费用 3)可与结晶器组合,做成MVR形式的连续结晶器 ·MVR蒸发器与多效蒸发器蒸发每吨水的费用比较: 为了降低运行成本,本方案采用MVR技术,此项目使用进口风机,将二次蒸汽压缩,达到系统运行需要的蒸发温差。除了在系统开启时使用蒸汽将系统预热外,整套系统正常运行时只需使用电力,不需补充生蒸汽。风机的吸入端为部分真空,这样可以降低晶浆进入离心机时形成的闪蒸蒸汽。系统运行不需要补充生蒸汽,因为系统产生的所有高温冷凝水都被用于将物料预热至接近沸点;风机压缩蒸汽时产生的热能将用于完成剩余的物料预热,同时补偿系统产生的热损失,提供足够的热能保证空气和不凝汽的排出。 风机采用变频控制电机驱动。变频控制可以让风机在最佳转速下运行,消除入口导叶损失;通过软启动,降低对整个系统的冲击,延长风机和电机的使用寿命。当需要在低于系统设计能力的情况下运行时,通过调节变频器可以保证系统的经济运行。 MVR蒸发器系统中最关键的部位该如何选择? 随着环保节能要求的进一步提高,MVR蒸发器以很低的运行成本,逐渐成为包括废水浓缩处理在内的蒸发装置的首选。近两年国内机械蒸汽压缩机行业蓬勃发展,国内压缩机的份额也不断增加。那么,MVR蒸发器中最关键的蒸汽压缩机该如何选择? 蒸汽压缩机是热回收系统对产生的蒸汽通过压缩作用而提高蒸汽汽温度和压力的关键设备。作用是将低压(或低温)的蒸汽加压升温,以达到工艺或者工程所需的温度和压力要求。

离心压缩机喘振

喘振的概念 1)喘振的概念 喘振是离心式压缩机本身固有的特性,而造成喘振的唯一直接原因是进气量减小到一定值。 从前面我们已经知道,当气量减小到一定程度时,会出现旋转脱离,如这时进一步减小流量,在叶片背面将形成很大的涡流区域,气流分离层扩及整个通道,以至充满整个叶道,而把流道阻塞,气流不能顺利的流过,这时流动严重恶化,压缩机的出口压力会突然大大下降,由于压缩机总是和管网系统联合工作,这时管网中的压力不会马上减低,于是管网中的气体压力就会大于压缩机的出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降到低于压缩机的出口压力为止,这时倒流停止,压缩机又开始向管网供气,经过压缩机的流量又增大,压缩机又恢复到正常工作。但当管网中的压力恢复到原来压力时,压缩机的流量又减少,系统中的气流又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象就称作“喘振”。喘振现象不但和压缩机中严重的旋转脱离有关,还和管网系统有关。管网的容量越大,则喘振的振幅越大,频率越低。喘振的频率大致和管网容量的平方跟成反比。 2)喘振的现象及判断 机组喘振时,压缩机和其后的管道系统之间产生了一种低频高振幅的压力波动,整个机组发生强力的振动,发出严重的噪音,调节系统也大幅度的波动。一般根据下列方法判断是否进入喘振工况。 (1)监测压缩机出口管道气流噪音。正常工况时出口的声音是连续且较低的。而接近喘振时,整个系统的气流产生周期性的振荡,因而在出口管道处声音是周期性的变化,喘振时,噪音加剧,甚至有爆音出现。(2)观测压缩机流量及出口压力的变化。离心式压缩机稳定运行时其出口压力和进口流量变化是不大的,是脉动的,当接近或进入喘振工况时,二者的变化很大,发生周期性大幅度的脉动。 (3)观测机体和轴振动情况。当接近或进入喘振工况时,机体和轴振动都发生强烈的振动变化,其振幅要比平常运行时大大增加。 3)喘振的危害 喘振是离心式压缩机性能反常的一种不稳定运行状态。发生喘振时,表现为整个机组管网系统气流周期性的振荡。不但会使压缩机的性能显

