文档库 最新最全的文档下载
当前位置:文档库 › 疼痛的机制传导途径

疼痛的机制传导途径

疼痛由能使机体组织受损伤或破坏的刺激作用所引起,是一种对周围环境的保护性适应方式。这种致痛刺激在疼痛感受器接收之后,经过不同水平的痛觉传导路,最后达到脑,引起疼痛感觉


三大学说:特异学说,型式学说,闸门控制学说





基本传导途径(一)感受器和传入神经纤维
痛觉的感受器为游离神经末梢,它广泛分布在皮肤各层、小血管和毛细血管旁结缔组织、腹膜脏层和壁层、粘膜下层等处,任何外界的或体内的伤害性刺激(物理的或化学的),均可导致局部组织破坏,释放K+、H+、组胺、缓激肽、5-HT、Ach和P物质等内源性致痛因子。这类游离神经末梢对缓激肽等化学刺激特别敏感,称之为化学性感受器(chemoceptor)。
传导痛觉冲动的纤维属于最细的Aδ和C纤维,并认为Aδ纤维传导刺痛,而C纤维则传导灼痛。但必须指出,并非所有的Aδ纤维和C纤维仅传导伤害性刺激,它们也传导触、压、温、冷等感觉信息。而痛觉也并非仅由细纤维(Aδ或C纤维)传导,也可由达到一定的空间和时间构型的粗纤维(Aα纤维)传导。
(二)疼痛在中枢神经系统中的传导途径
痛觉传导通路比较复杂,至今仍不很清楚。一般认为,与痛觉的传导有关的脊髓上行通路有:
1.躯干、四肢的痛觉通路
1)新脊-丘束 外周神经的细纤维由后根的外侧部进入脊髓,然后在后角换元,再发出纤维上行,在中央管前交叉到对侧的前外侧索内,沿脊髓丘脑侧束的外侧部上行,抵达丘脑的腹后外侧核(VPL)。此神经纤维束在种系发生上出现较晚,故称新脊-丘束。该束传递的信息可经丘脑的特异感觉核群(即VPL)投射到大脑皮质的中央后回上2/3处,具有精确的分析定位能力,这和刺痛(快痛)的形成有关。
2)旧脊-丘束或脊-网-丘束 也是由后角细胞的轴突组成,交叉后沿脊髓丘脑侧束的内侧部上行。旧脊-丘束的纤维分布弥散,长短不一。在上行途中多数纤维终止在脑干的内侧网状结构、中脑被盖和中央灰质区等处,再经中间神经元的多级转换传递而达到丘脑的髓板内核群以及下丘脑、边缘系统等结构。其中短的纤维就是脊髓网状束。还有少量最长的纤维直达丘脑的内侧核群。由于在低等动物就有此束,故称旧脊-丘束,与脊网束、脊髓中脑纤维合称旁中央上行系统。该束传递的信息主要和内侧丘脑、下丘脑及边缘系统相联系,在机能上它和灼痛(慢痛)时所伴随的强烈情绪反应和内脏活动密切相关。
3)脊-颈束 该束的神经元细胞体也位于脊髓后角RexedⅣ、Ⅴ层内,接受来自同侧肌、皮神经的传入,其轴突沿外侧索的背内侧部分上行,投射到脊髓第1-2颈

