文档库 最新最全的文档下载
当前位置:文档库 › 涂膜的干燥和固化方法及其装备

涂膜的干燥和固化方法及其装备

涂膜的干燥和固化方法及其装备
涂膜的干燥和固化方法及其装备

第5章涂膜的干燥和固化方法及其装备

一.涂料的成膜

1.概述

固化(干燥,又称烘干热固化)是工业涂装工艺的三大基本工序之一,固化的方法及装备选用是否合理,烘干规范的选用和执行是否正确,会直接影响涂层质量和涂装成本。

干燥、烘干、固化虽可混用,但在语意上有所差别。在日常生活中使潮湿的东西变成干燥的东西的过程称为干燥,即将水分,靠溶剂物理作用挥发掉,使物件变干(如涂装前处理和湿打磨后的干燥工序)。

涂覆在被涂物上的涂料由液态(或粉末状)变成无定形的固态薄膜的过程,即涂料的成膜过程,虽也可俗称为涂料的干燥,但称为涂料的固化(Curing)较科学,概念较全面。因涂料的成膜过程较复杂,有物理作用和化学作用,有的必须在高温下(烘干)才能固化,再加之粉末涂料的成膜不是由液万言书变固态。

提高物体和空气的温度,以加速干燥(或固化)的速度,即在高温下进行干燥和固化的过程称为烘干。

在本章中主要介绍涂料的成膜过程、固化方法、涂膜的固化程度、烘干规范、烘干设备等,以指导汽车涂装工作者制定烘干规范和选用烘干设备。

2.涂料的成膜过程

涂料由液态(或粉末状)变成固态,在被涂物表面上形成薄膜的过程称为涂料成膜过程。液态涂料靠溶剂挥发、氧化、缩合、聚合等物理或化学作用成膜;粉末涂料靠熔融、缩合、聚合等物理或化学作用成膜。在成膜过程起主导作用的,则取决于涂料的类型、组分和结构。

根据涂料的成膜过程不没,汽车常用涂料可分为热塑性和热固性两大类。

1.热塑性涂料的成膜过程液态溶剂型是靠溶剂挥发,故又称为挥发型涂料;无溶剂或粉末热塑性涂料是靠熔融,所开成的涂膜能被溶剂再溶解或受热再融化。其成膜过程是物理作用,无化学转化作用,因而也可称为非转化型涂料,属于这一类型的汽车用涂料有硝基漆、过氯乙烯漆、热塑性丙烯酸树脂涂料、热塑性粉末涂料和PVC型车底涂料及密封胶等。

2.热固性涂料的成膜过程除溶剂挥发和熔融等物理作用外,主要靠缩合、氧化聚合、聚合等化学作用。通过化学反应使液态的或热熔融的低分子树脂转化为固态的网状结构的高分子化合物,所形成的涂膜不能再被溶剂溶解,受热也不能再融化,只能焦化分解,因此热固性涂料也可称为转化型涂料。这一类型的涂料已是汽车制造用涂料的主流;如环氧树脂涂料、氨基醇酸树脂涂料、聚本涂料、醇酸树脂涂料、酚醛树脂涂料、电泳涂料和水性涂料、热固性丙烯酸树脂涂料和热固性粉末涂料等。

随涂料的成膜温度不同,涂料又可分为自干型和烘烤型。自干型系指在常温条件下能自然干燥成膜的涂料,有时为加速溶剂挥发,缩短干燥时间,可在80℃以下进行热风吹一下。属于这一类涂料的如硝基漆等溶剂挥发型涂料、干性油改性的醇酸树脂涂料和油性漆等;烘烤型系指必须在高温下烘烤才能干燥成膜的涂料,例如氨基树脂面漆,俗称烤漆,它必须

在(100~140)℃下烘干才能形成达到规定性能的涂膜。

二.涂膜的干粝方法及过程

涂膜的干燥(固化)方法可分自然干燥、烘干和照射固化等三种,又是可详分如下:

自然干燥(在常温下呈自然状态干燥,故谷称为自干或气干)

低温(100℃以下)热风干燥(加热方式以对流为主,也采用辐射式) 干燥 中温(100~150)℃烘干 (固化) 高温(150℃以上)烘干

催化固化

紫外线固化 电子束固化

汽车涂装的成膜过程主要是烘干,汽车修补涂装采用自干较多,照射固化在汽车工业

中几乎不用。为确保涂膜质量,涂膜干燥、自干或烘干场所应具备下列条件:

1)烘干室内或自干场所要清洁,无灰尘,空气要干净。

2)温度应符合涂料的技术要求,过高过低都会影响干燥效率和涂膜质量。

3)空气要流动。在空气流动的场所(或烘干室内)要比空气不流动场合涂膜干燥得快,因空气流动有利于溶剂的挥发。

4)无论在自干场所,还是在烘干室内都要设置排风换气装置,便于在干燥过程中从涂

膜挥发出来的溶剂不超过一定浓度,以防溶剂蒸汽爆炸或影响涂膜质量。

1.涂膜的自然干燥

因是放置在大气中常温下干燥,所以自然干燥仅适用于挥发型涂料、自干型涂料和触

媒聚合型涂料。涂膜自干速度与气温、湿度、风速和阳光等有关,一般是气温越高,湿度越低,自干条件就越好,还要保持空气清洁,进行适度地换气,在湿度高,通风差和黑暗的场所,干燥变慢。涂膜中溶剂的挥发速度与周围的空气流动(风速)有关,风速越快,溶剂挥发越快(图5-1)。汽车涂装的自干场所应在室内,不应露天作业。

温度越高,溶剂挥发也越快,氧化聚合等少膜固化反应也越加速。自干场所温度增高

对涂膜干燥有利,而湿度对溶剂挥发起抑制作用,另外湿度高了,易使挥发型涂料的涂膜变白,产生涂膜弊病,所以要求自干场所的空气湿度以低为好。

2.漆膜的加热干燥(烘干)

加热干燥又可分为烘干和强制干燥。前者系指靠加热使涂膜固化,后者系指采用低温

烘干办法来促进自干型涂料的成膜或水分挥发(缩短干燥时间)。

烘干温度一般在100℃以下(最高不超过110℃)称为低温烘干,在汽车涂装中适用于

烘干水分,硝基漆(一般60℃~80℃下,烘干10min ~30min )、醇酸树脂涂料(一般为90℃~照射固化 加热干燥 (固化) (加热方式有对流、辐射和感应等)

110℃下烘干30min~60min)等涂膜的干燥;还适用于易受热变形的木质和塑料制件等的涂装烘干。

烘干温度在(100~150)℃范围称为中温烘干,150℃以上(一般200℃以上很少选用)称为高温烘干。汽车涂装工艺中的烘干工序绝大部分属于中温、高温烘干;热固化型的合成树脂(氨基醇酸系和丙烯酸树脂系)的中涂、面漆采用中温烘干;电泳底漆、水性涂料和粉末涂料采用高温烘干,为适应大批量工业流水生产,烘干时间都限在30min以内。

烘干规范(即烘干温度和时间)取决于被烘干的涂料类型、被烘干物材质及热容量和加热方式等因素。烘干时间包括升温时间和保温时间。升温时间是被烘物的温度从室温升到规定的温度所需的时间,升温时间随涂料品种有所变化,如电泳作膜、粉末涂料涂层的烘干,升温可急一些,时间可短些;溶剂型涂料和厚涂层,则升温要温和些,时间可稍长些,反之易产生针孔和起皱等涂膜弊病。保温时间是被烘物温度升到规定温度后应持续的时间,保温时间必须保证,才能确保涂膜干透。烘干规范一般在涂料的技术条件中有规定,通常由涂料厂推荐,也可由汽车厂根据涂装现场条件和产品涂层的性能要求,通过试验确定。在烘干规范内烘干所形成的涂膜性能应是该涂料的最佳性能。烘干规范是涂装工艺设计和烘干室设计的基石。烘干规范所规定的烘干时间和烘干温度一般有一定的变化范围(图5-2),但一旦选到,应将烘干温度和时间控制在较窄的范围,以确保少膜的质量稳定。

