文档库 最新最全的文档下载
当前位置:文档库 › 往复式压缩机或泵装置管道的振动计算

往复式压缩机或泵装置管道的振动计算

往复式压缩机或泵装置管道的振动计算
往复式压缩机或泵装置管道的振动计算

往复式压缩机或泵装置管道的振动计算

曲文海

(中国寰球工程有限责任公司,北京 100029)

本文主要论述往复式压缩机或泵装置管道振动的原因、危害性。结合工程中高压和超高压往复式压缩机的工程实践归纳出管道防振设计、计算及设计准则。

1 前言

往复式压缩机和泵常用于石油、化工等装置中,由于这种压缩机或泵在运转时存在流体压力波动(脉动),对装置的管道系统会产生振动,特别对于大型高压和超高压往复式压缩机装置管道系统的振动更大,因而振动成为这类装置管道设计中必须考虑和解决的问题。

本文主要论述大型高压和超高压往复式压缩机或泵装置管道振动的分析、计算、评定和减振措施。

2 管道振动产生的原因和危害性

往复式压缩机或泵在运转中,其汽(液)缸的吸气(液)、排气(液)是脉动的,因为在压缩机或泵的曲轴上处于不同相位角的各汽(液)缸,在曲轴旋转的每一瞬间,有的缸在吸气(液),有的缸在排气(液),所以在压缩机或泵的吸排气(液)侧管道内的流体呈脉动状态流动。这种脉动的流体在管道内形成脉动气(液)压和脉动声压力,使管道系统产生机械振动、声压振动和很大的噪声。

管道在不同的振动频率下对应地产生不同的振幅(位移)和脉动应力幅,这种脉动的应力会对管道系统产生疲劳破坏。管道材料在一定的脉动应力幅下有一定的疲劳寿命,当振动达到管道材料的疲劳寿命时,管道就被破坏。如果管道的气流或气压脉动频率与管道自身的固有振动频率相等时,就出现共振,管道立刻会破坏。管道内脉动气(液)流的脉动压力幅愈大,对管道的振幅和振动应力幅也愈大,相应使管道的疲劳寿命缩短。为了避免出现上述问题,必须控制往复式压缩机或泵装置管道的气(液)流脉动压力幅、振幅和振动应力幅。3 机器振动的振动强度等级

机械振动的强弱与振动速度和振幅成正比,与机器的功率大小、结构类型有关;功率愈大,振动愈大;往复运动的机器比纯旋转运动的机器的振动大;往复压缩中,非平衡型比平衡型的振动大。为了判断和评定振动的强弱,在工程技术上制定有机械振动强度等级标准。振动强度等级标准如表1和图1所示。

表1 振动频率f高于10Hz的机械振动强度等级

注:1. 本表引自VDI 2056(Verein Deutscher Ingenieure)。

2. 有效振动速度V

ef

为谐波振动的极限值,V

ef

=V^/√

_

2=1

_

_

2 S

^ 2πf,式中, S^为平均振幅,f为振动频率Hz,V^ 为平均振动速度。

4 振动机器的级别分类

振动机器的级别一般分为5类(引自VDI 2056标准)。

(1) K类机器 小型机器,驱动机功率P≤15kW。

(2) M类机器 中型机器,驱动机功率(kW)15<P≤75;在特殊情况下,功率可达P=300kW。

(3) G类机器 大型机器,安装在高大坚固基础上的

5.2 准则

(1) 按振动频率规定管道的允许振幅 管道振动的强弱与其振幅大小有关,通过对大量往复压缩机和泵装置管道的振动测定和分析研究得出下列管道振动频率f与允许振幅S的关系式:

(1)

式中 S——管道的允许振幅(峰值-峰值),密耳(mils); RPM——往复压缩机或泵的转速,r/min;

N——往复压缩机或泵转速的谐波阶数,N=1,2,3…,为相对于压缩机或泵转速下的谐波阶数。

根据公式(1)绘制了图2所示的往复压缩机或泵装置管道的振动频率f 与振幅S的关系图(评定准则)

图2 允许的管道振动强度

注:图2为根据很好的工程实践得出的对于管道系统的振动极限。对于重要的管道、非加强的连接支管还应定出补充的允许振动值。

由图2确定允许振幅的实例如下:

a. 往复压缩机转速为60r/min的1阶(N=1)振动频率f≈8Hz,管道的允许振幅S=20mils;

b. 往复压缩机转速为350r/min的1阶(N=1)振动频率f≈19Hz,管道的允许振幅S=8mils;

c. 往复压缩机转速为300r/min的10阶(N=10)振动频率f≈55Hz,管道的允许振幅S=2mils。

图1 振动强度等级界限(VDI 2056标准)