节的外侧颈核内,后者再发出纤维通过对侧的内侧丘系投射到丘脑的VPL及内侧膝状体大细胞区的内侧部,再由此换元向大脑皮质投射(主要在第二躯体感觉区)。脊-颈束在动物被认为是传导痛觉信息的主要通路。
4)后索-内侧丘系 外周神经的A类粗纤维由后根的内侧部进入脊髓,经薄束和楔束上行,在脑干的下部与薄束核和楔束核发生突触联系。自此发出轴突组成内侧丘系,到达对侧丘脑的VPL,对来自躯体、四肢精细的触觉、运动觉、位置觉进行辨别。虽然此束不是痛觉的传导通路,但它可能参与痛觉的中枢整合过程。它传导迅速,能完成闸门学说中中枢控制系统的功能,对闸门控制系统起作用(见闸门控制学说)。
5)脊髓固有束 伤害性冲动由C类细纤维传导进入脊髓后在后角换元,沿脊髓灰质周围的固有束上行,既是多突触传递,又是反复双侧交叉,这与慢痛的情绪反应有关。
2.头面部的痛觉通路
头面部痛觉主要由三叉神经传入纤维传导,它们第一级神经元细胞体位于三叉神经半月神经节,其轴突终止于三叉神经感觉主核和三叉神经脊束核。由此换元发出纤维越过对侧,组成三叉丘系,投射到丘脑腹后内侧核(VPM);发自感觉主核背内侧份的一小束不交叉纤维,投射到同侧的VPM。自VPM发出的纤维,经内囊枕部投射至大脑皮质的中央后回下1/3处。
3.内脏痛觉通路
大部分腹、盆部器官的内脏痛主要由交感神经传导,从膀胱颈、前列腺、尿道、子宫来的痛觉冲动是经过副交感神经(盆神经)传到脊髓的,在脊髓后角(有人认为在Rexed V层)换元,其轴突可在同侧或对侧脊髓前外侧索上升,伴行于脊髓丘脑束上行达丘脑VPM,然后投射到大脑皮质。经面、舌咽、迷走神经传入的痛觉冲动,传到延髓孤束核,由孤束核发出上行纤维,可能在网状结构换元后向丘脑、丘脑下部投射。内脏痛觉传入纤维进入脊髓后也可由固有束上行,经多次中继,再经灰质后连合交叉到对侧网状结构,在网状结构换元后上行到丘脑髓板内核群和丘脑下部,然后投射到大脑皮质和边缘皮质。
内脏痛的传入途径比较分散,即一个脏器的传入纤维可经几个节段的脊髓进入中枢,而一条脊神经又可含几个脏器的传入纤维,因此内脏痛往往是弥散的,而且定位不明确。
(三)疼痛在脊髓水平的整合
脊髓是痛觉信号处理的初级中枢。伤害性刺激的信号由细纤维传入脊髓后角,在那里加工后,一部分作用于前角运动细胞,引起局部的防御性反射如屈肌反射等,而另一部分则再继续向上传递。
神经解剖学和神经生理学的研究表明,脊髓后角细胞可分成若干层,各层细胞

有不同的生理特性。后角中感受伤害性刺激的细胞集中在Rexed I层(边缘层,marginal layer)和V层。I层中对伤害性刺激起反应的细胞占多数。V层细胞对触、压、温度及伤害性刺激等各种刺激都能发生反应,而对伤害性刺激的反应具有高频持续放电的特殊型式,被称为广动力型细胞。镇痛药、麻醉药能选择性地抑制该层细胞的活动。后角V层细胞在传递伤害性信号中起着主要的作用。II层细胞(胶状质细胞)其轴突走行距离短,对伤害性刺激起调节作用。神经组织化学研究证明,P物质存在于脊髓初级传入纤维,特别是细的伤害性传入纤维末梢部位。切断后根,此区的P物质便明显减少,刺激后根神经纤维则该区的P物质含量增多。免疫组织化学研究还证明,脊髓后角有密集的阿片受体和丰富的脑啡肽。切断后根,该区的阿片受体显著减少,但并不影响脑啡肽的含量。初级传入纤维末梢分布有阿片受体,而胶状质内脑啡肽神经元是局部的中间神经元,它与初级传入纤维末梢形成突触联系。伤害性刺激的传入受到高位中枢下行的抑制,脑干下行抑制系统中5-羟色胺能神经元下行纤维可能先作用于胶状质中脑啡肽能中间神经元,后者释放脑啡肽作用于传入纤维的阿片受体,而抑制P物质的释放(突触前抑制),因而使感觉冲动的传入受抑,另一方面,也可能有突触后抑制,即脑啡肽作用于突触后,抑制第二级感觉神经元而产生镇痛效应。
在脊髓后角或脊颈束观察到不同传入冲动的相互作用,看到粗纤维传入冲动可抑制痛敏细胞的放电。根据后根电位和微电极纤维内记录的观察,认为刺激粗纤维主要引起负的后根电位和初级传入纤维末梢去极化,因而具有突触前抑制效应,刺激细纤维可引起正的后根电位和初级传入纤维末梢超极化,从而有一定的易化作用,看来,各种传入冲动在脊髓的整合中,除有突触前抑制参与外,还有突触后抑制的参与。
(四)疼痛在脊髓以上水平的整合
1.脑干
脑干网状结构是多种感觉传入冲动汇集处,非伤害性信号和伤害性信号可相互影响,或是加强或是抑制,以进行各种传入信号的综合处理。中脑中央灰质和延髓头端腹内侧网状结构(rostral ventromedial medulla, RVM)都是脑干的重要痛觉调制结构,它们是旁中央上行系统的组成部分,接受来自脊髓前外侧索的部分痛觉传入。
2.丘脑
丘脑是各种感觉信息(除嗅觉外)进入大脑皮质形成主观感觉以前的最重要的整合中枢。丘脑接受来自脊髓、脑干的纤维投射,经过丘脑的中继投射到大脑皮质。主要包括腹侧核群、髓板内核群以及丘脑后区。
3.边缘系统和基底神经节
在疼痛时