在汽车涂装的工艺文件和烘干室的特性叙述中,烘干规范一般用温度-时间变化的曲线图表示,如图5-3为汽车用面漆(溶剂型涂料)的典型烘干规范曲线;图5-4为阴极电泳底漆的典型的烘干规范曲线;图5-5为汽车用水性中涂、面漆的典型烘干规范曲线(加热方式均热风对流加热)。

被涂物的烘干加热方式有对流、辐射和电感应等三种,对流是外部加热方式,辐射和高周波感应是内部加热方式。对流加热是以热空气为媒介,靠热风将热传导给涂膜和被涂物而加热升温;它的优点是加热均匀,适用于形状、结构复杂的被涂物烘干,尺寸和重量大小不一的被涂物混流生产的涂装线的烘干,是汽车涂装的涂膜烘干的主要方式。其缺点是升温速度慢和热效率低。辐射加热通常是用红外线、远红外线、高红外线,从辐射源射出来呈电磁波在空气中传播,辐射到物体后,被直接吸收转换成热能,使涂膜和底材同时加热;升温速度快、热效率和烘干效率高是其长处;有照射盲点,温度不易均匀(尤其在被涂物与辐射源无相对运动的场合)是辐射烘干的致命的缺点。

在汽车涂装领域近10多年来发展采用对流与辐射相结合的加热方式,用辐射加热元件布置在烘干室的升温加热区,来弥补对流加热升温慢的缺点,另外又可降低升温区的气流速度,涂膜在这一区段尚处在湿的状态,易粘尘,降低这一区段的风速对提高涂层的外观质量有利。高周波感应加热效率高,但仅适用于外形简单,且规则的小件和钢管涂装的烘干。

催化固化在汽车修补涂装和底材不能烘干的被涂物(如某些塑料件)的涂装领域应用较多,如双组分或多组分涂料在现场现用现配或用双组份喷具涂装。照射固化在汽车涂装中应用较少。

3.涂膜的固化过程

涂膜的固化过程一般要经历以下三个阶段。

1)触指干燥或称表干。当手指轻触涂膜感到发粘,但少膜不附在手指上的状态。

2)半硬干燥。用手指轻捅涂膜,在涂膜上不沾有指痕的状态。

3)完全干燥。用手指强压少膜也不残留指纹,用手指急速捅涂膜,在涂膜上也不留有伤痕的状态。

在烘干场合,涂膜达到完全干燥时涂膜的各项性能应最佳,如果烘干温度过高,烘干

时间过长,则会产生涂膜过烘干弊病,轻时影响涂层间的附着力,严惩时涂膜变脆,甚至脱落。

判定涂装作业上的干燥程度,较上述划分更细。在一些文献中的分类,见表3-1。

表3-1 涂膜干燥(固化)程度的区分

三.烘干设备

基于汽车制造属于大批量流水作业生产,生产节奏慢的为几分钟,愉的只有几十秒钟,例如经济规范的轿车车身涂装线年产量为(15~30)万辆,前处理、底漆线的生产节奏为(45~90)s/台,有手工作业的PVC车底涂胶密封线,中涂、面漆线的生产节奏为90s/台。自然干燥一般需几个小时到几十小时,快节奏的工业涂装生产只能采用烘干,因此烘干设备是汽车涂装不可缺少的关键设备之一。

烘干室(俗称烘干炉)的结构合理和性能优劣,将会直接影响涂层质量和涂装成本,特别最近一二十年提出省能源和涂装无公害(或低公害)化等要求,对烘干室的功能和经济技术指标的要求更高了。

在设计、选用烘干室时应考虑下列各点:

在质量性能方面:应遵循被烘干物的温度-时间曲线;被烘干物的温度分布均匀;烘干室内应清洁、无尘;避免烘干过程中产生的分解物冷凝。

在节省能源方面:能源回收;炉门;对外的绝热措施。

在符合法规方面:对环境的影响——散发物(有机挥发物VOC);对工位安全规范上——防爆、溶剂、气味。

易维修性:易清理;易密封;可接近性(风管等);成套设备的易更换。

为确保烘干室的安全性,烘干设备内的溶剂蒸汽浓度不允许超过一定极限值(不超过该溶剂爆炸下限质量分数的25%),为此必须保证换气充分。经验数据介绍:第挥发3.79L (10美加仑)溶剂,需补充280m3的新鲜空气。在烘干溶剂含量高的涂料或由烘干产生低分子分解物的场合更需加大换气量,供气量大,则自然也意味着能源消耗增大。在排风管和循环风机应装气流传感器,当任何一个系统的气流中断,传感器发出信号,燃烧喷嘴停止避免任何爆炸和火灾。

烘干室内应绝对清洁。所供的新鲜空气和循环代气都必须全部过滤;烘干室内不允许有灰尘和污物,应定期清扫;要特别注意加热(升温)区范围内的清洁,因为在那儿的涂膜还是湿的;输送设备应不掉磨损屑,在烘干高装饰性涂层时,输送设备应设置在被烘干物下烘干室底板上;不允许使用任何含有机硅的材料。

1.烘干室的分类

为适应涂装工艺和平面布置的需要,汽车涂装用的烘干室的类型和形状很多,一般按用途、结构形状、热源和加热方式分类:

1.按用途分类根据汽车涂装工艺中使用烘干室的目的,可按它们的用途名称来分类。例如,前处理和湿打磨后用水分烘干室;电泳底漆烘干室;PVC涂料烘干室;中兴烘干室、面漆烘干室、水性涂料烘干室,…,等。基于不同用作的烘温要求不同,烘干室又可分为低温、中温、高温三处。基于用途不同对上述各种烘干室技术要求也有较大的差别。

2.按形状和工件的通过方式分类按被涂物通过烘干室的方式不同,汽车少装用烘干室可为通过式、箱式和多行程烘干室。通过式和多行程烘干室一般都用地面或悬挂式输送链连续运送被涂物。随烘干室的被涂物进出口端的结构不同。通过式烘干室又可分为直通式、桥式(在日本又称为“山”型)和“∏”字型(在德国又称“A”字型)烘干室桥式烘干室(图5-6)的被涂物进出口端有一定的倾斜角(悬挂式输送的倾斜角为20o~30o;地面输送为15~17o左右);被涂物(如车身)在“∏”字型烘干室的进出口端呈垂直升降,采用滑撬式输送系统,“∏”字型烘干室为单行程,为适应高产量,可并列布置两个烘干室对一条喷漆线。

桥式和“∏”字型烘干室与直通式比较,除占地面积稍大小,其最大优点是保温性能和烘干室内温度均匀性好;它们的进出口端上部的高度较烘干室底板低(约氏200mm~300mm);因热空气的密度较轻,集中在烘干室内不易向炉外逸出,这样不仅热损失明显地减小,并地工位环境也有较大的改善。因此桥式和“∏”字型烘干室在新建的汽车涂装线中已占主导地位。

箱式烘干室系指带门的直通双向或单向式烘干室,适用于小批量,间歇式生产。其优点是比无门的直通式烘干室的保温性好一点,占地面积小;但缺点是被涂物出入烘干室时炉门敞开,热量交响曲失较大,影响炉内温度的均匀性。

3.按热源的种类分类随地区动能供应源的不同,涂装用烘干室的加热源有;气体燃料(天然气、城市煤气、工业煤气、工业煤气)、油(轻质柴油、煤油)、电、蒸气或高压热水等,不同热源的烘干室加热装置的结构相差甚大,燃气和燃油的结构相仿,燃油的需压缩空气雾化和泵供油。电加热适用于对流、辐射和感应三种加热方式。

