文档库 最新最全的文档下载
当前位置:文档库 › 24G和10.525微波多普勒电路图

24G和10.525微波多普勒电路图

6、多普勒天气雷达原理与应用

第六部分多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为: 其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z值与雨强I有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模

微波炉原理及维修(含电路图)

格兰仕微波炉的结构特点及原理常见故障及故障检修 微波炉作为现代厨房电器的新宠,越来越普及地走进干家万户。微波炉以其加热速度快,省电且无污染等特点,确实给人们的生活带来方便。目前市场上微波产品很多,但格兰仕微波炉一直是一枝独秀。 一、格兰仕微波炉型号的识别 二、微波炉结构特点和工作原理 微波炉主要由炉腔、炉门和控制电路等几部分组成。 3.控制电路:控制电路如图1所示,又分为低压电路,控制电路和高压电路三部分。 高压变压器次级绕组之后的电路为高压电路,主要包括:磁控管、高压电容器c、高压变压器T、高压二极管D。磁控管是微波炉的心脏,微波能就是由它产生并发射出来的。它的工作需要很高的脉动直流阳极电压和约3~4V的灯丝电压。由高压变压器及高压电容器、高压二极管构成的倍压整流电路为磁控管提供了满足上述要求的工作电压。 高压变压器初级绕组之前至微波炉电源入口之间的电路为低压,电路(也包括了控制电路)主要包括:保险管Fu、热断路器保护开关sw6、sw7、联锁开关swl~sw3、照明灯、定时器及功率分配器开关sw4、sw5、转盘电机M3和风扇电机M2等。 转盘电机与风扇电机为同步电机,即微波炉工作时转盘电机转动并带动玻璃转盘,风扇电机也同步转动,对磁控管及其它主要部件进行冷却。 三、并非微波炉故障的判别 对于微波炉在使用过程中出现的一些现象,有的用户因为对微波炉不太了解,常容易误认为微波炉出了故障。 1.跳闸 微波炉整机的功耗大,整个启动过程要比一般家电时间长,所以启动时的耗电为微波炉输入功率的5~6倍。微波炉的启动电流高时可达7A,工作电流在5A左右。而有的家庭配备的保护闸容量有限或敏感度过高,常因微波炉启动时的电流冲击而出现跳闸,因此最好应配备l0A以上的保护闸。另外,在使用微波炉加热食品时,最好不要同时打开电饭锅之类的大功率用电器具。 2.感觉声音大 微波炉工作时的声音主要来自风扇,而风痢转速的高低和声音的大小成正比。格兰仕微波炉采用高转速风扇电机,以提高对主机的冷却效果,延长磁控管及主机的使用寿命。由此可见,工作时只要声音平稳,没有杂音就是正常的。 3.机械式程控器微波炉工作时有间断的响声 微波炉的火力调整是通过继电器的间断工作来控制的,使磁控管有规则的间断工作,从而达到减小火力的目的。高火则是连续地产生高压,所以微波炉在高火以上的火力位置工作时,会出现有规律的声响,这也是一种正常现象。 4.微波炉工作时有漏风、漏光 根据微波具有的直线性和遇金属的折返性以及在均匀缝隙和均匀网孔的屏蔽特点,在微波炉生产过程中,门和腔体的结全缝隙,并不是控制得越小越好,而只要间隙在规定围,门四周的缝隙越均匀越好。这能使微波在腔体得到绝对的屏蔽。鉴于以上因素,由于冷却风扇的风压,有少量的风和光从结构缝中泄出是完全正常的。 四、常见故障的排除。 1.启动“三无”(无灯亮、无声音、无微波发射) 这一种现象往往是由多种原因造成的。首先检查电源插头与插座是否接触不良,如不是电源问题则检查下列几项容。(1)8A保险丝是否熔断,如是则调换新保险丝;(2)监控开关断不开,造成短路;(3)联锁开关未闭合或门钩断损而不能接触到联锁开关;(4)变压器初、次级