重载大功率机器。

(4) T类机器 安装在大型基础上仅带旋转质量的大功率透平机,如蒸汽透平、透平压缩机。

(5) D类机器 安装在大型基础上不带平衡质量的往复式运动机器和传动机械,如非平衡型往复压缩机、大型对称或对置平衡型往复压缩机。

5 管道的振动分析、计算及评定

5.1 任务和目的

为了防止往复式压缩机或泵装置管道系统产生过大振动而破坏,在管道的设计中需要进行振动计算。振动计算的任务和目的主要解决下列问题。

(1) 根据往复式压缩机或泵及管道的操作参数和结构,确定不会出现振动破坏的允许压力脉动百分率(%)。

(2) 计算管道的振动频率、振速和振幅,根据有关标准规范评定管道振动的安全性。

(3) 计算管道振动的循环应力和应力幅,对管道进行疲劳计算,

确定管道的疲劳寿命。

对于高度平衡的往复压缩机为对置平衡型高压、超高压往复压缩机装置,可用图3所示的振动频率f—平均振幅S^

图来评定管道振动的安全性。

图3 振动的评定范围(D类机器)

注:本图引自VDI 2056标准。

(2) 按允许压力脉动百分率(%)评定管道振动的安全性。

a. 由于压力脉动会引起管道振动,而振动产生的循环应力是管道破坏的直接原因,故控制管道的压力脉动百分率即可控制其振动应力。根据对大量动力装置振动计算分析的结果,得出评定管道安全运行的允许压力脉动百分率的经验公式,如下。

(2)

式中 PUL——管道任一处的允许压力脉动百分率,%, 即管道平均绝对压力的百分数;

P——管道内的平均流体压力,psia;

ID——管道内径,in(1in=0.0254m);

f——管道内流体压力脉动频率,Hz。式中 RPM——往复压缩机曲轴转速,r/min;

N——相对于压缩机转速下N=1阶,2阶,3阶,…谐波的谐波阶数。

为便于计算,可将公式(2)制成图4所示的诺谟图(列线图)来计算(查)管道的允许压力脉动(峰值-峰值)

百分率。

d. 对于装有压力脉动抑制装置的往复压缩机管道,当稳定气流通过压力脉动抑制装置处的静压力降?P不大于该处绝对气体压力的0.25%或按下列经验公式(5)计算的结果两者的大者时,可以满足管道压力脉动程度不大于其最大允许压力脉动百分率。

(5)式中 ?P——稳定气流通过管道压力脉动抑制装置的允 许静压力降百分率(即平均绝对压力的百 分数),%;

R——压缩机级的压缩比。

(3) 计算管道的振动应力,评定管道的疲劳寿命a. 悬臂支撑管道的振动应力(见图5)按悬臂梁计算,管道的力学参数分别如下。

挠度 β= ql4

(6)

弯矩 M= ql2

弯曲应力σ=因为 = , 所以弯曲应力σ=管道由振幅β产生的振动应力(7)

其中,D为管道外径;W为管道断面模数;E为管道

材料弹性模量;J为管道惯性矩。

由公式(7)知振动应力与管长的平方成反比。

图5 悬臂支撑管

q—管道的自重均布载荷;l—管道的悬臂长度;

β—管道的挠度或振幅;σV—管道的弯曲应力或振动应力;

b. 实际配管的振动应力计算

实际配管的例子如图6所示。

管道推力F1=F2= π

—4 

d2p

(8)

管道在l1和l2长度方向的弹性变形(伸长)

(9)

管道的压力脉动(?p)对管道产生振动的振幅

式(10)、式(11)中?F1、?F2分别为l1管和l2管中的压力脉动(压力差?p)引起的推力。

管道的振动应力

在应力评定中,当l1<l2时,只考虑σV1

;当l1>l2时,

只考虑σV2

对于各种管径D和振幅β下的管子振动应力列于表2。

?P=5(R-1)