离心蒸汽压缩机用于MVR技术简介

MVR技术简介德维透平机械有限公司

机械蒸汽再压缩的原理 由于成本原因,单级离心压缩机和高压风机被普遍用于机械蒸汽再压缩系统。因此下述说明是针对此类设计。 离心压缩机是体积控制机器,即无论吸入压力多大,体积流率几乎保持恒定。而质量流量的变化与绝对吸入压力成比例。单级离心压缩机的压缩循环描绘在焓熵图中。 单级离心压缩机需要的动力: 例如:将来自蒸发器的饱和水蒸汽从吸入状态p1=1.9bar, t1=119 ℃压缩到p2= 2.7bar, t2=161 ℃(压缩比Π= 1.4)。压缩循环沿着多变曲线1-2,蒸汽的比焓增加量Δhp。 对于蒸汽的比焓h2,通过压缩机内效率(等熵效率)的等式: 而得到的值是h2 =2785 kJ/kg (ηs 0.8适用于水蒸汽介质的单级离心压缩机)。t2=161℃相对于h2和p2。现在此蒸汽就能够用于加热第1效蒸发器。首先它失去过热并冷却至饱和温度t3(130℃),压力p2(2.7bar)。在此温度下,它进入到蒸发器的加热器。基于 除其他因素之外,单位多变压缩功hp取决于多方指数κ和吸入气体的摩尔质量M,以及吸入温 度和要求的压升。对于原动机(电动机、燃气机、涡轮机等)的实际耦合功率,考虑了更大的机械损耗余量。叶轮由标准材料制造的单级离心压缩机能够获得压缩因子1.8的水蒸汽压升,如果采用钛等更高质量的材料,压缩因子可高达2.5。这样一来,最终压力p2就是吸入压力p1的1.8倍,或最大2.5倍,这对应于饱和蒸汽温度升高约12-18K,最大温升可到30K,这取决于吸入压力。就蒸发技术而言,通常的做法是根据相应的水沸点温度来表示其压力。这样,有效温差就被直接表示出来。 例如:吸入压力 p1 = 1 bar 对应于100 ℃,最终压力 p2 = 1.7 bar 对应于115.2 ℃,压力比Π=p2/p1=1.7,饱和蒸汽温升为15.2 K。 用于蒸发蒸馏等装置的三种技术比较 蒸发、蒸馏、蒸发结晶、蒸发干燥装置都是高能耗的。 能耗在这些装置的运行成本中占很大的比例,因此单位能耗的降低和优化对降低整个运行成本至关重要。 目前有三种主要的技术实现比能耗的最小化,可单独应用,也可联合应用:

(完整word版)KCC219系列离心式空气压缩机

KCC215-9系列离心式空气压缩机 技术说明 浙江开山离心机械有限公司

目录 1、相关技术数据 2、产品特点 3、性能保证 4、性能测试情况介绍 5、技术服务和设计联络 6、甲方的备货范围 7、供货范围清单以及供应商 甲方(需方): 乙方(供方):浙江开山离心机械有限公司 2014 年 5 月18 日

KCC215-9 离心式空压机相关技术数据 项目/品牌开山 型号KCC215-9(215m3/min,0.9MPaA) 额定流量(m3/min)215(入口状态) 额定压力(BarG)8 空压机出口空气质量100%无油 节流范围(%)70~105%(对应进口导叶开度40~90°) 压缩段数 3 轴功率(KW)1035 冷却水消耗量(T/hr)130(含后冷却器用水) 冷却水温升(degC)8℃ 剖分形式水平剖分式平行轴斜齿整体齿轮增速齿轮箱 小齿轮材质17CrNiMo6 大齿轮材质17CrNiMo6 叶轮形式半开式、后倾式 叶轮材质17-4PH 高速轴轴向轴承形式推力盘 高速轴径向轴承形式水平剖分式可倾瓦轴承 高速轴油封形式迷宫 高速轴气封形式迷宫 低速轴(大齿轮轴)轴承形式水平剖分式轴套式滑动轴承 低速轴(大齿轮轴)油封形式迷宫式油封 蜗壳材质HT300 联轴器不锈钢膜片式并带防护罩 入口阀动力方式电动执行器调节进口导叶结构~220V ,4-20mA 放空阀动力方式电气动执行器,4-20mA 空气流道防腐处理材质按客户要求 扩压器材质铝合金 冷却器管束材质T2 冷却器翅片材质AL 疏水阀形式带有“V”形缺口的冷却器泄水阀 电机额定功率(KW)1120(华达) 额定电压(KV)10 电机转速(RPM)2975 电机效率:100%/75%/50%负荷0.95/0.95/0.94 电机功率因素:100%/75%/50%负荷0.88/0.85/0.77 绝缘等级 F 温升等级 B 防护等级IP23 启动方式液态软启动 启动电流(A) 3.5倍满载电流 电机轴承滚动轴承 电机轴承润滑脂润滑