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

图解微波炉工作原理

微波炉工作原理 普通的微波炉能将电源插座输出的220V电压提升到3,000V以上,在一两分钟内安全地烹饪好食物。而且,我们还能通过透明的炉门观看食物烹饪过程。 微波炉的关键部件是磁控管(magnetron)。这个名字听起来像是某部科幻电影中的军事装备——这种先进真空管所产生的微波确实威力巨大,足够用于军用雷达(这也是研制磁控管的最初目的)。 微波炉不是用火焰或线圈产生的热量从外部加热食物,而是让微波穿透食物,水分子存在于大多数食物中。水分子的“两端”分别带有正电荷和负电荷。电场会使水分子的正电荷端指向同一个方向。微波电场的正、负极方向每秒钟转换49亿次,水分子也不停地随之转换方向。随着水分子不断转向,彼此发生碰撞,相互摩擦进而产生热量。陶瓷和玻璃容器中不含水分,因而不会发热,但变热的食物会通过热传导使它们变热。 变压器、二极管和电容器将民用电从220V提升到3,000V以上,通过导线将高压电送往磁控管。磁控管产生微波,微波由天线送出,经由波导管(waveguide)进入炉腔,炉腔的金

属腔壁不断反射微波。旋转的玻璃托盘会让食物均匀受热。一些型号的微波炉中没有玻璃托盘,但波导管端部有一个旋转小叶片,它能将微波完全散布开。 高压电被传送到阴极灯丝。灯丝变热后便会发射出电子,这些电子被外围带正电的阳极板吸引。一些大磁铁块施加的磁场使向外流动的电子云旋转。在旋转的过程中,电子云形成轮辐

状,从阳极板之间的每一个空腔中穿过。移动着的电子云“轮辐”将负电荷传递给空腔,此后负电荷又会在下一个“轮辐”到达之前流出空腔。负电荷的反复增减在空腔内产生出2.45千兆赫兹的振荡电磁场。磁控管上的天线以这一频率发生谐振,从其顶部尖端发射出微波——这和无线电传输天线的原理几乎一模一样。 微波炉正是利用微波的这些特性制作的。微波炉的外壳用不锈钢等金属材料制成,可以阻挡微波从炉内逃出,以免影响人们的身体健康。装食物的容器则用绝缘材料制成。微波炉的心脏是磁控管。这个叫磁控管的电子管是个微波发生器,它能产生每秒钟振动频率为24.5亿次的微波。这种肉眼看不见的微波,能穿透食物达5cm深,并使食物中的水分子也随之运动,剧烈的运动产生了大量的热能,于是食物"煮"熟了。这就是微波炉加热的原理。用普通炉灶煮食物时,热量总是从食物外部逐渐进入食物内部的。而用微波炉烹饪,热量则是直接深入食物内部,所以烹饪速度比其它炉灶快4至10倍,热效率高达80%以上。目前,其他各种炉灶的热效率无法与它相比。

脉冲多普勒雷达

脉冲多普勒雷达(pulse Doppler Radar) 学习笔记 1:PD雷达简介 PD雷达的广泛定义应为:能实现对雷达信号脉冲串频谱单根谱线滤波(频域滤波),具有对目标进行速度分辨能力的雷达 PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。通常工作在一组较高的脉冲频率上,并采用主振放大链型的信号源和距离门窄带滤波器链的信号处理器. 它具有较高的速度分辨能力,从而可以更有效的解决抑制极强的地杂波干扰的问题。 PD 雷达有多种工作模式,下图给出了PD雷达的各种工作模式。 它们各具特点,分别适用不同的环境。低重PD雷达测距不会产生模糊,旁瓣杂波电平较低,但测速模糊。高重PD雷达与之相反,测距产生模糊,旁瓣杂波由于距离重叠效应,电平比较高,但测速是清晰的。中重PD雷达的距离和多普勒频移都产生模糊,通过辅助方法可以解测距和测速模糊。 1:测速原理 雷达对目标速度的测量主要利用电磁波照射在运动目标上时产生的多普勒效应来进行。对雷达而言,当雷达与目标之间存在相对运动时,多普勒效应体现在回波信号的频率与发射信号的频率不相等。雷达发射电磁波信号后,当遇到一个向着雷达运动的目标时,由于多普勒效应,雷达接收到从这个目标返回的电磁波信号的频率将高于雷达的发射频率。而当雷达发射的电磁波遇到一个在远离雷达方向运动的目标时,则雷达收到的是低于雷达发射频率的电磁波信号。多普勒雷达正是利用两者频率之间的差值,即多普勒频移df来实现对目标速度的测量。 2:距离模糊产生原因 雷达的最大单值测距范围由其脉冲重复周期T r(PRT)决定。为保证单值测距, 通常应R max 选取T R>2 C