4.按加热方式分类可分为辐射式、对流式和两者结合式的烘干室。在汽车涂装领域中,由于汽车零部件的外形的结构复杂,为使被涂物工件加热均匀,后两种加热方式使用较多,具有代表性的直通式热风循环烘干室,见图5-7。

2.烘干室的组成

烘干室由烘干室实体、烘干室两端的进、出口端壳体、热传递系统、电控和测温记录系统等组成。

1.烘干室实体(俗称通道)

它是烘干室的保温壳体。在静力学方面应有自行装载的功能,能装载输送系统和通风管路;在热力学方面应有良好的热绝缘,没有“热桥”,内墙壁的气密性好;便于维修与清理,能进行快速、清洁地安装;具有可膨胀性。

烘干室实体一般是镶板式结构,德国杜尔公司设计的烘干室,是在工厂焊接成6m或9m长的实体模段,再运往现场焊装成烘干室实体(可任意数量进行组合),这种结构能确保上述性能,并优于镶板式结构,尤其是气密封和热绝缘性能达到十分理想的状态。

2.烘干室两端的进、出口端壳体由于烘干室有效空间的气温高于外界和周围设备的温度,如果没有特别的防护措施,大量的热空气和蒸气将会散发出来,并有冷空气的侵入。在烘干室两端进、出口处采用的保护装置有以下三种形式:

1)设置上下升降或左右开的炉门(仅适用于间歇式烘干作业)。

2)设置斜式进、出口端(桥式烘干室)或垂直升降式进、出口端(“∏”字型烘干室)。使烘干室底面高于进、出口的上缘,利用热空气比冷空气轻来隔热。

3)在烘干室进、出口端设置风幕间隔区段。

烘干室进、出口端部的具体结构,见图5-8。

3.热传递系统在汽车制造业中,绝大部分涂装用烘干室装备有辐射加热和对流加热系统两种。

辐射热传递是采用直接加热的辐射元件(有电加热辐射元件和烟道气加热的辐射板),通常设置在烘干室的加热升温区,尤其在烘干中涂、面漆场合,在烘干室升温区使用辐身加热,可确保高要求的无尘,也可最大限度地避免灰尘卷起。

对流热传递是通过循环空气对流,其优点若加热几何形状复杂的被烘干物,其温度分布非常均匀。循环空气的加热是靠电加热器或热交换器(一般以高温烟道气蔌蒸气为加热介质)、循环风机及风管等,以一定的风速在烘干室内部循环。典型的风管出口风速为(5~10)m/s。

4.烘干室的电控和测温记录系统先进的烘干设备已彩微机控制系统控制温度和加热系统。

3.烘干室的空气平衡和热效率

在设计对流加热烘干室时就应考虑供、排空气的平衡,为保持涂膜干燥过程中产生的挥发性的有机化合物(VOC)能及时地排出(或送燃烧炉处理),应及时补充清洁的新鲜空气,烘干炉内与室内相比,可稍稍负压。

挥发性的有机物(溶剂或低分子分解物)一般产生的烘干最初的(5~10)min内,为此排气装置应设置在挥发性有机物浓度高的部位。

图5-9所示是一个烘干室空气平衡的实例。

向烘干室通过风幕供给新鲜空气,排出废气,以保证在烘干过程挥发有机物积聚不超过爆炸极限。如果排风量小,会使烘干室向室内冒烟。烘干室的密封性应保证有害的气体不漏入厂房。

烘干室的空气平衡与厂房内的相邻设备如喷漆室、晾干室和冷却室有关,受它们的风压、风速的变化而产生严重的扰乱。厂房内气压变化也会影响烘干室的温度变化或在进、出口处冒烟。厂房内的气压和风速受大门和通风口的关闭的影响,所以涂料车间内的所有独立空气系统都应看成总系统中的相互依赖部分。

热效率是指烘干室运转时,供给热量和消耗热量之比,称为热平衡计算作业,用来判定该烘干室的热利用经济效益。

烘干室的实际效率:

被涂物实际带出的热量

N= ×100%

运转时所需的全部热量

一般对流热风烘干室的热效率列于表3-1中

4.冷却室

冷却室,又称强冷室,即靠吹冷风强制刚从烘干室出来的被涂物降温,以适应下道工序的需要和不影响厂房内的气温。冷却室应紧接烘干室的出口端布置,一般长度为1~2个车位。在南方夏季高温作业时,冷却室不可缺少;在北方,尤其是冬季,当室温较低时,在生产节奏较长的场合为省投资也可以不装备冷却室,而采用自然冷却。

冷却室由吹冷风条的壳体、送排风机组、送排风管等主要部件组成,供风系统是否需安过滤器,视新鲜空气的清洁度而定,其结构和冷却区内的气体流动,见图5-10。

冷却所需的冷空气从厂房外吸入,一般情况下还需要过过滤器,然后靠风机压送到冷却室两侧的风道,再通过喷嘴吹向被冷却物上。加热后的空气从冷却室的上部吸出,排向室外,或当室外气温较低时部分循环使用,如在冬季新鲜空气与循环气混合使用,可提高气温。

在理想状态下,被冷却后的工件温度不超过冷却空气温度(10~15)℃(即略高于室温,40℃左右)。冷却作用只适用于工件的表面,不适用于材料堆积处和遮盖的、气流不易接近的部分,这些部分只能靠热传导冷却,即这些部位的热量要经一定时间后才能达到热量的平衡。

要注意绝不允许烘干室的废气串入冷却区,因烘干室的废气在高温下呈气态,在冷却时迅速冷凝。冷凝物滴落在被涂物上污染漆面或造成涂膜弊病。

冷却室的结构设计要避免冷凝物滴落在被涂物上。冷却区内的进风和排风比率必须保持平衡。

工程量清单编制方法大全

工程量清单(Bill Of Quantity BOQ)是在19世纪30年代产生的,西方国家把计算工程量、提供工程量清单专业化为业主估价师的职责,所有的投标都要以为主提供的工程量清单为基础,从而使得最后的投标结果具有可比性。 工程量清单报价是建设工程招投标工作中,由招标人按国家统一的工程量计算规则提供工程数量,由投标人自主报价,并按照经评审低价中标的工程造价计价模式。 工程量清单报价的指导原则是:政府宏观调控、企业自主报价、市场形成价格、社会全面监督。 工程量清单计价实行的是一种由招标单位出具建设项目的工程量清单,投标企业对照招标企业提供的工程量清单,根据企业的管理组织水平的技术能力,充分考虑市场和风险因素,根据投标竞争策略进行自主报价。投标企业在报价过程中,必须通过对单位工程成本、利润进行分析、统筹考虑、精心选择施工方案,并根据企业定额合理确定人工、材料、机械等要在经济上的投入与配置,优化组合,合理控制现场费用的施工技术措施费用,确定投标价。这就要求投标企业改变过去依赖国家发布的定额状况,提高企业的施工组织管理水平,改善施工技术条件,注重市场信息的搜集和自身信息集累,根据自身条件编制出自己的企业定额。 变过去依赖国家发布的定额状况,提高企业的施工组织管理水平,改善施工技术条件,注重市场信息的搜集和自身信息集累,根据自身条件编制出自己的企业定额。 工程量清单编制方法: 招标文件应当包括招标项目的技术要求和投标报价要求。工程量清单体现了招标人要求投标人完成的工程项目及相应工程数量,全面反映了投标报价要求,是投标人进行报价的依据,工程量清单应是招标文件不可分割的一部分。工程量清单应反映拟建工程的全部工程内容,并为实现这些工程内容而进行的其他工作。借鉴外国实行工程量清单计价的做法,结合我国当前实际情况,我国的工程量清单由分部分项工程量