离心式压缩机操作问答题

离心式压缩机操作问答100题 1、压缩机的定义:压缩机是一种用来提高气体压力或输送气体的机器,从能量的观点看,压缩机是把驱动机(如电机、汽轮机)的机械能转化为气体压力能的一种机械。 2、离心式压缩机的工作原理是什么 答:当汽轮机带动压缩机主轴转动时,叶轮叶片流道里的气体被叶片带动,随主轴一起转动,在离心力作用下,气体被甩到叶轮外,进入扩压器。叶片中心将形成低压区域,外面的气体从而进入叶轮,填补稀薄地带,由于叶轮连续旋转,故气体在离心力作用下不断甩出,外界气体就连续流入,进入扩压器。 3、离心式压缩机有哪些主要性能参数 答:表征离心式压缩机性能的主要参数有:流量、排气压力、压缩比、转速、功率、效率和排气温度。 4、离心式压缩机气体通流部份主要部件作用 答:气体通流部件由进气室、叶轮、扩压器、弯道、回流器、蜗壳组成。 1) 进气室--它是气体均匀引入到叶轮去的通道,压缩机各段第一级设有进气室。 2) 叶轮--使气体增压增速的部件。 3) 扩压器--实现气体动能转化为压力能的部件。

4) 弯道--把扩压器后的气体正确引入到下一级缸的通道。使气体的离心方向改变为向心方向。 5) 回流器--从弯道出来的均匀引入到下一级叶轮进口,继续提压的通道。 6) 蜗壳--汇集气体,降速升压并将气体导出的部件。 5、压缩机轴封有哪几种形式 答:压缩机的轴封有:迷宫型密封、浮环油膜密封、机械接触式密封。 6、本装置中压缩机的型号是什么代表的意思是什么 由沈阳透平机械股份有限公司制造。由一台型号为3MCL527离心压缩机和一台NK32/36型蒸汽透平组成。压缩机与汽轮机之间由联轴器连接。 3 M CL 52 7 7 ----表示一个缸内安装的叶轮级数为7级 52----表示叶轮的名义尺寸为52cm CL ----表示离心压缩机及无叶扩压器; M----表示机壳为水平剖分结构; 3----表示叶轮背靠背布置,中间带加气 7.离心式压缩机的结构由那几部分组成 答:转子和定子两部分。 转子主要包括轴、叶轮、平衡盘、联轴节、等零部件,叶轮是使

