文档库 最新最全的文档下载
当前位置:文档库 › 不等式知识点总结

不等式知识点总结

不等式知识点总结
不等式知识点总结

不等式知识点小结

1、不等式的定义

我们用数学符号“≠”“>”“<”“≥”“≤”连接两个数或代数式,以表示它们之间的不等关系,含有这些不等号的式子,叫做 。 2、两个实数的比较

如果b a -是正数,那么 ,如果b a -等于零,那么 ,如果b a -是负数,那么 。反之亦对,也可以表示为?>b a ,?=b a ,?

性质1: 称为不等式的对称性。 性质2: 称为不等式的传递性。 性质3: 。

推论1: 称为不等式的移项法则。 推论2: (同向不等式可以相加)。 性质4: (不等式两边同乘非0数值)。 推论1: 。 推论2: 。 推论3: 。 4、均值不等式

(1)对任意两个实数b a ,,数2

b

a +叫做

b a ,的 。数ab 叫做b a ,的 。

(2)如果+

∈R b a ,,当且仅当 时,式中等号成立。

均值定理用文字语言可表述为 。 (3)在使用均值不等式时注意满足三个条件:一 、二 、三 ,三个条件缺一不可。 5、重要不等式

对于任意实数b a ,,有2

2b a + ab 2,则当且仅当 时,式中等号成立。

6、直线的相关知识 (1)直线方程:

点斜式:已知直线过点00(,)x y ,斜率为k ,则直线方程为 ;

斜截式:已知直线的斜率为k ,在y 轴上的截距为b ,则直线方程为 ; 两点式:已知直线过点1122(,),(,)x y x y (1212,x x y y ≠≠)则直线方程为 ; 截距式:已知直线在x 轴的截距为a ,在y 轴的截距为b (0,0a b ≠≠)则直线方程为

(2)已知直线的倾斜角为α,则斜率k = ;

已知直线过点1122(,),(,)A x y B x y ,则斜率k = 。

(3)已知直线111:l y k x b =+,222:l y k x b =+,若1l ∥2l 则 ; 若12l l ⊥,则 。

已知直线1111:0l A x B y C ++=,2222:0l A x B y C ++=,若1l ∥2l 则 ; 若12l l ⊥,则 。 7、二次函数的相关知识

已知二次函数2()f x ax bx c =++(0a ≠)

(1)顶点坐标为 ;对称轴方程为 ;

(2)函数()f x 与x 轴交点个数的判断方法:当 时,()f x 与x 轴有两个交点;当 时,()f x 与x 轴有一个交点;当 时,()f x 与x 轴没有交点。 (3)二次函数的单调性:

当0a >时,()f x 在 上为增函数;在 上为减函数。 当0a <时,()f x 在 上为增函数;在 上为减函数。

(4)二次函数的奇偶性:当 时,()f x 为偶函数;否则()f x 为非奇非偶函数。 (5)二次函数的最值:

当0a >时,()f x 有最小值 ;当0a <时,()f x 有最大值 。 8、一元二次不等式的定义

一般的,含有 未知数,且未知数的最高次数为 的整式不等式,叫做一元二次不等式。

10、(1)2

0ax bx c ++>(0a ≠)恒成立的条件是 ;

(2)2

0ax bx c ++<(0a ≠)恒成立的条件是 。

11、分式不等式

()0()f x g x >? ;()

0()

f x

g x ≥? 。 12、二元一次不等式所表示的平面区域

(1)直线:0l Ax By C ++=把坐标平面分为两部分,每个部分叫做 ,它与

l 的并集叫做 ,以不等式解(,)x y 为坐标的所有点构成的集合叫做

或 。

(2)直线:0l Ax By C ++=把坐标平面内不在直线l 上的点分成两部分,直线l 的同一侧的点的坐标使式子Ax By C ++的值具有 的符号,并且两侧的点的坐标使

Ax By C ++的值的符号 。

(3)在平面直角坐标系中作出直线0Ax By C ++=(注意实虚),在这条直线一侧任取一点00(,)P x y ,将其坐标代入Ax By C ++中求值,若000Ax By C ++>,则包含此点的半平面即为不等式 所表示的平面区域,不含P 点的半平面为不等式 所表示的平面区域。注:当0C ≠时,常把原点(0,0)作为特殊点。 (4)若函数(,)f x y ?=中的变量,x y 满足不等式(方程)组

12

(,)0,(,)0,(,)0,

n f x y f x y f x y ≥??≥??