常伴随着强烈的情绪变化,这与边缘系统的功能有关。尾核是基底神经节中最大的一个核团,刺激尾核能产生镇痛作用,在一定范围内,随着对尾核刺激强度的加大,痛阈也随之升高,停止刺激,镇痛作用可持续几分钟之久。临床上电刺激尾核常常可以满意地缓解癌症病人的顽痛。
4.大脑皮质
这是多种感觉信号进入意识领域形成感觉的重要部位。在临床上观察到,大脑皮质受损伤时有暂时的感觉丧失,以后痛觉很快恢复,但对疼痛精确分辨的能力则恢复得很慢,也很差。直接刺激大脑皮质并不唤起痛觉,而刺激丘外系的纤维和核团才可产生疼痛。因此大脑皮质的机能似在于对痛觉的分辨而不是痛觉的感受。
(五)内源性痛觉调制系统
1.概述
70年代中有人提出了内源性痛觉调制系统(endogenous pain modulating system)的概念,也有人称为内源性镇痛系统。目前所认为的内源性痛觉调制系统,一般是以中脑导水管周围灰质(PAG)为核心,联结延髓头端腹内侧网状结构,通过下行抑制通路对脊髓背角的痛觉初级传入活动进行调节。
2.中脑导水管周围灰质
PAG是内源性痛觉调制系统中一个上行与下行通路中的重要结构。它在痛觉调制中的重要性在于凡是由激活更高级中枢所产生的镇痛效应,都被证明是通过它才起作用的。大量实验结果表明,吗啡镇痛、针刺镇痛、电刺激间脑和边缘系统中一些与镇痛有关的核团(尾核、下丘脑、隔区、伏隔核等)产生的镇痛效应,都可被注入微量阿片受体拮抗纳洛酮于PAG而部分阻断。电刺激PAG或注射吗啡于PAG之所以镇痛,是由于激活了下行抑制系统的结果。
3.延髓头端腹内侧网状结构及下行抑制系统
目前多数学者认为PAG的下行抑制需经延髓头端腹内侧网状结构RVM,沿着背外侧索DLF下行到脊髓后角,而且在正常情况下对下级中枢的神经元有张力性控制作用。从RVM下行的通路主要包括中缝脊髓系统、中缝旁脊髓系统(外侧网状旁巨细胞核(Rpgl);Rpg腹侧的网状巨细胞核的α部分)
总之,内源性痛觉调制系统这一概念的提出以及有关下行抑制作用的深入研究,是近年来在痛觉研究方面的一个重要成就。在汇集脑的高级部位的各种传出活动对脊髓痛觉信号的传导起调制影响时,PAG和RVM起着最后驿站或共同通路的作用。但这并不意味着PAG和RVM只有下行性的影响作用。大量实验证明这些结构有不少上行的投射支配中脑及前脑结构,它们的上行性作用在痛觉调制过程中也可能起着重要的作用。

相关文档
相关文档 最新文档