1简述常用的热处理的方法及时效处理

1简述常用的热处理的方法及时效处理。 答:常用热处理方法:退火,正火,淬火,回火,渗碳,渗氮,碳氮共渗,渗硼。时效处理有人工时效处理,自然时效处理。 退火,将工件加热至Ac3以上30~50度,保温一定时间后,随炉缓慢冷却至500度一下在空间中冷却。 正火,将钢件加热至Ac3或Acm以上,保温后从炉中取出在空气中冷却的一种操作。 淬火,将钢件加热至Ac3或Ac1以上,保温后在水或油等冷却液中快速冷却,已获得不稳定的组织。 回火,将淬火后的钢重新加热到Ac1以下的温度,保温后冷却至室温的热处理工艺。 自然时效处理,将工件放置在室温或自然条件下长时间存放而发生的时效现象,称为自然时效处理。 人工时效处理,采用将工件加热到较高温度,并较短时间进行时效处理的时效处理工艺,叫人工时效处理。 2简述钢回火的目的 答:回火又称配火。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。目的:一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。根据不同的要求可采用低温回火、中温回火或高温回火。通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。 3简述钢的表面淬火的作用及分类。 答:有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 4简述感应热处理技术的工作原理及特点。简述超音频感应淬火的工作频率及频率和淬硬层厚度的关系。 答:基本原理将工件放入感应器(线圈)内,当感应器中通入一定频率的交变电流时,周围即产生交变磁场。交变磁场的电磁感应作用使工件内产生封闭的感应电流──涡流。感应电流在工件截面上的分布很不均匀,工件表层电流密度很高,向内逐渐减小, 这种现象称为集肤效应。工件表层高密度电流的电能转变为热能,使表层的温度升高,即实现表面加热。电流频率越高,工件表层与内部的电流密度差则越大,加热层越薄。在加热层温度超

混凝土密封固化剂的使用方法

https://www.wendangku.net/doc/b88053974.html, 混凝土密封固化剂的使用方法混凝土密封固化剂的使用方法是什么?密封固化剂有许多不同的类型,每一种不同类型的密封固化剂有不同的特点。密封固化剂在使用过程中有很多要求,比如施工温度、时刻和用量等等;密封固化剂在使用过程中有许多注意事项,它必须严格根据使用说明书来使用。下面合肥宏悦工业地坪有限公司就为大家简单解析。 因密封固化剂是液体,不具有找平的功用,因而,混凝土底层的平坦度即是完成后的耐磨地坪的平坦度。而且,底层不平坦易致使密封固化剂难以在底层面均布,在涂刷密封固化剂后,容易在地上凹处呈现很多的“小水坑”,而地上凸出无法有用“吸收”密封固化剂。底层平坦度应能到达4mm等级。

https://www.wendangku.net/doc/b88053974.html, 应进行底层整理。将混凝土底层上的水泥渣、灰尘、油污、废物等全部整理干净,以打开底层外表跟过的毛细孔,以利混凝土密封固化剂更多、更好地进入地上;用清水彻底清洁底层地上,因为密封固化剂是无色通明液体,且其功用主要是浸透进混凝土底层,因而,确保混凝土外表的观感,可提高完成后的地上的整体观感作用。待地上多半干无明水后即可进行密封固化剂施工。 应加强底层的维护。底层维护不当易呈现开裂表象,且易受污染。应在地上底层施工完约5小时后,即开端浇水维护,水维护应继续7天以上,需确保混凝土外表呈继续湿润状况。底层施工完成后,除水维护剂切开缝人员外,其他人员不得来回走动。特别注意应运用清水维护,脏水或富含杂质的水容易污染底层,杂质嵌入底层毛细孔将致使密封固化剂无法浸透。 合肥宏悦工业地坪有限公司是一家集研发、生产、销售、施工于一体的综合化企业。公司主要各种类型的混凝土密封固化剂,健康环保,绿色无污染,能更快地渗入混凝土表层,产生化学反应许多工厂仓库车间地面和停车场的选择,耐磨程度高、坚固长久、无尘健康。坚持“为客户供给优秀、安定、节能的产品,为客户供给热忱用心的效劳,以客户需求为自我寻求,以不断提高产品质量和售后服务的程度为目标”。为客户提供优秀、稳定、节能的产品,以不断提高产品质量和售后服务的程度为目标

环氧树脂固化剂的概况

环氧树脂固化剂的概况 双酚A环氧树脂的结构稳定,能够加热到200℃不发生变化,其他环氧树脂具有无限使用期,通过固化剂使环氧树脂实现交联反应,由于固化过程中不放出H2O或其他低分子化合物,环氧树脂固化物避免了某些缩聚型高分子在热固化过程中所产生的气泡和界面上的多孔性缺陷。环氧树脂固化物性能在很大程度上取决于固化剂,其种类繁多。 一、环氧树脂固化剂分类 1. 按化学结构分为碱性和酸性两类 1.1碱性固化剂:脂肪二胺、多胺、芳香族多胺、双氰双胺、咪唑类、改性胺类。 1.2酸性固化剂:有机酸酐、三氟化硼及络合物。 2. 按固化机理分为加成型和催化型 2.1加成型固化剂:脂肪胺类、芳香族、脂肪环类、改性胺类、酸酐类、低分子聚酰胺和潜伏性胺。 2.2催化型固化剂:三级胺类和咪唑类。 二、环氧树脂固化剂的发展 我国1998年环氧树脂产量为万吨, 固化剂需求量约为2万吨, 实际的固化剂产量仅为万吨, 生产厂家分布在沿海城市, 如天津、上海、江苏和浙江等地。例如:脂肪多胺:常州石化厂650吨/年 间苯二胺:上海柒化八厂80吨/年 T—31改性胺:江苏昆山助剂厂60吨/年 低分子聚酰胺:天津延安化工厂200吨/年 590#改性胺和593#改性胺:上海树脂厂17吨/年 793#改性胺:天津合材所6吨/年 SK—302改性胺:江阴颐山电子化工材料厂5吨/年 另外:B—系列固化剂,N—苄基二甲胺,DMP—30,801#改性胺,HD—236改性胺,GY—051缩胺,CHT—251改性胺,105#缩胺,810#水下固化剂,NF—841固化剂,703#改性胺等。

三、胺类固化剂 1.胺类固化机理 1.1一级胺固化机理 若按氮原子上取代基(R)数目可分为一级胺、二级胺和三级胺;若按N数目可分为单胺、双胺和多胺;按结构可分为脂肪胺、脂环胺和芳香胺。 一级胺对环氧树脂固化作用按亲核加成机理进行,每一个活泼氢可以打开一个环氧基团,使之交联固化。芳香胺与脂环胺的固化机理与一级胺相似(伯胺、仲胺和叔胺) ①与环氧基反应生成二级胺 ②与另一环氧基反应生成三级胺 ③生成的羟基与环氧树脂反应 1.2固化促进机理: 在固化体系中加入含给质子基团的化合物如苯酚,就会促进胺类固化,这可能是一个双分子反应机理,即给质子体羟基上的固发氢首先与环氧基上的氧形成氢键,是环氧基进一步极化,有利于胺类的N对环氧基Cδ+的亲核进攻,同时完成氢原子的加成。 促进剂对环氧树脂和二乙烯二胺固化体系的凝胶化影响,例如乙二醇、甘油和苯酚使凝胶化时间缩短7min,12min和13min。 2. 脂肪胺(脂环胺)固化剂 在室温很快固化环氧树脂,固化反应为放热反应。热量能进一步促使环氧树脂与固化剂反应,其使用期较短。胺类固化剂与空气中的CO2反应生成不能与环氧基起反应的碳酸铵盐而引起气泡的发生。 脂肪胺对皮肤有一定刺激作用,其蒸汽毒性很强。 脂肪胺和脂环胺固化剂