离心压缩机考题

离心压缩机 一、问答题 1.同一台压缩机转速相同,分别压缩空气和二氧化碳气(进气状态相同,进口容积流量相同),试比较叶轮所提供的叶片功和压缩机的出口压力哪个大?若要求这两种气体有相同的压力比时,比较所需的级数。 2.写出理想气体在离心压缩机中分别为绝热压缩过程和多变压缩过程时,压缩机对每公斤气体所作的压缩功的公式(对每公斤气体而言,压缩机向外传出的热量很少,可忽略)。比较哪个过程的功大?并说明原因(介质初始进气条件和终压均相等)。 3.DA140—61硝酸气压缩机,气体主要成分是氮气、一氧化碳、氧气和空气,设计流量Q s0 =140m3/min,出口压力p d0=3.5×105 Pa(绝),但在某工厂实际操作中流量Q=120m3/min,出口压力p d =3.0×105 Pa(绝),达不到设计要求,试定性分析: (1).流量和压力达不到设计要求的原因可能是什么? (2).若该厂在实际操作中降低出口管网压力而其他条件不变时,流量和出口压力能否达到要求? 4.分析离心压缩机中产生冲击损失的原因及影响冲击损失大小的因素。 5.什么叫临界马赫数M cr ?什么叫最大马赫数M max? 6.离心压缩机完全相似的三个先决条件是什么?在性能换算中有两种近似相似情况是哪两种? 7.离心压缩机设计时,进口相对速度马赫数M w1常取在临界马赫数M cr 和最大马赫数M max之间,为什么? 8.在同温度下空气和氢气哪个音速大?哪种气体更难于压缩?如果在M w1 =0.85下压缩气体,以同一叶轮在同样进气温度下工作,压缩空气和氢气哪个允许的叶轮圆周速度大? 9.离心压缩机常采用的叶轮型式有哪几种?其中最常用的是哪一种?其叶片出口安放角大致范围是多少? 10.浮环密封装置中浮环有高压侧和大气侧浮环之分,哪侧浮环与轴的间隙较小,为什么?密封油和机内介质的压力差用什么来控制? 11.同一离心压缩机的绝热效率和多变效率哪个值大,为什么? 12.叶片扩压器的优点是什么?它适用于叶轮出口气流角α2 较大还是较小的场合,为什么? 13.离心压缩机中流量大于和小于设计流量时,其冲角是正值还是负值?叶轮内涡流区主要出现在工作面还是非工作面? 14.试写出下列离心压缩机中常用的方程式和表达式: (1).稳定流动焓值方程; (2).伯努利方程; (3).多变压缩功(多变能头); (4).特征马赫数。 15.滞止焓是气流在什么时候的焓?在压缩机扩压器流道中滞止温度和滞止压力是如何变化的,为什么? 16.径向直叶片叶轮适用于何种情况?它常作成半开式型式,为什么?在多级压缩机中如何使用?

压缩机工作原理及结构

下面简单介绍几种压缩机的工作原理及结构 一、离心压缩机的工作原理及结构 汽轮机(或电动机)带动压缩机主轴叶轮转动,在离心力作用下,气体被甩到工作轮后面的扩压器中去。而在工作轮中间形成稀薄地带,前面的气体从工作轮中间的进汽部份进入叶轮,由于工作轮不断旋转,气体能连续不断地被甩出去,从而保持了气压机中气体的连续流动。气体因离心作用增加了压力,还可以很大的速度离开工作轮,气体经扩压器逐渐降低了速度,动能转变为静压能,进一步增加了压力。如果一个工作叶轮得到的压力还不够,可通过使多级叶轮串联起来工作的办法来达到对出口压力的要求。级间的串联通过弯通,回流器来实现。这就是离心式压缩机的工作原理。

二、螺杆式空压机工作原理及结构 可以从以下来阐述,其中包含吸气、封闭及输送、压缩及喷油、排气四个过程。各个步骤介绍如下: 1、吸气过程: 螺杆式的进气侧吸气口,必须设计得使压缩室可以充分吸气,而螺杆式空压机并无进气与排气阀组,进气只靠一调节阀的开启、关闭调节,当转子转动时,主副转子的齿沟空间在转至进气端壁开口时,其空间最大,此时转子的齿沟空间与进气口之自由空气相通,因在排气时齿沟之空气被全数排出,排气结束时,齿沟乃处于真空状态,当转到进气口时,外界空气即被吸入,沿轴向流入主副转子的齿沟内。螺杆式空压机维修提醒当空气充满整个齿沟时,转子之进气侧端面转离了机壳之进气口,在齿沟间的空气即被封闭。 2、封闭及输送过程: 主副两转子在吸气结束时,其主副转子齿峰会与机壳闭封,此时空气在齿沟内闭封不再外流,即[封闭过程]。两转子继续转动,其齿峰与齿沟在吸气端吻合,吻合面逐渐向排气端移动。螺杆式空压机维修过程三。 3、压缩及喷油过程: 在输送过程中,啮合面逐渐向排气端移动,亦即啮合面与排气口间的齿沟间渐渐减小,齿沟内之气体逐渐被压缩,压力提高,此即[压缩过程]。而压缩同时润滑油亦因压力差的作用而喷入压缩室内与室气混合。 4、排气过程: 当螺杆空压机维修中转子的啮合端面转到与机壳排气相通时,(此时压缩气体之压力最高)被压缩之气体开始排出,直至齿峰与齿沟的啮合面移至排气端面,此时两转子啮合面与机壳排气口这齿沟空间为零,即完成(排气过程),在此同时转子啮合面与机壳进气口之间的齿沟长度又达到最长,其吸气过程又在进行。