??≥? (*),则不等式(方程)组(*)叫做 ,(,)f x y ?=叫做 。如果(*)中是关于变量的一次不等式(或等式),则称为 。 在 条件下,求 的最大值或最小值问题称为线性规划问题,使 达到最大值或最小值的点的坐标,称为问题的 。 满足 条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做 。

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

高中不等式知识点总结

1.不等式的解法 (1)同解不等式((1)f x g x ()()>与f x F x g x F x ()()()()+>+同解; (2)m f x g x >>0,()()与mf x mg x ()()>同解, m f x g x <>0,()()与mf x mg x ()()<同解; (3) f x g x () () >0与f x g x g x ()()(()?>≠00同解); 2.一元一次不等式 ax b a a a >?>=≠()或ax bx c a 200++<≠?()分a >0 及a <0情况分别解之,还要注意?=-b ac 2 4的三种情况,即?>0或 ?=0或?<0,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0??? ?≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)?()()()11当时,a f x g x >>; ()()()201当时,<<?(1)当a >1时, g x f x g x ()()()>>?? ???0;(2)当01<在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚 线以表示区域不包括边界直线。当我们在坐标系中画不等式

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+(2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 特别说明:以上不等式中,当且仅当b a =时取“=” 5、常用结论 (1)若0x >,则1 2x x +≥(当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤-(当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若*,R b a ∈,则2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥b a 112 + 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2 2 2 3、已知1a b c ++=,求证:2221 3 a b c ++≥ 4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ?????? ---≥ ??????????? 6、选修4—5:不等式选讲

必修五不等式知识点总结

不等式总结 一、不等式的主要性质: (1)对称性:a b b a (2)传递性:c a c b b a >?>>, (3)加法法则:c b c a b a +>+?>; d b c a d c b a +>+?>>, (4)乘法法则:bc ac c b a >?>>0,; bc ac c b a 0, bd ac d c b a >?>>>>0,0 (5)倒数法则:b a a b b a 110,> (6)乘方法则:)1*(0>∈>?>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>?>>n N n b a b a n n 且 二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法 有两相异实根 有两相等实根注意:一般常用因式分解法、求根公式法求解一元二次不等式 顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间

三、均值不等式 1.均值不等式:如果a,b 是正数,那么 ).""(2 号时取当且仅当==≥+b a ab b a 2、使用均值不等式的条件:一正、二定、三相等 3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即 2 112a b a b ++(当a = b 时取等) 四、含有绝对值的不等式 1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 2、则不等式:如果,0>a a x a x a x -<><=>>或|| a x a x a x -≤≥<=>≥或|| a x a a x <<-<=><|| a x a a x ≤≤-<=>≤|| 3.当0c >时, ||ax b c ax b c +>?+>或ax b c +<-, ||ax b c c ax b c +?∈,||ax b c x φ+?-<<,|| (0)x a a x a >>?>或x a <-. (2)定义法:零点分段法;(3)平方法:不等式两边都是非负时,两边同时平方. 五、其他常见不等式形式总结:

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

基本不等式知识点归纳.doc

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+r r r r r r ≤≤ 【注意】: a b r r 、 同向或有0r ?||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r u r u r u r ; a b r r 、反向或有0r ?||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r u r u r u r ; a b r r 、不共线?||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R + ∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0).

基本不等式知识点归纳

向量不等式: 【注意】:同向或有; 反向或有; 不共线.(这些和实数集中类似) 代数不等式: 同号或有; 异号或有. 绝对值不等式: 双向不等式: (左边当时取得等号,右边当时取得等号.) 放缩不等式: ①,则. 【说明】:(,糖水的浓度问题). 【拓展】:. ②,,则; ③,; ④,. ⑤,. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0). 基本不等式知识点总结 重要不等式