R max为被测目标的最大作用距离。 有时雷达重复频率的选择不能满足单值测距的要求, 例如在脉冲多普勒雷达或远程雷达, 这时目标回波对应的距离R为 R=c (m×T r+t r) 式中,t r为测得的回波信号与发射脉冲间的时延。这时将产生测距模糊, 为了得到目标的真实距离R, 必须判明式(2.1.7)中的模糊值m。 2:

格兰仕WD800B微波炉的基本电路分析

南通纺织职业技术学院 格兰仕WD800B微波炉的基本电路分析 摘要本文主要从微波炉的基本电路入手,简单介绍了其结构组成和各部分的功能,对其进行了一系列的分析并简单的介绍了其以后的发展趋势。关键词微波 TMP47C415 TM73S41 一、概述 微波炉,俗称微波灶,是继电冰箱,洗衣机之后,又一种深受人们欢迎的家用电器产品。 微波技术与微电子学均问世于上世纪的30年代,最初是作为信息传输手段在通信领域中运用,二次世界大战期间出现了雷达,战争促进了微波器件与微波技术的应用。1945年美国的Raytheon Co.LTD的斯彭塞在调试雷达后发现他口袋里的巧克力融化了,在解释这种现象的过程中,人们认识到这是微波的作用。斯彭塞又作了一系列加热食品的试验,并申请了微波加热食品的专利。1952年该公司根据这个原理制成了雷达炉,这就是微波炉的前身。 1955年美国的塔潘公司研制成功了低价(1200美圆)微波炉并批量生产500台,首次投放市场,开始把微波炉引入家庭。但当时的微波炉功能单一,性能欠佳,特别是加热不均,寿命较短,微波泄露大,只能蒸煮,不能烘烤。加之不能被家庭认识等原因,暂时掩盖了它的优点,当年只售了一万台左右。1955年西欧也研制成功。1959年,日本从美国引进了微波炉。1961年,日本东芝公司研制并生产出微波炉。60年代末,日本各大电气公司加快研制速度,东芝,松下,夏普等公司的产品开始打入美国市场,大大刺激了美国微波炉的发展。从70年代起,由于微波炉设计制造技术提高,改进了食品烹饪工艺,解决了辐射问题,而且操作方便。功能多及降价问题的解决,使微波炉受到欢迎。随着产品性能日益完善,功能扩大,尤其是微波炉方便食品和微波炉专用塑料,陶瓷,玻璃容器的开发以及对

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、适用范围 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、PD雷达的定义及其特征 (1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF很高,通常对所观测的目标产生距离模糊。 3、PD雷达的分类 图1 PD雷达的分类图 ①MTI雷达(低PRF):测距清晰,测速模糊 ②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③PD雷达(高PRF):测距模糊,测速清晰 4、机载下视PD雷达的杂波谱分析 机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 、PRF 的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方

法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。 6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线; 避免了后面信号处理过程中可能产生的频谱折叠效应; 距离选通波门必须设在单边带滤波器之前; 要求带外抑制至少要大于60dB; 实现方法:采用石英晶体滤波器 (2)主瓣杂波抑制滤波器 特点:比目标回波能量要高出60-80dB; 主瓣杂波抑制滤波器的幅一频特性应是主瓣杂波频谱包络的倒数; 相当于一个白化滤波器,经过主瓣杂波抑制之后,后面的多普勒滤波器可以 按照白噪声中的匹配滤波理论来进行设计; 实现方法:首先确定它的频率,用一个混频器先消除变化的,就可以用一个固定频率的滤波器将其滤除. 确定主瓣杂波中心频率有两种方法:一种方法是利用频率跟踪; 另一种是由天线指向和载机飞行速度计算出主瓣杂波应有的多普勒频移,直接控制压 控振荡器去产生的振荡濒率。 (3)零多普勒频率抑制滤波器 特点:用于高度杂波的滤除; 同时抑制发射机直接进人到接收机的泄漏; 实现方法:①只需断开滤波器组中落人高度杂波区的那些子滤波器的输出; ②使用可防止检测高度线杂波专用的CFAR电路; ③使用航迹消隐器除去最后输出的高度线杂波。 (4)多普勒滤波器组 特点:是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器; 起到了实现速度分辨和精确测量的作用; 可以设在中频,也可以设在视频;