常见的热处理方法

常见的热处理方法、目的和工序位置的安排 由于热处理工序安排对车削类工艺影响较大,更重要的是往往由于热处理工序安排颠倒,使工件无法继续加工,而且所产生的废品往往是无法挽回的。为此对热处理工序的安排要加以了解,并引起重视。 下面将常见的热处理方法、目的和工序位置的安排分别介绍如下: 一、预备热处理 预备热处理包括退火、正火、调质和时效等。这类热处理的目的是改善加工性能,消除内应力和为最终热处理做好组织准备。退火、正火、调质工序多数在粗加工前后,时效处理一般安排在粗加工、半精加工以后,精加工之前。 1.退火和正火 目的是改善切削性能,消除毛坯内应力,细化晶粒,均匀组织;为以后热处理作准备。 例如:含碳量大于0.7%的碳钢和合金钢,为降低硬度便于切削加工采用退火处理; 含碳量低于0.3%的低碳钢和低合金钢,为避免硬度过低切削时粘刀,而采用正火适当提高硬度。 一般用于锻件、铸件和焊接件。退火一般安排在毛坯制造之后,粗加工之前进行。2.调质 目的是使材料获得较好的强度、塑性和韧性等方面的综合机械性能,并为以后热处理作准备。 用于各种中碳结构钢和中碳合金钢。调质一般安排在粗加工之后,半精加工之前。 调质是最常用的热处理工艺。大部分的零件都是通过调质处理来提高材料的综合机械性能,即提高拉伸强度、屈服强度、断面收缩率、延伸率、冲击功。调质处理能大大提高材料的拉伸和屈服强度,提高屈强比和冲击功,使材料具有强度和塑韧性的良好配合。由于屈服强度、疲劳强度、冲击强度的提高,在零件设计时就可以采用更小的材料截面,从而减少机械设备的整体重量,节省零件占用空问和能量消耗。因此在某些场合为了减少机械空间和机械重量在设计过程中要有意识地利用调质工艺。 需要强调的是,一般来讲调质钢应该为中碳钢( C = 0.3%~0.6%);碳钢中像30、 35、40、45、50等钢种则既可以调质处理又可以正回火使用;而对高碳钢和低碳钢则 不宜采用调质工艺 调质过程是淬火加高温回火。首先需要将零件加热到材料的Acl点以上30~50℃ (800.950℃),保温一定时间,然后在油中或水中冷却。冷却后立即入炉进行回火(500~650℃),以降低淬火应力、调整组织成份,进而达到机械性能要求。而回火温度的制定是根据硬度或性能高低而定的,硬度和强度越高,回火温度越低。调质工序后的任何高于回火温度的加热,都将降低已达到的强度。 选择调质处理时应特别注意以下几点: (1)图纸中应明确要求 应明确写明“调质”。若只写“热处理…H B”外协厂家可能采用其他热处理工艺,比如正回火达到所要求的硬度。而正回火所达到的同样硬度的材料其屈服强度和冲击功会非常低。实际工作中曾发生过地脚螺栓使用时发生早期断裂的事故就是由此导致的。 (2)调质的硬度和硬度范围 要按材料标准选择调质的硬度和硬度范围。这一方面有利于工厂配炉生产,另一方面过窄的硬度范围要求在实际生产中根本无法满足。

环氧树脂固化剂的毒性问题和安全操作方法

编号:AQ-JS-08291 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 环氧树脂固化剂的毒性问题和 安全操作方法 Toxicity and safe operation of epoxy curing agent

环氧树脂固化剂的毒性问题和安全 操作方法 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 国外科学工作者认为,能源问题和固化剂毒性是环氧树脂应用中不可回避的两个问题。因此,对固化剂毒性的研究十分重视,研究重点放在固化剂毒物学数据的测试上,其中以半致死量LD50 指标为主要目标。所谓半致死量,就是对动物集团(如一群白鼠)50%致死的药品量,用mg/kg的单位来表示。这是表示固化剂的急性毒性数据。另外,还有亚急性试验(需90天始得结果)和慢性毒性实验(需2a始得结果)的数据。 一、固化剂的毒性作用 固化剂的物理、化学性质,对毒性的影响很大。比如固化剂是液态还是固态,其毒性作用并不一样,固态易附在皮肤上,而液态则有蒸气压的存在。一般而言,固化剂的化学活性大,则其生物质

活性也强,易引起毒害,似乎成为规律。固化剂的毒性表现在以下几个方面。1、急性毒性。一般采用LD50 表示。胺类固化剂毒性是比较强的。大多数有机多胺对老鼠呼吸道刺激致死的LD50值约为蒸气浓度1000~12000ug/g,暴露时间4~6h。伯胺、仲胺的刺激性比叔胺强,芳香胺毒性比脂肪胺大。如间苯二胺的毒性比二乙烯三胺毒性强10倍。吡啶、哌嗪能引起肝脏和肾脏的损伤,具有较大的全身毒性。酸酐类固化剂易引起皮炎,而经口毒性比较小。2、对皮肤、黏膜的刺激作用。固化剂的毒害,更为重要的是体现在对皮肤和黏膜的刺激性上。因为胺是有机碱,能溶于水和脂肪,所以也能在皮肤的脂肪中溶解、浸透,引起皮炎。长时间的刺激,易导致泛发性强皮炎症,出现点状红斑,形成水泡,开裂甚至形成片状剥落,以致于组织坏死。由于胺类具有较大的挥发性,其蒸气刺激眼睛可引起结膜炎、流泪和角膜水肿。在高浓度范围或较高浓度下长期接触,也会对呼吸道有明显的刺激作用,会引起气管炎、支气管炎。酸酐类对皮肤的刺激性较弱,但它的粉尘对眼和鼻、喉等呼吸道的黏膜的刺激相当强,可引起支气管炎。3、

环氧树脂的固化原理教学提纲

环氧树脂的固化原理

精品文档 环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物. (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联. 不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物. 1、胺类硬化剂 胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N). 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物. (2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子. 2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物. 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化. 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下: 酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构. 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应. 3、树脂类硬化剂 含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂. (1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间, 收集于网络,如有侵权请联系管理员删除

固化剂

摘要:简述了双组分水性环氧树脂涂料的特点及其用途,分别介绍了水性环氧树脂乳液和水性环氧固化剂的制备方法、双组分水性环氧树脂涂料的分类、混合体系的固化成膜机理和适用期的判断。最后给出了对水性环氧树脂涂料进行配方设计时应考虑的因素。 关键词:水性环氧树脂乳液、水性环氧固化剂、成膜机理、适用期、配方设计 1 概况 水性环氧树脂是指环氧树脂以微粒或液滴的形式分散在以 水为连续相的分散介质中而配得的稳定分散体系[1,2]。由于环氧树脂是线型结构的热固性树脂,所以施工前必须加入水性环氧固化剂,在室温环境下发生化学交联反应,环氧树脂固化后就改变了原来可溶可熔的性质而变成不溶不熔的空间网状结构,显示出优异的性能。水性环氧树脂涂料除了具有溶剂型环氧树脂涂料的诸多优点,如对众多底材具有极高的附着力,固化后的涂膜耐腐蚀性和耐化学药品性能优异,并且涂膜收缩小、硬度高、耐磨性好、电气绝缘性能优异等,还具有不含有机溶剂或挥发性有机化合物含量较低,不会造成空气污染,因而满足当前环境保护的要求;同时以水作为分散介质,价格低廉、无气味、不燃,储存、运输和使用过程中的安全性也大为提高;再次是水性环氧树脂涂料的操作性能好,施工工具可用水直接清洗。水性环氧树脂涂料的突出优势还表现在该混合体系可在室温和潮湿