1、和积不等式:(当且仅当时取到“”). 【变形】:①(当a = b 时,) 【注意】: , 2、均值不等式: 两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均算术平均几何平均调和平均” *.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ); 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) *.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 3、含立方的几个重要不等式(a 、b 、c 为正数): (,); *不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时, ab b a 222≥+同时除以ab 得 2≥+b a a b 或b a a b -≥-11。 *,,b a 均为正数,b a b a -≥22 八种变式: ①222b a ab +≤ ; ②2 )2(b a ab +≤; ③2)2( 222b a b a +≤+ ④)(22 2 b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则b a b a +≥+4 11;⑦若a>0,b>0,则ab b a 4)11( 2≥+; ⑧ 若0≠ab ,则2 22)11(2111b a b a +≥+。 上述八个不等式中等号成立的条件都是“ b a =”。 最值定理 (积定和最小)

关于高级高中数学不等式知识点总结归纳教师版

高中数学不等式专题教师版 一、 高考动态 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a │-│b │≤│a+b │≤│a │+│b │ 二、不 等 式 知识要点 1. 不等式的基本概念 (1) 不等(等)号的定义:.0;0;0b a b a b a b a b a b a ?>- (2) 不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3) 同向不等式与异向不等式. (4) 同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a b b a (对称性) (2)c a c b b a >?>>,(传递性) (3)c b c a b a +>+?>(加法单调性) (4)d b c a d c b a +>+?>>,(同向不等式相加) (5)d b c a d c b a ->-?<>,(异向不等式相减) (6)bc ac c b a >?>>0,. (7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等.

高中数学基本不等式知识点归纳及练习题00294

高中数学基本不等式的巧用 1.基本不等式:ab ≤a +b 2 (1)基本不等式成立的条件:a >0,b >0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R );(2)b a +a b ≥2(a ,b 同号);(3)ab ≤? ?? ??a +b 22(a ,b ∈R ); (4)a 2+b 22≥? ?? ??a +b 22(a ,b ∈R ). 3.算术平均数与几何平均数 设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个 正数的算术平均数大于或等于它的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则 (1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大) 一个技巧 运用公式解题时,既要掌握公式的正用,也要注意公式的逆用,例如a 2+b 2≥2ab 逆用就是22 ?? ??a +b 22(a ,b >0)等.还要注意“添、拆项”技巧和公式等号成立的条件等. 两个变形 (1)a 2+b 22≥? ?? ??a +b 22≥ab (a ,b ∈R ,当且仅当a =b 时取等号); a +b 这两个不等式链用处很大,注意掌握它们. 三个注意 (1)使用基本不等式求最值,其失误的真正原因是其存在前提“一正、二定、三相等”的忽

视.要利用基本不等式求最值,这三个条件缺一不可. (2)在运用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中“正”“定”“等”的条件. (3)连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 应用一:求最值 例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x 解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245 y x x =-+-的最大值。 技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。 技巧三: 分离 例3. 求2710(1)1 x x y x x ++=>-+的值域。 。 技巧四:换元 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()a f x x x =+ 的单调性。例:求函数224y x =+的值域。 练习.求下列函数的最小值,并求取得最小值时,x 的值. (1)231,(0)x x y x x ++=>(2)12,33 y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈ 2.已知01x <<,求函数(1)y x x = -.;3.203 x <<,求函数(23)y x x =-. 条件求最值 1.若实数满足2=+b a ,则b a 33+的最小值是. 变式:若44log log 2x y +=,求11x y +的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。 2:已知0,0x y >>,且191x y +=,求x y +的最小值。

高中不等式知识点总结(2020年九月整理).doc

1 1.不等式的解法 (1)同解不等式((1)与同解; (2)与同解,与同解; (3)与同解); 2.一元一次不等式 情况分别解之。 3.一元二次不等式 或分及情况分别解之,还要注意的三种情况,即或或,最好联系二次函数的图象。 4.分式不等式 分式不等式的等价变形: )()(x g x f >0?f(x)·g(x)>0,) () (x g x f ≥0????≠≥?0 )(0 )()(x g x g x f 。 5.简单的绝对值不等式 解绝对值不等式常用以下等价变形: |x|0), |x|>a ?x 2>a 2?x>a 或x<-a(a>0)。 一般地有: |f(x)|g(x)?f(x)>g (x)或f(x)在平面直角坐标系中表示0Ax By C ++=某一侧所有点组成的平面区域。我们把直线画成虚线以表示区域不包括边界直线。当我们在坐标系中画不等式 0Ax By C ++≥所表示的平面区域时,此区域应包括边界直线,则把 直线画成实线。 说明:由于直线0Ax By C ++=同侧的所有点的坐标(,)x y 代入 Ax By C ++,得到实数符号都相同,所以只需在直线某一侧取一个特 殊点00(,)x y ,从00Ax By C ++的正负即可判断0Ax By C ++>表示直