3R

8EJ

W l4 2 W

M 8EJβ l2

1=( × )×β1= ,β2=AEF1l1AE

F2l

WJ2Dl2

2EDβl22EDβ

σV=表2 由管径D和振幅β决定的管道支撑处的振动应力σ

注:表中的振动应力σV为管长l=1m的值;当管长l为其他值时,

表中应力值应乘以1/l2

图6 实际配管

p—管道内气体压力;d—管道内径;A—管道截面积;β—管子的实

际振幅;β1、β2—水平和垂直管段的弹性变形(伸长);F1、F2—气体压力作用在管道上的推力;E—管道的弹性模量

c. 由两端支架支撑的管道振动应力

管道的实际配管多采用支架支撑,这种管道属于双支点管道的振动计算。双支点支架的固定方式如图7所

Ⅰ. 双支点管道在两支架中间的振动应力

Ⅱ. 双支点管道在两支架支点处的振动应力

对于各种管径D和振幅β下的管子振动应力列于表3。

表3 由管径D和振幅β决定的双支架管道支撑处的

振动应力

注:表中的振动应力为管长l=1m的值;当管长l为其他值时,表

中应力值应乘以1/l2

(4) 管道振动的疲劳寿命

由于管道的过大振动循环应力对管道会产生疲劳破坏,故需要估算管道的振动疲劳寿命。

首先计算管道的振动平均应力幅S^,然后利用管道材料的设计疲劳曲线查出管道的允许振动循环次数,因而得出其振动的使用寿命。对碳钢、低合金钢、高合金钢和温度t≤370℃的高强钢的疲劳曲线见图8。

(5) 管道的共振

往复式压缩机或泵装置管道系统的振动包括4个方面的振动,它们的振动频率分别如下。

a. 往复压缩机或泵装置管道的机械振动基本频率f1

σV中≈6.4( ) (14)

2EDβ σV端

≈8( ) (15)l2

EDβ

f1=K1nN

f4= ×λ22πls

2EJg

AR

作用汽(液)缸,K2=1;

C——气流在管内的音速,m/s,C=KVPm×105,K 为气体的绝热压缩指数,V为气体比容,单 位m3/kg,Pm为管道内的气体绝压; m——脉动气压的谐振阶次,m=1,2,3…,为 1阶、2阶、3阶…的谐振阶次; le——管道系统的当量管长,m;

λ——管道的固有谐振系数,管道两端简支的1阶 谐振λ1=π,2阶谐振λ2=2π,管道两端固支的 λ1=4.73,λ2=7.85; ls——管道支架间距,m;

g——重力加速度,g=9.81m/s2; E——材料的弹性模量,kg/m2; J——管子断面惯性矩,m4;