格兰仕微波炉控制电路分析

本文以格兰仕750BS微波炉为例,分析控制电路工作原理及简单故障的排 除方法。 一、工作原理 图1是接线电路原理图。220交流电经高压变压器TH变换,在次级获得3.4V灯丝电压和1.8kV的高压。3.4V灯丝电压直接加至磁控管V的灯丝(阴极),1.8kV高压经R、c、D等组件作倍压整流过后,升成约4kV的直流高压加至磁控管阳极,磁控管向炉内发射2450MHz的微波。 二、控制原理 关闭炉门后,sl闭合S3从AC点转换到AB点,s2闭合接地(见图2控制电路原理图),Q3因b极变为低电位而正偏导通,+5V经Q3的e、c极,R7、R8分压加至CPU(TMP47C400BN-RH31)13脚,cPu检测到闭门信号后,处于等待工作指令状态。 当需要微波工作时,通过键盘控制使cPu 15脚由高阻状态(高电平)变为低阻状态(低电平),Q4的b极由高电位变为低电位而正偏导通;与此同时,cPu 14脚也输出一脉冲信号,经D11整流,R23、R20分压加至Q13的b极,触发Q13导通,Q13导通又使Q14正偏导通,+14V电压经R11、R18分压后从Q14的e、c加至Q13的b极,这一结果又使Q13进一步导通,也即Q13、Q14与CPU 16脚共同构成锁定状态。由于Q14的导通,也使Q6的b极由高电位变为低电位而正偏导通;此时,电流经继电器J2,R42,Q4的e、c极,Q6的e、c极,D10、s2到地,J2吸合,也即RY2触点接通,变压器TH通电工作。 当需要烧烤时,15脚恢复高电平,停止微波工作部分;cPu的12脚输出低电平,控制Q5导通,J3吸合也即RY3接通,220V交流电直接加至石英发热管进行加热。 同时,在微波炉进入工作状态时,cPu②脚会自动输出一低电平信号给Q7,使Q7导通,继电器J1吸合,RY1接通,使炉灯点亮,转盘、风扇电机同时转动。 三、故障检修 [故障1]微波炉不工作,无任何显示。 检修:打开机盖,发现6A保险管已烧断发黑。测变压器初级绕组约2Ω,次级高压绕组为103.5Ω,灯丝绕组约0.8Ω,均正常。换上新保险管,通电后炉灯亮,关闭炉门,一拨到微波工作便烧保险管,而烧烤正常。检查原因是D1击穿,换上同型号非对称整流器后工作正常。 小结:在微波炉正常工作时,次级输出1.8kV交流高压,在正半周,高压线圈“f”端将向电容器C充电,在负半周时,变压器高压绕组电压与电容两端的电压叠加后(约4kV)共同加至磁控管。由于D1击穿短路,使电流直接经D2入地,磁控管因无高压而不工作,同时因过流而烧毁保险管。 [故障2]拨到微波挡后。炉灯亮,转盘、风扇正常运转,但不加热(无微波发出)。不一会儿机内冒烟。 检修:拆机观察变压器漆包线因温度过高而冒烟。断开高压,测各绕组及R、C、D等均正常,在将电容器放电时,发现并无充电高压火花,怀疑磁控管损坏,换上新磁控管后,工作正常。 小结:由磁控管过载运行(炉内食物过少)损坏而工作异常的概率远大于变压器自身损坏的情况。

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、 适用范围 脉冲多普勒(PD )雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、 PD 雷达的定义及其特征 (1) 定义:PD 雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2) 特征:①具有足够高的脉冲重复频率(简称PRF ),以致不论杂波或所观 测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF 很高,通常对所观测的目标产生距离模糊。 3、 PD 雷达的分类 图1 PD 雷达的分类图 ① MTI 雷达(低PRF ):测距清晰,测速模糊 ② PD 雷达(中PRF ):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③ PD 雷达(高PRF ):测距模糊,测速清晰 4、 机载下视PD 雷达的杂波谱分析 机载下视PD 雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 表 1

5、PRF的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线;

脉冲多普勒雷达测速仿真

任务书 雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。 如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。 本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。

摘要 脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。 本文介绍了脉冲多普勒雷达测速的原理,信号处理。并用matlab简单的仿真了雷达系统对信号的处理. 关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频 Abstact Pulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively.soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution. This article sinply introduced principle of pulse Doppler radar and signal