1 线哪一侧的平面区域。特别地,当0C ≠时,通常把原点作为此特殊点。 (2)有关概念 引例:设2z x y =+,式中变量,x y 满 足条件43 35251x y x y x -≤-?? +≤??≥? ,求z 的最大值和最 小值。 由题意,变量,x y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些 平面区域的公共区域。由图知,原点(0,0)不在公共区域内,当 0,0x y ==时,20z x y =+=,即点(0,0)在直线0l :20x y +=上, 作一组平行于0l 的直线l :2x y t +=,t R ∈,可知:当l 在0l 的右上方时,直线l 上的点(,)x y 满足20x y +>,即0t >,而且,直线l 往右平移时,t 随之增大。 由图象可知,当直线l 经过点(5,2)A 时,对应的t 最大, 当直线l 经过点(1,1)B 时,对应的t 最小,所以, max 25212z =?+=,min 2113z =?+=。 在上述引例中,不等式组是一组对变量,x y 的约束条件,这组约束条件都是关于,x y 的一次不等式,所以又称 为线性约束条件。2z x y =+是要求最大值或最小值所涉及的变量,x y 的解析式,叫目标函数。又由于2z x y =+是 ,x y 的一次解析式,所以又叫线性目标函数。 一般地,求线性目标函数在线性约束条件下的最大值 或最小值的问题,统称为线性规划问题。满足线性约束条件的解(,)x y 叫做可行解,由所有可行解组成的集合叫做可行域。在上述问题中,可行域就是阴影部分表示的三角形区域。其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解。 O y x A C 430x y -+= 1x = 35250x y +-=

一元一次不等式知识点总结

四、列一元一次方程解应用题的步骤有: 1、审清题意:应认真审题,分析题中的数量关系,找出问题所在。 2、设未知数:用字母表示题目中的未知数时一般采用直接设法,当直接设法使列方程有困难可采用间接设法,注意未知数的单位不要漏写。 3、找等量关系:可借助图表分析题中的已知量和未知量之间关系,列出等式两边的代数式,注意它们的量要一致,使它们都表示一个相等或相同的量。 4、列方程:根据等量关系列出方程。列出的方程应满足三个条件:各类是同类量,单位一致,两边是等量。 5、解方程:求出方程的解. 方程的变形应根据等式性质和运算法则。 6、检验解的合理性:不但要检查方程的解是否为原方程的解,还要检查是否符合应用题的实际意义,进行取舍,并注意单位。 7、作答:正确回答题中的问题。 五、常见的一元一次方程应用题: 1、和差倍分问题: (1)增长量=原有量×增长率; (2)现在量=原有量+增长量 2、等积变形问题: 常见几何图形的面积、体积、周长计算公式,依据形虽变,但面积不变。 (1)圆柱体的体积公式 V=底面积×高=S ·h = r 2h (2)长方开的面积 周长=2×(长+宽) S=长×宽 3、数字问题: 一般可设个位数字为a ,十位数字为b ,百位数字为c 。 十位数可表示为10b+a , 百位数可表示为100c+10b+a 。 然后抓住数字间或新数、原数之间的关系找等量关系列方程。 4、市场经济问题:( 以下“成本价”在不考虑其它因素的情况下指“进价” ) (1)商品利润=商品售价-商品成本价 (2)商品利润率=商品利润商品成本价 ×100% (3)售价=成本价×(1+利润率) (4)商品销售额=商品销售价×商品销售量 (5)商品的销售利润=(销售价-成本价)×销售量 (6)商品打几折出售,就是按原标价的百分之几十出售,如商品打8折出售,即按原标价的80%出售。或者用标价打x 折: 折后价(售价)=标价×10 x 计算。 5、行程问题:路程=速度×时间; 时间=路程÷速度; 速度=路程÷时间。 (1)相遇问题: 快行距+慢行距=原距 (2)追及问题: 快行距-慢行距=原距 (3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度 逆水(风)速度=静水(风)速度-水流(风)速度 抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系. 6、工程问题: (1)工作总量=工作效率×工作时间; 工作效率=工作总量÷工作时间 (2)完成某项任务的各工作总量的和=总工作量=1 (3)各组合作工作效率=各组工作效率之和 (4)全部工作总量之和=各组工作总量之和