R——管子外径,m; A——管子截面积,m2。

当上述4个方面的振动频率f相互相等时,管道就会产生共振而破坏。为了避免破坏,必须保证各振动频率间相差一定的安全距离。

一般控制下列几对振动频率f不重合:f1与f4不得重合;f2与f4不得重合;f2与f3不得重合。

6 管道的防振结构设计

对于往复式压缩机或泵装置管道系统,为了降低振动程度和防止出现共振,在管道的配管结构设计中应考虑防振措施。根据大量的工程实践经验,可采取下列防振措施。

(1) 往复式压缩机或泵的吸气(液)和排气(液)管尽量靠近地面。

(2) 管道的配置尽量接近地面或墙壁,以便缩短支架高度或长度,提高其刚度。

(3) 配管中弯管的曲率半径应大,使弯管呈钝角。(4) 增大管道支架的刚度,并且支架与基础的连接必须坚固。

(5) 管道的支撑点尽量靠近弯头和螺纹连接处,这样可使弯头处发生的起振力不会影响到管道的另一端。

(6) 管道和支架的连接螺栓应坚固,必须有防松措施,如防松垫圈;在装置运行期间,定期检查螺栓的松动情况和紧固。

(7) 选择合适的管道支架结构和支架间距,并留有增加支架的位置。

(8) 在往复式压缩机(泵)的吸、排气(液)管上装抑制气(液)流压力脉动的合适容积的缓冲罐、节流孔板等装置。

对于高压和超高压往复压缩机装置的管道系统,一般在其吸气管和排气管侧装节流孔板,如图9和图

10所示。

图9 用于往复压缩机吸气管上的节流孔板(h<d

离心压缩机噪音和震动

百度文库- 让每个人平等地提升自我! 1 离心式制冷压缩机的振动和噪声 离心式制冷压缩机的振动和噪声 一、振动 高速旋转的叶轮受旋转的离心力及气体轴向力的合力作用。在正常运转时,作用于叶轮上各种力处于平衡状态,若机组出现较大的振动,则破坏这种平衡。大的振动可使转子与固定元件之间相互接触。摩擦、挤压、冲撞而酿成大的事故,应予以注意; 1.1、振动损坏机组的现象 1.1.1、转子在轴承间振动,当振幅的大小通过了规定允许的数值时将出现较大的噪声。 1.1.2、转子轴向窜动,使推力块上的巴氏合金磨损、烧熔、拉痕等。在机内会发生尖厉的金属撞击声。轴承部位振动加剧,甚至达到振幅最高时的极限值。轴承温度急剧升高。 1.1.3、铝叶轮与铁机壳表面接触后会发生磨损、挤烂、开裂、破碎。叶轮内孔与油连接的平键、螺钉等变形、扭弯、断裂。机内气封、油封等磨损、挤烂。 1.1.4、大小齿轮的啥合面磨损、齿联、挤烂。径向轴承巴氏合金内孔拉痕、磨损、烧熔。箱体连接部分松动等。 1.2、产生振动的原因 1.2.1、转子的动不平衡 任何一个振动系统的物体,都具有本身的振动频率,称为该物体的固有频率。对设计好的压缩机转子也有确定的固有频率。当离心式压缩机旋转时,转子总会受到一些干扰力的作用,如转子本身重量、材质的不均匀,加工过程中的偏差等,使转子质量产生偏心,并使转子在运转过程中产生动不平衡。当干扰力的频率(即转子旋转的频率)与振动系统的固有频率相等时,出现共振现象。 1.2.2积垢或变形 在停车或运行中由于制冷剂中含有空气或水分形成化合物而积垢在叶轮表面(有的积垢达3mm以上);或者由于主轴刚度不够产生弯曲或扭曲变形、螺钉松动、齿轮破坏等原因引起较大的振动。或者推力块的磨损过大。改变了推力轴承间隙使主轴窜动,造成转子与蜗室相撞等也是造成转子振动的原因。 1.2.3安装质量不良 如离心式压缩机与电动机连接时轴承孔不同心;径向滑动轴承间隙过大或轴承盖的过盈过小;梳齿密封或油封齿与转子的径向间隙过小,甚至小于主轴的挠度值,造成转子与齿尖的碰撞;在安装进、出气管时,考虑的热膨胀间隙不够而引起附加的扭曲变形,破坏了转子旋转时与固定元件的同心;机组的基础浇灌不好以致下沉或机组防振措施失效等。这些均会引起机组较大的振动。 1.2.4油膜不稳定 油温过高或过低,或者油中溶入大量制冷刺时,形不成油膜或油膜不稳定,亦使转子振动。。 1.2.5喘振 离心式压缩机发生喘振的原因是:进口压力或流量突然(瞬间)降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致机出口压力降低.但是系统管网的压力没有瞬间相应地降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于机出口压力时,气体又向系统管网流动.如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象.

《泵与压缩机》综合复习资料

《泵与压缩机》综合复习资料 一、简述题 1.简述离心泵的抗汽蚀措施,说明较为有效实用的抗汽蚀措施。 2.简述离心压缩机的单级压缩和多级压缩的性能特点。 3.简述往复活塞式压缩机的工作循环,指出工作循环中的热力过程。 4.简述离心泵的性能曲线,说明性能曲线的主要用途。 5.简述离心压缩机的喘振工况和堵塞工况,说明对离心压缩机性能影响较大的特殊工况。 6.简述往复活塞式压缩机的排气量调节方法,说明较为实用有效的调节方法。 7.简述离心泵的主要零部件,说明离心泵的工作原理。 8.简述往复活塞式压缩机的动力平衡性能,说明动力平衡的基本方法。 9.简述离心泵的速度三角形和基本方程式。 10.简述离心压缩机的工况调节方法,说明较为节能实用的工况调节方法。 11.简述往复活塞式压缩机多级压缩的性能特点。 二、计算题 1.一台离心水泵,实测离心泵出口压力表读数为0.451 MPa,入口真空表读数为256 mmHg,出口压力表和入口真空表之间的垂直距离Z SD=0.5 m,离心泵入口管径与出口管径相同,水密度ρ=1000 kg/m3。求离心泵的实际扬程H(m)。 2.一台单级双吸式离心水泵,流量Q=450 m3/h,扬程H=92.85 m,转速n=2950 r/min。 求离心泵的比转数n s。 3.一台单级离心式空气压缩机,压缩机叶轮圆周速度u2=255.235 m/s,流量系数φ2r=0.28,叶片出口安装角β2A=50o,叶片数z=20。求离心压缩机的理论能头H T(J/kg)。 4.一台离心泵流量Q1=100.0 m3/h,扬程H1=80.0 m,功率N1=32.0 kW,转速n1=2900 r/min。求离心泵转速调节至n2=1450 r/min时的流量Q2(m3/h)、扬程H2(m)和功率N2(kW)。 5.一台离心水泵,离心泵样本允许汽蚀余量[H s]=5.0 m,使用当地大气压p a′=0.07 MPa,