的环境中固化,有合理的固化时间,并保证有很高的交联密度,这是通常的水性丙烯酸涂料和水性聚氨酯涂料所无法比拟的。 2 水性环氧树脂乳液的制备方法 环氧树脂本身不溶于水,不能直接加水进行乳化,要制备稳定的水性环氧树脂乳液,必须设法在其分子链中引入强亲水链段或者在体系中加入亲水亲油组分。根据制备方法的不同,环氧树脂水性化有以下三种方法:机械法、化学改性法和相反转法。 2.1 机械法 将固体环氧树脂预先磨成微米级的环氧树脂粉末,在加热的条件下加入乳化剂水溶液,通过激烈的机械搅拌即可制得水性环氧树脂乳液[7]。用机械法制备水性环氧树脂乳液的优点是工艺简单,所需乳化剂用量较少,但乳液中环氧树脂分散相微粒尺寸较大,约为50μm 左右,粒子形状不规则且尺寸分布较宽,所配得的乳液稳定性差,粒子之间容易相互碰撞而发生凝结现象,并且该乳液的成膜性能也欠佳。当然提高搅拌分散时的温度可以促进乳化剂分子在环氧树脂微粒表面更为有效地吸附,使得环氧树脂微粒能较为稳定地分散在水相中。 化学改性法是通过对环氧树脂分子进行改性,将离子基团或极性基团引入到环氧树脂分子的非极性链上,使它成为亲水亲油的两亲性聚合物,从而具有表面活性剂的作用,这类改性后的高聚物又称

工程量清单编制方法大全

工程量清单(Bill Of Quantity BOQ )是在19世纪30年代产生的,西方国家把计算工程量、提供工程量清单专业化为业主估价师的职责,所有的投标都要以为主提供的工程量清单为基础,从而使得最后的投标结果具有可比性。 工程量清单报价是建设工程招投标工作中,由招标人按国家统一的工程量计算规 则提供工程数量,由投标人自主报价,并按照经评审低价中标的工程造价计价模式。 工程量清单报价的指导原则是:政府宏观调控、企业自主报价、市场形成价格、 社会全面监督。 工程量清单计价实行的是一种由招标单位出具建设项目的工程量清单,投标企业对照招标企业提供的工程量清单,根据企业的管理组织水平的技术能力,充分考虑市场和风险因素,根据投标竞争策略进行自主报价。投标企业在报价过程中,必须通过对单位工程成本、利润进行分析、统筹考虑、精心选择施工方案,并根据企业定额合理确定人工、材料、机械等要在经济上的投入与配置,优化组合,合理控制现场费用的施工技术措施费用,确定投标价。这就要求投标企业改变过去依赖国家发布的定额状况,提高企业的施工组织管理水平,改善施工技术条件,注重市场信息的搜集和自身信息集累,根据自身条件编制出自己的企业定额。 变过去依赖国家发布的定额状况,提高企业的施工组织管理水平,改善施工技术 条件,注重市场信息的搜集和自身信息集累,根据自身条件编制出自己的企业定额。 工程量清单编制方法: 招标文件应当包括招标项目的技术要求和投标报价要求。工程量清单体现了招标人要求投标人完成的工程项目及相应工程数量,全面反映了投标报价要求,是投标人进行报价的依据,工程量清单应是招标文件不可分割的一部分。工程量清单应反映拟建工程的全部工程内容,并为实现这些工程内容而进行的其他工作。借鉴外国实行工程量清单计价的做法,结合我国当前实际情况,我国的工程量清单由分部分项工程量清单、措施项目清单和其他项目清单组成。 ?分部分项工程量清单的编制

环氧树脂的固化原理

环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物. (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联. 不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物. 1、胺类硬化剂 胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N). 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物. (2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子. 2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物. 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化. 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下: 酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构. 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应. 3、树脂类硬化剂 含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂. (1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间,有熔

混凝土密封固化剂使用方法

混凝土密封固化剂使用说明书 混凝土密封固化剂产品是一种环保健康产品,具有多种类别,下面以德立固双组份混凝土密封固化剂为例: 一、产品特点 1、产品属性:复合型混凝土密封固化剂,双组份。 DS601-A剂为无色至微黄色颗粒,主要成分是活性硅酸盐,复配有机表面活性剂,防水改性剂和自制渗透促进剂。DS601-B剂为无色颗粒,由活性氟硅化合物和固化促进剂,助稳定剂配制而成。 2、产品特点: 混凝土密封固化剂无毒、无味、不燃,符合VOC环保要求。经由独特的配方制造而成,它的专业化学活性物质能够穿透混凝土表面,与游离态的氧化钙等物质发生反应,生成硅酸钙水合物(C-S-H),大幅度提高了混凝土的强度和硬度。这些性质稳定的硅酸钙化合物填充着混凝土中的毛细孔,大大增加了混凝土的抗化学腐蚀能力,达到了密封和防尘的作用。 3、适用范围: 适用范围全面,凡有耐磨、无尘、增加强度、抗渗、耐用、易清洁要求的混凝土类地坪都可使用。

二、使用方法 1、施工方式: a.将混凝土密封固化剂A剂按照1:(4~5)于水进行稀释,然后将材料均匀地面喷涂或者滚涂在混凝土地面上,充分浸泡4h,并在浸泡的过程中保持地面湿润,同时用机械拖动材料。 b.将混凝土密封固化剂B剂直接涂刷在混凝土地面上,浸泡4h,材料渗透后直接进行打磨即可。 2、施工特点: a.新地面:施工结束后用水养护7-14天以上才可进行硬化地坪施工。 b.旧地面:任何时间都可以,但需要清洗晾干或表面用机器打磨过后使用。 三、施工工艺 1、清洁地面:使用专业推尘工具或洗地车将地面的垃圾、浮灰清洁干净。 2、局部修补:对于破损处配合地坪修补剂进行局部修补。 3、粗磨地面:混凝土金属磨片30#50#120#配地坪研磨机对混凝土地面进行粗磨。根据地坪基础状况决定金属磨片起磨号数,目的是把混凝土地坪研磨平整。

环氧树脂固化剂特点和反应机理

环氧树脂有机酸酐固化剂特点和反应机理 有机酸酐类固化剂,也属于加成聚合型固化剂。早在1936年,瑞士的Dr.pierre Castan 就开始用邻苯二甲酸酐固化的环氧树脂作假牙的材料。这一用法后来还在英国和美国申请了专利。酸酐类用作固化剂在1943年美国就有专利报导。 酸酐类固化剂用于大型浇铸等重电部门,至今仍是这类固化剂应用的主要方向。日本这类固化剂消费量每年在3 kt以上,约占环氧树脂固化剂全部用量的23%,仅次于有机多胺的用量。在我国,以邻苯二甲酸酐为固化剂的环氧树脂浇铸、以桐油酸酐为固化剂的环氧树脂电机绝缘,都有20多年的应用历史。近年来,随着电气、电子工业的发展,酸酐类固化剂在中、小型电器方面也获得广泛的应用,特别是弱电方面,也获得了充分重视,如集成电路的包封、电容器的包封等。在涂料方面,如粉末涂料,这类固化剂也受到重视。 酸酐类固化剂与多元胺类固化剂相比,有许多优点。从操作工艺性上看,主要有以下几点:一是挥发性小,毒性低,对皮肤的刺激性小;二是对环氧树脂的配合量大,与环氧树脂混熔后粘度低,可以加入较多的填料以改性,有利于降低成本;三是使用期长,操作方便。从固化物的性质上看,它主要特征有:一是由于固化反应较慢,收缩率较小;二是有较高的热变形温度,耐热性能优良,固化物色泽浅;三是机械、电性能优良。 但是,酸酐类固化剂所需的固化温度相对比较高,固化周期也比较长;不容易改性;在贮存时容易吸湿生成游离酸而造成不良影响(固化速度慢、固化物性能下降);固化产物的耐碱、耐溶剂性能相对要差一些,等等,则是这类固化剂的不足之处。 在已知的酸酐化合物中,多数正在被广泛用作环氧树脂固化剂,大约有20余种,可以分为单一型、混合型、共熔混合型。从化学结构上分,则可分为直链型、脂环型、芳香型、卤代酸酐型;如按官能团分类,又有单官能团型、两官能团型,两官能团以上的多官能团型无实用价值。和多胺类固化剂的情况相类似,官能团的数量也直接影响固化物的耐热性;另外,也可按游离酸的存在与否分类,因为游离酸的存在对固化反应起着促进作用。 这一类固化反应以有无促进剂的存在分成两种形式—— 一、在无促进剂存在时,首先环氧树脂中的羟基与酸酐反应,打开酸酐,然后进行加成聚合反应,其顺序如下:(1)羟基对酸酐反应,生成酯键和羧酸;(2)羧酸对环氧基加成,生成羟基;(3)生成的羟基与其他酐基继续反应。这个反应过程反复进行,生成体型聚合物。另外,在此种体系中,由于处于酸性状态,与上述反应平行进行的反应是别的环氧基与羟基的反应,生成醚键。从上述机理中可以看出,固化物中含有醚键和酯键两种结构,而且反应速度受环氧基浓度、羟基浓度的支配。 二、在促进剂存在的条件下,酸酐固化反应用路易斯碱促进。促进剂(一般采用叔胺)对酸酐的进攻引发反应开始,其主要反应有:(1)促进剂进攻酸酐,生成羧酸盐阴离子;(2)羧酸盐阴离子和环氧基反应,生成氧阴离子;(3)氧阴离子与别的酸酐进行反应,再次生成羧酸盐阴离子。这样,酸酐与环氧基交互反应,逐步进行加成聚合。在促进剂路易斯碱存在的条件下,生成的键全是酯键,未发现如同无促进剂存在时所生成的醚键。 在促进剂存在时,环氧树脂的固化速度也受体系内羟基浓度的支配。因此,添加促进剂对液态环氧树脂非常有效,120~150℃即能完成固化反应。但对于固态环氧树脂,则要充分注意适用期非常短的问题。在促进剂不存在时,从理论上讲,应当一个环氧基对一个酸酐,而实际上仅用化学理论量的80%~90%就足够了。在促进剂存在时,酸酐用量为化学理论量。