基本不等式知识点归纳教学内容

基本不等式知识点归 纳

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+r r r r r r ≤≤ 【注意】: a b r r 、同向或有0r ?||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r u r u r u r ; a b r r 、反向或有0r ?||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r u r u r u r ; a b r r 、不共线?||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得 等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R +∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+>、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ;

不等式知识点总结及题型归纳

不等式的基本知识 一、解不等式 1、一元二次不等式的解法 一元二次不等式()0002 2 ≠<++>++a c bx ax c bx ax 或的解集: 设相应的一元二次方程()002 ≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42 -=?,则 不等式的解的各种情况如下表: 0>? 0=? 0a )的图象 c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根 00 2>=++a c bx ax 有两相异实根 )(,2121x x x x < 有两相等实根 a b x x 221- == 无实根 的解集)0(02>>++a c bx ax {}2 1 x x x x x ><或 ???? ??-≠a b x x 2 R 的解集 )0(02><++a c bx ax {}21 x x x x << ? ? 2、简单的一元高次不等式的解法: 标根法:其步骤是: 1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正; 2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回; 3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。()()()如:x x x +--<11202 3

3、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。 ()()0() () 0()()0;0()0() ()f x g x f x f x f x g x g x g x g x ≥?>?>≥??≠? 4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B < 二、线性规划 1、用二元一次不等式(组)表示平面区域 二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法 由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念: ①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数: 关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标

不等式知识点总结

期末复习之不等式知识点 2 3 1) (x – 2)(ax – 2)>0 (2)x2–(a+a2)x+a3>0; (3)2x2 +ax +2 > 0; 注: 解形如ax2+bx+c>0的不等式时分类讨论的标准有: 1、讨论a与0的大小; 2、讨论⊿与0的大小; 3、讨论两根的大小;运用的数学思想: 1、分类讨论的思想; 2、数形结合的思想; 3、等与不等的化归思想(4)含参不等式恒成立的问题: 例1.已知关于x的不等式 在(–2,0)上恒成立,求实数a的取值范围. ? ? ? ?? ? ? ? ? ? ≠ ≤ ? ? ≤ > ? ? > )x(g )x(g )x(f )x(g )x(f )x(g )x(f )x(g )x(f 22 (3)210 x a x a +-+-< ? ? ? ? ? 用图象 分离参数后用最值 函数 、 、 、 3 2 1

例2.关于x 的不等式 对所有实数x ∈R 都成立,求a 的取值范围. 4 第一步:在平面直角坐标系中作出可行域; 第二步:在可行域内找到最优解所对应的点; 第三步:解方程的最优解,从而求出目标函数的最大值或最小值。 5 (1),a b R ∈?222a b ab +≥(当且仅当a =b 时取“=”号). (2),a b R +∈?2 a b +≥当且仅当a =b 时取“=”号). (3),a b R +∈?22a b ab +??≤ ??? (当且仅当a =b 时取“=”号). 总结:已知y x ,都是正数,则有 (1)如果积xy 是定值p ,那么当且仅当y x =时和y x +有最小值p 2; (2)如果和y x +是定值s ,那么当且仅当y x =时积xy 有最大值24 1s . (3)用均值不等式求最值时,若不正,则要加负号,若不定,则要凑定值,若不等,则求导考虑单调性。 )1(log 22++-=ax ax y y z x =z ax by =+22y x z +=

关于高级高中数学不等式知识点总结归纳教师版

高中数学不等式专题教师版 一、高考动态 考试内容: 不等式.不等式的基本性质.不等式的证明.不等式的解法.含绝对值的不等式. 考试要求: (1)理解不等式的性质及其证明. (2)掌握两个(不扩展到三个)正数的算术平均数不小于它们的几何平均数的定理,并会简单的应用. (3)掌握分析法、综合法、比较法证明简单的不等式. (4)掌握简单不等式的解法. (5)理解不等式│a│-│b│≤│a+b│≤│a│+│b│ 二、不等式知识要点 1.不等式的基本概念 (1)不等(等)号的定义:. - = < ? a< ? = > - ? > - b a 0b a ; ; b a a b b a b (2)不等式的分类:绝对不等式;条件不等式;矛盾不等式. (3)同向不等式与异向不等式. (4)同解不等式与不等式的同解变形. 2.不等式的基本性质 (1)a ? >(对称性) a< b b (2)c ? > a> >,(传递性) a c b b (3)c + ? >(加法单调性) a+ > c a b b (4)d > + ? a+ >,(同向不等式相加) > c b a b c d (5)d - ? >,(异向不等式相减) a- < > c b a b d c (6)bc >0 , . > ac c b a> ?