微波炉的电路原理图

微波炉的电路原理图 这副微波炉电路原理图可以说是微波炉的核心 电路。对分析,维修微波炉至关重要。 具体元器件功能作用分析: F1 保险微波炉常用规格是8A。外形大 号。限制整机电流。比较特别的是当S1、S2,损坏,短接。S3 接通。烧断保险。防止微波炉未关闭炉门时候工作。 ST 热保护器。温度保护。一般安装在磁控管外壳上面。监控磁控管温度,防止温度过高损坏磁控管。 S4 定时器开关。在功率控制总成内。整个微波炉是否工作的总电源开关。有电路图分析可知道。炉灯是好的,旋动定时器。灯必须亮。否则功率控制定时器总成坏。

S1、S2 门锁监控开关。防止微波炉泄漏。当炉门关闭不严,有异物卡住的时候。微波部分不工作。 S3 连锁监控开关。当S1、S2,损坏,短接。S3 接通。烧断保险。防止微波炉未关闭炉门时候工作。 S4、S5 功率控制器内部两个独立开关。单独受控。在功率控制时,串联工作。 M1 火力力调节电机。M1、S4、S5 组成了功率控制总成。在元器件实物中,还有一个档位调节控制一起组成一个整体,通过M1、220v电压工作电机带动齿轮轮,通过凸轮控制S4、S5的通断。 M2 转盘电机, M3 风扇电机。由电路图可知,他们和大功率变压器初级L1 并联。也就是说他们和磁控管供电同时通断。同时工作,和停止。 L1 、L2、L3 组成了大功率升压变压器。L1大功率变压器初级接220V 交流。L2大功率变压器次级输出2000V左右交流高压。其一端接变压器铁芯,也就是外壳,一端单独接高压电容一端。L3 大功率变压器另外一组次级。输出4V左右的交流电压。给磁控管阴极灯丝供电。 C 高压电容。规格是1uf (有的0.91uf)耐压 2100V 交流。内部并联了一个10M欧姆的电阻。留意这样用万用表测量电容两端阻止时候,不是无穷大。而是10M欧姆。 VD 高压二级管。一端通过螺丝接微波炉金属外壳。一端通过插头接电容一端。 微波炉用高压二极管好坏的判断:微波炉用高压二极管工作环境:2000V交流工作环境。4000V反向耐压。普通万用表测量:正反向都不通,可能正常。正反向一方通了,一般会同时接通。确定坏。为啥这么说,高反压的二极管,正向用MF47 D500 指针表,DT9205 等内部电池电压额定9V. 就是正向也不可能导通。更不用说DT830 简易万用表,内部3V电池供电电压。初步判断:可以串接普通白织灯泡。在市电220V的电路 里面。亮度减半是好。不亮或者亮度和没有串接二级管之前一样——坏。 MAG 磁控管,是一个整体,两个插头接通外电路。外壳也是电路一端。是微波炉易损件。损坏需要整体更换。磁控管好坏的判断:磁控管好坏的判断是通过测量磁控管灯丝对外壳电阻实现的。具体步骤:一、断开于磁控管相连电路。(关机断电后,等一分钟让高压电容自然放电,然后拔下和磁控管相连的插头。)二、用万用表×1Ω电