环氧树脂及固化剂用法

环氧树脂的用途 环氧树脂一般和添加物同时使用,以获得应用价值。添加物可按不同用途加以选择,常用添加物有以下几类:(1)固化剂;(2)改性剂;(3)填料;(4)稀释剂;(5)其它。 其中固化剂是必不可少的添加物,无论是作粘接剂、涂料、浇注料都需添加固化剂,否则环氧树脂不能固化。 由于用途性能要求各不相同,对环氧树脂及固化剂、改性剂、填料、稀释剂等添加物也有不同的要求。现将它们的选择方法简介于下: (一)环氧树脂的选择 1、从用途上选择 作粘接剂时最好选用中等环氧值(0.25-0.45)的树脂,如6101、634;作浇注料时最好选用高环氧值(>0.40)的树脂,如618、6101;作涂料用的一般选用低环氧值(<0.25)的树脂,如601、604、607、609等。 2、从机械强度上选择 环氧值过高的树脂强度较大,但较脆;环氧值中等的高低温度时强度均好;环氧值低的则高温时强度差些。因为强度和交联度的大小有关,环氧值高固化后交联度也高,环氧值低固化后交联度也低,故引起强度上的差异。 3、从操作要求上选择 不需耐高温,对强度要求不大,希望环氧树脂能快干,不易流失,可选择环氧值较低的树脂;如希望渗透性也,强度较好的,可选用环氧值较高的树脂。 (二)、固化剂的选择 1、固化剂种类: 常用环氧树脂固化剂有脂肪胺、脂环胺、芳香胺、聚酰胺、酸酐、树脂类、叔胺,另外在光引发剂的作用下紫外线或光也能使环氧树脂固化。常温或低温固化一般选用胺类固化剂,加温固化则常用酸酐、芳香类固化剂。 2、固化剂的用量

(1)胺类作交联剂时按下式计算: 胺类用量=MG/Hn 式中: M=胺分子量 Hn=含活泼氢数目 G=环氧值(每100克环氧树脂中所含的环氧当量数) 改变的范围不多于10-20%,若用过量的胺固化时,会使树脂变脆。若用量过少则固化不完善。(2)用酸酐类时按下式计算: 酸酐用量=MG(0.6~1)/100式中: M=酸酐分子量 G=环氧值(0.6~1)为实验系数 3、选择固化剂的原则:固化剂对环氧树脂的性能影响较大,一般按下列几点选择。 (1)、从性能要求上选择:有的要求耐高温,有的要求柔性好,有的要求耐腐蚀性好,则根据不同要求选用适当的固化剂。 (2)、从固化方法上选择:有的制品不能加热,则不能选用热固化的固化剂。 (3)、从适用期上选择:所谓适用期,就是指环氧树脂加入固化剂时起至不能使用时止的时间。要适用期长的,一般选用酸酐类或潜伏性固化剂。 (4)、从安全上选择:一般要求毒性小的为好,便于安全生产。 (5)、从成本上选择。 (三)、改性剂的选择 改性剂的作用是为了改善环氧树脂的鞣性、抗剪、抗弯、抗冲、提高绝缘性能等。常用改性剂有: (1)、聚硫橡胶:可提高冲击强度和抗剥性能。 (2)、聚酰胺树脂:可改善脆性,提高粘接能力。 (3)、聚乙烯醇叔丁醛:提高抗冲击鞣性。 (4)、丁腈橡胶类:提高抗冲击鞣性。

污泥固化剂说明及效果

SV-SSC污泥固化剂说明书 (适应土壤污泥泥浆油泥岩屑淤泥) 一、产品特性 1. 固化时间短,成型快 ①可以使含水率80%左右的污泥在添加后迅速失去流动性,晾晒时加速水份蒸发,加快干化脱水速度。 ②加入后自然晾晒即可加速失水速度,不使用干化设备即可达到要求,如使用设备干化时加入少量干化剂则可大大加快处理速度,减少热量消耗。 ③添加后污泥胶体性质即刻被破坏,毛细管迅速建立并增加、扩散,使污泥内部水份向外扩散挥发通道打开,利于污泥的迅速干化。 4、干化速度受天气影响较大,在干燥、低湿度、高温情况下脱水干化速度加快,反之需要时间加长。 5、无机非金属类专用固化剂,对相应材质有普适性。 2. 成本低廉,添加量少:根据含水量进行添加,一般为污泥量的0.5—3%。 3. 重金属稳定性好:使用本品(掺入一定比例的水泥或石灰)固化泥浆、岩屑和污泥等,不但干化速度加快,强度增加,另外会大幅稳定重金属,可使其由游离状态的重金属沉淀封裹,达到长期稳定重金属在一定条件下不再返溶的效果。 对于重金属含量很高的极端情况下,本公司会调整配方进行二次稳定,相关重金属危害情况可以完全解决。 4. 抗压强度高 ①具有一定的酸度,与石灰配合使用或在需要时添加少许水泥效果更佳。根据不同土质情况添加水泥、石灰后,抗压强度迅速提高。如果进行压砖,其抗压

强度可以达到16Mpa以上(注:国标GB50003-2001《砌体结构设计规范》中规定:强度10Mpa的红砖可以建造5层及5层以上的楼房)。 ②固废强度远超国家标准。产品本身也是一种专业的粘土、无机非金属类固化剂,添加后在加速水份挥发的同时能增加污泥整体强度。可单独使用,也可与石灰、水泥类混合使用。对于坑式直接固化是一种非常好的选择。 5. 普适性:对污泥具有普适性,固化后的污(淤)泥防水性很好。 6. 污泥固化筑路:本产品不但可以用于污泥固化,还可以将固化后的污泥直接筑路,添加少许石灰、水泥后经传统筑路方法使用压路机压制后其路面强度很高。 7、添加顺序:以先加固化剂优先,水泥、石灰添加顺序根据土质进行调整,砂质土先加水泥后加石灰,泥质土先加石灰后加水泥。 二、理化指标 项目技术指标 外观白色或浅绿色晶体颗粒 pH(1%) 3.0-6.5 溶解度易溶 三、使用方法 ①不要求固化强度: A、含水量90%左右: 加入量为污泥量的0.5—3%,搅拌均匀(污泥量较大的情况可以采用挖掘机进行搅拌),先进行破胶,使泥水进行初步分离;后根据具体需要,采取自然晾晒风干或将上层液体抽出的方式进行处理;固相经处理后会形成疏松多孔结构。