离心式压缩机招标采购技术要求的编制_张青萍

广东化工 2012年第9期· 40 · https://www.wendangku.net/doc/b17921915.html, 第39卷总第233期 离心式压缩机招标采购技术要求的编制 张青萍1,胡胜泉2 (1.国电宁夏英力特宁东煤基化学有限公司工程建设部,宁夏灵武 750411; 2.中国石油天然气宁夏石化分公司安检公司,宁夏银川 750003) [摘要]文章对大型化工项目中的离心式压缩机招标采购及验收的注意事项作了说明和分析,提出了建设性意见。包括在总则、供货范围和工作范围、设计制造的技术要求、技术文件及图纸、资料交付中需要明确的条款。以期在大型化工项目中的离心式压缩机的招标采购中,给同行提供借鉴或进行讨论。 [关键词]离心式压缩机;招标采购;质量控制 [中图分类号]TH [文献标识码]A [文章编号]1007-1865(2012)09-0040-01 Technical Requirements in Bidding Procurement of Centrifugal Compressor Zhang Qingping1, Hu Shengquan2 (1. The Ministry of Construction Project Guodian Ningxia Younglight, Lingwu 750411; 2. Ningxia Coal-based Chemistry Co., Ltd., Yinchuan 750003, China) Abstract: This was an explanation and analysis of centrifugal compressor purchasing and acceptance of large scale chemical projects, and made some constructive comments. Including general principles, the scope of supply, scope of work, the design and manufacture of technical requirements, technical documents and drawings and information delivered in clear terms. Hoping to provide a reference to peer or to discuss the purchasing of the large chemical project of a centrifugal compressor. Keywords: centrifugal compressor;biding procurement;quality control procedure 离心式压缩机是大型化工项目的主要关键设备之一,压缩介质有的是易燃易爆、高温高压的,有的介质具有冲刷和腐蚀性,其工况经常地改变以适应不同负荷的需要。最终选定适合需要的、性价比良好的压缩机为装置创造有利条件,是非常必要的。压缩机是否安全可靠,其技术经济性如何,是项目建设成功与否的关键因素之一。作为工程建设负责设备招标的技术人员,应组织好压缩机招标采购及验收,控制好影响压缩机技术性能与质量的关键环节和主要因素,进行事前控制,为科学合理地评标,选定适合需要,性价比良好,安全可靠的压缩机创造有利条件。 1 总则中必须明确的条款 (1)首先应明确招标采购的目的,如果设备为成套,则规定为:离心式压缩机组及其附属设备需要由投标方设计、制造。需要由投标方代为安装,还应写安装,不需要,则写上安装指导;该成套机组包括:压缩机、驱动机(如驱动机为汽轮机,还应包括整套冷凝系统)、润滑和控制油系统、膜片联轴器、底座、气路系统(管道、阀门、冷却器等)、干气密封系统、控制系统(包括配套的自控/电控/仪控设备)、辅助元件及设备、备品备件、专用工具等,具体供货明细和工作范围见供货范围和工作范围清单。