基于Simulink的脉冲多普勒雷达系统建模仿真

基于Simulink的脉冲多普勒雷达系统建模仿真 胡海莽1,杨万海 (西安电子科技大学电子工程学院,陕西 西安 710071) 摘要:利用计算机仿真技术的可控制性,可重复性,无破坏性,安全性,经济性等特点与优势对雷达电子对抗装备及其技术与战术运用等进行仿真与效能评估,是当前和未来雷达与电子对抗领域研究中的一种重要手段。本文的工作是建立一个基于Simulink的雷达系统仿真库,因为MATLAB的使用广泛性,因此基于其上的雷达系统仿真库较易推广。该雷达系统仿真库不仅可以协助设计雷达系统而且可以帮助学生学习雷达系统。 关键词:雷达;建模;仿真 Modeling and Simulation of PD Radar System Based on Simulink HU Hai-Mang, YANG Wan-Hai (Xidian Univ, Xi’an 710071, China) Abstract: The modeling and simulation of radar systems with system simulation tools make it possible to complete scheme reasoning and performance evaluation efficiently. This paper constructs some radar function blocks and models and simulates a pulse Doppler radar system based on Simulink5.0.The software is perfectly applied in the study of algorithms in radar signal processing and displays the system’s performance. Keywords: radar; modeling; simulation; Simulink; 1 引言 在雷达信号处理系统中系统级仿真占有极其重要的地位,经过系统级仿真能够保证产品在最高层次上的设计正确性。因为外场模拟真实战场复杂电磁环境是非常困难的,同时也耗资巨大。外场试验的次数有限,难以全面反映雷达系统在各种复杂环境下的性能,外场测试和设计修改使得试验周期长,并造成巨大浪费。 以往的工作多是基于EDA平台如SPW和SystemView,这些软件专业性很强,而且价格较贵,因此基于这些平台的雷达系统仿真库也较难推广。本文的工作是建立一个基于Simulink的雷达系统仿真库,因为MATLAB的广泛性使用,因此基于其上的雷达系统仿真库较易推广。该雷达系统仿真库不仅可以协助设计雷达系统而且可以帮助学生学习雷达系统。 Simulink是一种开放性的,用来模拟线性或非线性的以及连续或离散的或者两者混合的动态系统的强有力的系统级仿真工具。它是MATLAB的一个附加组件,用来提供一个系统级的建模与动态仿真工作平台。Simulink是用模块组合的方法来使用户能够快速、准确地创建动态系统的计算机模型的。另外,Simulink还提供一套图形动画的处理方法,使用户可以方便地观察到仿真的整个过程。 Simulink5.0在软硬件的接口方面有了长足的进步,Simulink已经可以很方便地进行实时的信号控制和处理、信息通信以及DSP的处理。仿真程序经过编译可以直接下载到DSP等硬件设备中去,使得从系统级仿真到硬件实现可以一气呵成。 本文的仿真基于MATLAB6.5及其所带的Simulink5.0。 2 脉冲多普勒雷达系统仿真 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具 作者简介:胡海莽(1977-),男,江苏省淮安市人,现为西安电子科技大学电路与系统学科硕士研究生,研究方向为信息处理,系统仿真。