工程量清单编制说明模板格式

第五章 工程量清单 工程量清单 1.工程量清单说明 1.1本工程量清单是根据招标文件中包括的、有合同约束力的图纸以及有关工程量清单的国家标准、行业标准、合同条款中约定的工程量计算规则编制。约定计量规则中没有的子目,其工程量按照有合同约束力的图纸所标示尺寸的理论净量计算。计量采用中华人民共和国法定计量单位。 1.2本工程量清单应与招标文件中的投标人须知、通用合同条款、专用合同条款、技术规范及图纸等一起阅读和理解。 1.3本工程量清单中所列工程数量是估算的或设计的预计数量,仅作为投标报价的共同基础,不能作为最终结算与支付的依据。实际支付应按实际完成的工程量,由承包人按技术规范规定的计量方法,以监理人认可的尺寸、断面计量,按本工程量清单的单价和总额价计算支付金额;或者,根据具体情况,按合同条款第15.4款的规定,由监理人确定的单价或总额价计算支付额, 1.4工程量清单各章是按第七章“技术规范”的相应章次编号的,因此,工程量清单中各章的工程子目的范围与计量等应与“技术规范”相应章节的范围、计量与支付条款结合起来理解或解释。 1.5对作业和材料的—般说明或规定,未重复写入工程量清单内,在给工程量清单各子目标价前,应参阅第七章“技术规范”的有关内容。 1.6工程量清单中所列工程量的变动,丝毫不会降低或影响合同条款的效力,也不免除承包人按规定的标准进行施工和修复缺陷的责任。 1.7图纸中所列的工程数量表及数量汇总表仅是提供资料,不是工程量清单的外延。当图纸与工程量清单所列数量不一致时,以工程量清单所列数量作为报价的依据。 2.投标报价说明 2.1工程量清单中的每一子目须填入单价或价格,且只允许有一个报价。 2.2除非合同另有规定,工程量清单中有标价的单价和总额价均已包括了为实施和完成合同工程所需的劳务、材料、机械、质检(自检)、安装、缺陷修复、管理、保险、税费、利润等费用,以及合同明示或暗示的所有责任、义务和一般风险。 2.3工程量清单中投标人没有填入单价或价格的子目,其费用视为己分摊在工程量清单中其他相关子目的单价或价格之中。承包人必须按监理人指令完成工程量清单中未填入单价或价格的子目,但不能得到结算与支付。 2.4符合合同条款规定的全部费用应认为已被计入有标价的工程量清单所列各子目之中,未列子目不予计量的工作,其费用应视为已分摊在本合同工程的有关子目的单价或总额价之中。

常用热处理方法

一、退火 将钢件加热到临界温度以上(不同钢号它的临界温度也不同,一般是 710-750℃,个别合金钢到800或900℃),在此温度停留一段时间,然后缓慢冷却的过程叫做退火 退火的目的是: 1、降低硬度,便于切削加工; 2、细化晶粒,均匀组织,以改善钢件毛坯的机械性能,或者为下一步淬火 做好准备; 3、消除内应力 二、正火 将钢件加热到临界温度以上,在此温度停留一段时间,然后放在空气中冷却的过程称为正火。 正火的冷却速度比退火快,加热和保温时间与退火一样。 正火的目的是使低碳和中碳钢件及渗碳机件的组织细化,增加强度与韧性,减少内应力,改善切削性能。 正火实质上是退火的一种特殊形式具有与退火相似的目的所不同的是冷却 速度比退火快,可以缩短生产周期,比较经济。 三、淬火 将钢件加热到临界点以上,保温一段时间,然后在水、盐水或油中(个别材料在空气中)急速冷却的过程叫做淬火。 淬火的目的是提高钢件的硬度和强度。对于工具刚来说,淬火的主要目的是提高它的硬度,以保证刀具的切削性能和冲模工具及量具的耐磨性。对于中碳钢制造的机件来说,淬火是为以后的回火做好结构和性能上的准备,因为高强度和高韧性并不能在淬火后同时得到,而是在回火处理后才得到的。 有很多零件如齿轮、曲轴等,他们在工作时一方面要受磨,另一方面又要受到冲击作用,因此要求零件表面有很高的硬度,而中心有较好的韧性。这时可以利用表面淬火的方法来达到上述要求。 表面淬火是应用将工件的表面迅速加热到淬火温度(这时金属内部的温度仍比较低),随后立即用水喷到工件表面上,进行急速冷却。这样就能获得表面硬、中心韧的要求。 表面加热时,可用氧炔焰、高频电流或中频电流加热。 四、回火 将淬硬的钢件加热到临界点以下的温度,保温一段时间,然后在空气中或油中冷却下来的过程叫做回火。 回火的目的是消除淬火后的脆性和内应力,调整组织,提高钢件的塑性和冲击韧性。对于工具来说,是为了尽可能减少脆性保留硬度。对于零件来说是为了提高韧性,但不可避免的会使硬度降低。 五、调质 淬火后高温回火,叫做调质。 调质的目的是使钢件获得很高的韧性和足够的强度,使其具有良好的综合机械性能。很多重要零件如主轴、丝杠、齿轮等都是经过调质处理的。 调质一般是在零件机械加工后进行的,也可把锻坯或经过粗加工的光坯调质后再进行机械加工。 六、时效

土壤固化剂使用教程

土壤固化剂使用教程 --以土固精为例 一、原材料的试验 1.对于固化土混合料应用细粒土,应取代表性的试样,进行下列试验: (1)颗粒分析(2)液限和塑性指数(3)击实试验 2.对于水泥,应检验其标号和初、终凝时间及安定性的检测。 3.对于石灰,应检验其有效钙和氧化镁含量。 二、混合料的设计步骤 1.固化土混合料可按下列比例进行配制。 (1)做路面基层用 a水泥类固化土:水泥剂量为6-8%,固化剂用量为0.012-0.018%; b石灰类固化土:水泥剂量为4%,固化剂用量为0.012%-0.015% (2)做路面底基层用 a水泥类固化土:水泥剂量为4-6%,固化剂用量为0.012-0.018%; b石灰类固化土:水泥剂量为4%,固化剂用量为0.012%-0.015% 2.按规定的压实度,分别计算不同剂量的试件应有的干密度。 3.按最佳含水量和计算得出的干密度制备试件。进行强度试验时,作为平行试验的最少试件数量应不小于6个,偏差系数小于10%。若偏差系数不符合规定,则应重做试验,并找出原因,加以解决。如不能降低偏差系数,则应增加试件数量。 4.试件在规定温度下封闭养生6d,浸水24h后,按《公路工程无机结合料稳定材料试验规程》(JTJ057-94)进行无侧限抗压强度试验。 5.计算试验结果的平均值和偏差系数。 6.根据表a、表b的强度标准,选定合适的胶结材料和固化剂剂量。此剂量试件室内试验结果的平均抗压强度R应符合公式要求: R≥Rd/(1-ZaCv) 式中:Rd——设计抗压强度(表a、表b) Cv——试验结果的偏差系数(以小数计) Za——标准正态分布表中随保证率(或置信度α)而变的系数,高速公路和一级公路应取保证率95%,即Za=1.645;其它公路应取保证率90%,即Za=1.282。 7.施工实际采用的土固精溶液剂量应比室内试验确定的剂量略高。

相关文档
相关文档 最新文档