如果设备只为主机,则规定为:离心式压缩机需要由投标方设计、制造。 (2)如果离心式压缩机需要进口,必须明确:投标人必须是国外制造厂商或国外制造厂商在中国的唯一代理商(注册在中华人民共和国境外);如果设备为成套,则以主机的唯一代理商(注册在中华人民共和国境外)或成套商(注册在中华人民共和国境外)参加;投标人必须执行过两个以上外贸合同(中英文对照合同或英文合同);投标人所投标的产品必须是经过国家权威机构检验、鉴定合格的产品。投标的离心式压缩机产品应具有所供的产品在中国国内两个项目、三年以上成功运行业绩以及工程安装指导和调试的资格和经验,且经实践证明是先进成熟可靠的产品。并提供相应的供货合同复印件、用户证明和相关联系人的联系方式(包括但不限于移动联系方式)。(说明:合同的签订方必须是本项目的投标人,不允许变更)。 (3)为了让投标人有针对性的准备技术方案,保证设备经正确安装后能够长周期高负荷运行,应在招标采购技术文件中说明招标设备安装所在地的自然环境、气候条件,招标方的公用工程条件。另外在招标方提供的离心式压缩机数据表中,为了计算压缩机级间冷却器的换热面积(如果是制冷系统,还有过冷器等),还应补充工艺气侧的污垢系数,以便投标方准确报价。 (4)大型化工项目中的离心式压缩机的驱动透平、润滑和控制油系统等辅机设备可由进口改为国产,缩短了设备采购周期,保证了设备及时交到现场,加快离心式压缩机招标、到货和给设计返资料等的时间,并节约资金。2 供货范围和工作范围必须明确的条款 (1)一般由招标人在采购技术文件中给出基本的要求投标方供货的范围,列入供货范围内的压缩机(机壳、主轴、各级叶轮、支撑轴承、推力轴承)(进口)、驱动机(电机或汽轮机及其整套冷凝系统)、气体管路系统(入口缓冲器、出口缓冲器、气体冷却器、分离器、入口切断阀、调节阀、安全阀、机组内的工艺管道、管路元件等)、润滑和控制油系统(高位油箱、主油泵、辅助油泵、事故油泵、油冷器、油管路系统)、膜片联轴器、底座、密封系统、控制系统以及零部件等应包括在投标总价之内,这个统一要求的供货范围作为各个投标单位报价的基础,也是将来在一个平台上评标的依据。 (2)为了更好地界定投标方中标后将来的工作,也是出于统一报价基础的需要,最好也在采购技术文件中规定投标方的工作范围。例如,投标方的设计内容除了包括压缩机组工艺流程和PID 设计、压缩机组所有设备设计等常规设计,还应包括界区内管线的设计范围(油路、干气密封、气路、压缩机和透平之间的管路设计,压缩机厂房外1 m以内的气路、蒸汽介质管道设计)和特殊管件的设计。 (3)规定了投标方的供货范围和工作范围之后,为了让投标人更准确地报价,有时候还需要明确招标方的供货范围和工作范围。例如,招标方的设计范围(土建图、土建钢结构平台图以及采暖、消防、给排水、电讯、照明、防雷等公用工程设计、安装)。而设备到货后的卸车一般属于招标方工作范围。 3 设计、制造的技术要求中还需明确的条款 (1)离心式压缩机对其提出采购技术要求时,还需要它符合国外先进标准的规定,如某压缩机的设计、制造要求符合API617《石油、化工和气体工业轴流和离心式压缩机及膨胀机》标准的规定,如果需要增速的离心式压缩机,应符合API672《整体齿轮压缩机》标准的规定。 (2)气路系统:机组应设置防喘振控制系统;投标方应提供防喘振气体冷却器和防喘振调节阀;气路系统的管道设计应由投标方负责,并保证气路管道的强度和振动等达到运行要求和符合API 617 and API 614规定。 (3)安全阀:安全阀应符合API RP520第Ⅰ、Ⅱ部分和API526 对安全阀限制要求的规定。投标方应规定与设备有关的所有安全阀的尺寸和设定压力值。安全阀的设定值,包括安全系数,应考虑到可能出现的各种设备故障与管线系统的保护。 4 技术文件及图纸、资料交付中还需明确的条款 填写充分的数据表、机组的主要结构特征和主要节点图、特 (下转第5页) [收稿日期] 2012-04-15 [作者简介] 张青萍(1969-),女,宁夏银川人,工程师,主要从事化工机械与设备管理工作。

相关文档
相关文档 最新文档