脉冲多普勒雷达信号处理技术研究

脉冲多普勒雷达信号处理技术研究 发表时间:2019-08-20T08:43:14.537Z 来源:《防护工程》2019年10期作者:张炯[导读] 结合测速测距的实际要求,研究了线性调频脉冲信号处理的相关算法和实现方法. 浙江 摘要:经济在快速的发展,社会在不断的进步,脉冲多普勒(PD)雷达是一种依靠多普勒效应提高目标检测能力的全相参体制的雷达,它利用多普勒效应对目标信息进行提取和处理,具有较高的速度分辨率,可以有效的抑制强地杂波的干扰,完成相应的探测功能。论文首先研究了脉冲多普勒雷达测速测距原理,并从PD雷达模糊函数出发,以各个信号的模糊函数仿真为依据,讨论了如何设计波形以获得较高的分辨率。依据线性调频信号处理相关研究成果,结合测速测距的实际要求,研究了线性调频脉冲信号处理的相关算法和实现方法. 关键词:脉冲多普勒雷达;模糊函数;脉冲压缩 引言 本论文研究的是脉冲多普勒雷达信号处理关键技术,重点研究了脉冲多普勒雷达解距离模糊,地杂波特性以及地杂波抑制算法。简要介绍了海杂波特性,海杂波的抑制技术和发展方向,以及脉冲多普勒雷达抗干扰技术。首先简要介绍了脉冲多普勒雷达的发展概况,以及信号处理系统的基本构成和各部分的主要功能。其次,本文研究了脉冲多普勒雷达解距离模糊的问题。脉冲多普勒雷达存在距离或速度模糊,本文介绍了几种消除距离模糊的方法,并对这几种方法的优劣进行了比较。再次,本文研究了脉冲多普勒雷达杂波以及杂波抑制算法。分析了地杂波统计特性,研究了相关雷达杂波功率谱特性的AR模型及其模拟方法。介绍了几种典型的杂波抑制算法,对此几种方法进行了比较,并用LMS算法进行抑制。简要介绍了海杂波特性,海杂波的抑制技术及其发展方向。最后,本文研究了脉冲多普勒雷达的抗干扰性能。对脉冲多普勒雷达反电子侦察、抗噪声干扰能力、抗欺骗干扰能力等进行了分析。并给出几种抗干扰措施。 1 我国雷达的发展历程 现代雷达门类多,其发展历程也不尽相同,起步有早有晚,仿制和自行设计互有交叉。我国的雷达工业是在新中国成立后根据国防需要形成和发展起来的新型工业。在党和国家的支持下,经过广大科研人员的不懈努力,经历了从小到大,从维修、仿制到自发研制的发展历程。从我国雷达技术发展总体来说,大致可分为修配、仿制、自行研发和发展提高这四个阶段。(1)修配阶段这一阶段主要以修配美、口等强国的旧雷达为标志。1949年,我军接管了国民党雷达研究所,这标志着我国从此揭开了雷达工业发展的序幕。新中国成立以后,国家对雷达研究所从人力、物力等各个方面大力支持,对缴获的雷达器材和美、口在二战中遗留下的旧雷达进行维修和补缺,而这些修复的雷达大多都是警戒雷达。(2)仿制阶段这一阶段以建立雷达基地并仿制苏式雷达为主要标志。新中国成立后,在前苏联的帮助下,我国开始仿制苏式的雷达产品,包括炮瞄雷达、机载雷达、舰用雷达、警戒雷达和指导雷达等。1954年仿制的警戒雷达是我国的第一批国产雷达,而19_56年仿制出我国第一部采用微波对海技术的远程警戒雷达。此外,我国仿制的海用雷达包括搜索攻击专用雷达、海军警戒专用雷达、鱼雷快艇专用雷达、导弹制导雷达等。这一阶段仿制的雷达大部分都相当于前苏联四五十年代的水平,仿制的成功使得我国的雷达产品得到了扩展,也使我国基本掌握了雷达生产的基本过程。(3)自行设计1960年中央军委提出了以两弹为主,努力发展电子技术的方针,为我国雷达工业明确了方向。在弹道导弹预警系统方面,我国成功研制了大型的远程跟踪雷达,超视距试验雷达和大型相控阵雷达。与此同时,我国还自行研制出了一批与武器配套的雷达,包括机载火控雷达、轰炸瞄准雷达、测距雷达、多普勒导航雷达、导弹制导雷达等。除了军用雷达,我国还自行研制出了民用的气象雷达、空中交通管制雷达等。这一阶段我国脱离了国外产品的图纸和资料,自行研制和开发新雷达,所需原材料、元器件都立足于国内。并且开始大量生产,向国外出口。 2 脉冲多普勒雷达信号处理技术研究 2.1 脉冲多普勒雷达反电子侦察能力 电子干扰的针对性很强,有效的电子干扰需要知道雷达工作的时间、空间、频率等信息,所以现代电子干扰设备都有侦察功能。用侦察设备引导干扰机,使干扰机能把有限的干扰功率投向需要干扰的目标。干扰设备的工作过程大致可分为三个阶段:截获雷达信号;分选识别威胁源;组织实施干扰。如果破坏或延误其中的任何一步,都会降低干扰机的作战效能。如果使干扰机收不到雷达信号,雷达肯定不会受到敌意的干扰。即使雷达信号不能躲过干扰机的侦察,但能使干扰机无法确定所截获的信号是否值得干扰,使干扰机要么在干扰与不干扰之间犹豫不决而错过良机,要么不能采取有效的干扰样式或合适的干扰参数而达不到预期的干扰效果,同样能收到抗侦察的效果。 2.2 脉冲多普勒雷达抗箔条干扰能力分析 箔条使用简单、造价低,容易覆盖较宽的频带。在过去的较大战争中,都使用了箔条干扰。大面积的箔条云形成类似于地杂波的分布式干扰背景,雷达在这种干扰中检测目标类似于在高斯噪声背景中的日标检测。小面积的箔条云可形成假目标,起欺骗干扰作用。总之,对于只从时域检测目标的普通脉冲雷达,箔条有较好的干扰效果。PD雷达从频域检测目标,目标的多普勒频率由它的运动速度确定,箔条能否干扰PD雷达由箔条具有的速度确定。箔条通常是从具有一定初速度的载体上投放出来的,刚投放时具有载体的速度。箔条散开到有干扰作用需要一定时间。虽然刚投放的箔条有大的速度,但反射面积小。相反,反射面积大时,速度又小。箔条从载机投放后只需几秒钟,其速度就降为当时的风速。如此大的加速度,使其反射信号在每个多普勒滤波器中的停留时间太短。来不及建立起足以和目标信号相对抗的幅度。所以箔条的初速度对PD雷达的干扰作用很小。 2.3 PD雷达保护喇叭抗来自旁瓣的干扰 PD雷达中重复频率工作模式,目标检测是在旁瓣杂波中进行的。为防止地面大建筑物及类似反射体的强反射信号从天线旁瓣进入雷达,造成虚警干扰,PD雷达应有保护喇叭。干扰机可通过雷达天线旁瓣对雷达实施干扰。对此雷达可用保护喇叭对干扰信号进行对消或匿隐。主天线和保护喇叭的相对增益。若要对来自旁瓣的干扰匿隐,保护喇叭的增益应比天线主瓣的增益小,比天线旁瓣的增益大。因此经旁瓣进入雷达的干扰信号将在保护通道某个距离多普勒单元产生一个比主通道对应单元中更大的幅度响应。当主通道信号与保护通道信号之比较小时,表明该信号是自旁瓣进入的,比较器产生一个匿隐门来抑制主通道对该信号的检测。反之则认为信号来自天线主瓣,主通道对信号进行检测。利用对消的方法也可以抑制来自旁瓣的干扰。