(7)bc ac c b a 0,(乘法单调性) (8)bd ac d c b a >?>>>>0,0(同向不等式相乘) (9)0,0a b a b c d c d >><(异向不等式相除) 11(10),0a b ab a b >>? <(倒数关系) (11))1,(0>∈>?>>n Z n b a b a n n 且(平方法则) (12))1,(0>∈>?>>n Z n b a b a n n 且(开方法则) 3.几个重要不等式 (1)0 ,0||,2 ≥≥∈a a R a 则若 (2))2||2(2,2222ab ab b a ab b a R b a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号) (3)如果a ,b 都是正数,那么 .2 a b +(当仅当a=b 时取等号) 极值定理:若,,,,x y R x y S xy P +∈+==则: ○ 1如果P 是定值, 那么当x=y 时,S 的值最小; ○ 2如果S 是定值, 那么当x =y 时,P 的值最大. 利用极值定理求最值的必要条件: 一正、二定、三相等 . ,3 a b c a b c R +++∈(4)若、、则 a=b=c 时取等号) 0,2b a ab a b >+≥(5)若则(当仅当 a=b 时取等号) (7)||||||||||||,b a b a b a R b a +≤±≤-∈则、若 4.几个著名不等式 (1)平均不等式: 如果a ,b 都是正数,那么 2 112a b a b ++(当仅当a=b 时取 等号)即:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数): 特别地,22 2()22 a b a b ab ++≤≤ (当a = b 时,22 2()22 a b a b ab ++==) ?幂平均不等式:2212 22 21)...(1 ...n n a a a n a a a +++≥+++ 注:例如:22222()()()ac bd a b c d +≤++.

基本不等式知识点归纳

向量不等式: 【注意】:同向或有; 反向或有; 不共线.(这些和实数集中类似) 代数不等式: 同号或有; 异号或有. 绝对值不等式: 双向不等式: (左边当时取得等号,右边当时取得等号.) 放缩不等式: ①,则. 【说明】:(,糖水的浓度问题). 【拓展】:. ②,,则; ③,; ④,. ⑤,. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0). 基本不等式知识点总结 重要不等式 1、和积不等式:(当且仅当时取到“”). 【变形】:①(当a = b 时,) 【注意】: , 2、均值不等式: 两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均算术平均几何平均调和平均” *.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” );

若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=” ) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) *.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 3、含立方的几个重要不等式(a 、b 、c 为正数): (,); *不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时, ab b a 222≥+同时除以ab 得 2≥+b a a b 或b a a b -≥-11。 *,,b a 均为正数,b a b a -≥22 八种变式: ①222b a ab +≤ ; ②2 )2(b a ab +≤; ③2)2( 222b a b a +≤+ ④)(22 2 b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则b a b a +≥+4 11;⑦若a>0,b>0,则ab b a 4)11( 2≥ +; ⑧ 若0≠ab ,则2 22)11(2111b a b a +≥+。 上述八个不等式中等号成立的条件都是“ b a =”。 最值定理 (积定和最小) ①,若积,则当时和有最小值; (和定积最大) ②,若和,则当是积有最大值. 【推广】:已知,则有. (1)若积是定值,则当最大时,最大;当最小时,最小. (2)若和是定值,则当最大时,最小;当最小时,最大. ③已知,若,则有则的最小值为: ④已知,若则和的最小值为: ①. ② 应用基本不等式求最值的“八种变形技巧”: ⑴凑系数(乘、除变量系数).例1.当 时,求函的数最大值. ⑵凑项(加、减常数项):例2.已知 ,求函数的最大值. ⑶调整分子:例3.求函数的值域; ⑷变用公式:基本不等式有几个常用变形,,不易想到,应重视; 例4.求函数的最大值; ⑸连用公式:例5.已知,求的最小值;

相关文档
相关文档 最新文档