微波炉的常见故障

微波炉的常见故障 不启动、不加热、加热慢(火力不足)、转盘不转、间歇工作、有明火出现、火力不可调节等多种,下面分别予以介绍。 注意:维修中凡需拆开微波炉检查和修理,除另有说明和检查“不启动”故障的220V电源电压外,均是指在拔下电源插头、断电后,再将高压电容放电之后的情况下进行检修。 1.不启动 不启动故障是指微波炉插上电源插头、关闭炉门后,旋转定时旋钮无炉子启动声响,转盘不转,炉子不能启动。不启动是微波炉最多见的故障之一,也是涉及电路面广,检查判断相对较难的一种故障。为了便于大家较快地了解和掌握判断及维修这种故障的方法和技巧,笔者以图1所示典型电路为例,将实践经验精心总结编制为如图2所示的故障判断维修详细流程图。大家可在维修中按图索骥,有序检查,通常很快便可找到故障所在。该图对维修其他故障也有触类旁通、启发思路的作用。 造成不启动故障常见主要原因有: 保险丝管F1熔断、过热熔断器sT断路、电源电路故障和安全连锁开关s1~s3不良或损坏。其中F1、sT和电源电路的故障判断和处理较为容易,下面还会提及,这里主要谈谈安全连锁开关的故障处理。s1、s2的问题大多引起不启动故障,监控连锁开关s3出问题主要造成开机烧保险丝管F1故障(保险丝管断后也就不能启动了)。例如:

主连锁开关S1在炉门关闭时应接通,如果S1开路损坏,无论炉门开还是闭,微波炉都不能接通电源而启动。 通常s1、s2和s3都被装在工程塑料支架上,位置都已在制造中被固定,除硬性变动或固定塑料支架的螺丝松动外,一般不会发生位移,所以由位移而引起的不启动或开机烧保险丝管故障就比较少见。实践中较为多见的是连锁开关及开关触动杆(即炉门上的两个钩状塑杆,亦称门钩)、塑料支架上的开关触片损坏或不良。检查这些零部件时,只要拆下微波炉上盖,就能清楚地看到它们相互间的动作关系,可一边开、关炉门,一边观察它们的动作,若动作都正常,那就再查各开关本身是否正常。 由于s1~S3是为安全所设,而且动作频繁,因而厂商大都选用较耐用可靠的专用微动开关,在正常情况下可使用很长时间,但若开关本身质量欠佳或工作条件恶劣(如过度碰触等),使用寿命就会明显缩短。如果开关因使用日久或上述原因而损坏,可以先拆开试修,若损坏严重无法修复,应更换新件。注意最好用原型号或可直代的配件若拟选代换件,应注意其外形尺寸是否合适,外形尺寸不符将不能正常装入机内的塑料支架上,要代换就很麻烦,甚至无法代换。此外,sl、s2与s3虽然外形基本相同,但开关功能不同,所以选购及安装时绝不可搞错。不少开关外壳上都标有电气符号,因此很易区分;若没有符号,可用万用表测量,搞清其是常开还是常闭开关和对应的引出端头就行了。

相关文档