压缩机振动位移安装注意事项

压缩机振动位移安装注意事项 许居贵 一、压缩机测量仪表 1.振幅 也就是振动的幅值。振幅是描述振动大小的一个重要参数。 运行正常的设备,其振动幅值通常稳定在一个允许的范围内, 如果振幅提高变化,便意味着设备的状态有了改变。因此可 以用来判断设备的运行状态。 2.转速 压缩机的转速变化与设备的运行状态有着非常密切的关系, 它不仅表明了设备的负荷,而且当设备发生故障时,通常转 速也会有相应的变化。例如当离心式压缩机组发生喘振时, 转速会有大幅度的波动:当转子与静止件发生碰磨时,转速 也会表现得不稳定。因此,转速通常是设备状态监测与故障 诊断中比较重要的参数。 3.轴位移 轴向位置是止推盘和止推轴承之间的相对位置。因为转子系 统动静件之间的轴向摩擦是压缩机常见的故障之一,同时也 是最严重的故障之一,所以轴位移也是最重要的参量之一。

对轴位移的监测是为了防止转子系统动静件之间摩擦故障的 发生。除些之外,当机器的负荷或机器的状态发生变化时, 例如压缩机组喘振时,轴向位置会发生变化。因此轴向位置 的监测可以为判断设备的负荷状态的冲击状态提供必要的信 息。 二、振动、位移测量 在对转轴振动、位移测量仪器中,电涡流传感器使用最广泛。世界上第一支电涡流传感器是由美国Doald E.Bently于1954年研究并应用于工业生产的。 1、工作原理 电涡流传感器的工作原理是电涡流效应。当接通传感器系统电源时,在前置器内会产生一个高频电流信号,该信号通过电缆送到探头的头部,在头部周围产生的交变磁场H1。如果在磁场H1的范围内没有金属导体材料靠近,则发射到这一范围内的能量全部被释放;反之,如果有金属导体材料靠近探头头部,则交变磁场H1将在导体表面产生电涡流场,该电涡流场也会产生一个方向与H1相反的交变磁场H2.由于H2的反作用,就会改变探头头部线圈高频电流的幅度和相位,即改变了线圈的有效阻抗。 H1

离心式压缩机振动故障与探讨

离心式压缩机振动故障与探讨 发表时间:2018-10-18T10:13:24.517Z 来源:《电力设备》2018年第19期作者:魏取满[导读] 摘要:随着我国现代工业的快速发展,对于压缩机的要求也在不断增强。(安徽晋煤中能化工股份有限公司安徽阜阳 236400)摘要:随着我国现代工业的快速发展,对于压缩机的要求也在不断增强。离心式压缩机也被称之为透平式压缩机,可以利用叶轮旋转的方式来提升目的设备,保证工业生产的效果。本文通过对于离心式压缩机常见的振动故障进行深入的探究,并且提出相关的解决对策,从而有效提高离心式压缩机的使用维护效果。 关键词:离心式压缩机;振动故障;解决对策离心式压缩机能够通过向空气施加压力的方式提高进气压力的整体质量,并且将气体转化为压力,在工业生产中的应用越来越普遍。但是在离心式压缩机实际运行的过程中经常会由于振动而引发各种故障,很容易导致离心式压缩机的使用寿命受到影响。为了能够进一步加强离心式压缩机的运行可靠性与安全性,必须要积极解决离心式压缩机在运行过程中产生的振动故障,从而有效提高离心式压缩机运行的稳定性。 一、离心式压缩机 从目前来看,离心式压缩机相比于过去活塞式压缩机具有明显的优点。首先离心式压缩机由于自身的气量大、结构简单、质量较轻,而且占地面积较小,所以不受场地限制,可以随处安装[1]。另外离心式压缩机具有运转平衡、操作可靠的优点,所以也会有效的减少维修费用,降低人工维修成本。减少配件的摩擦,提高机器的整体使用寿命。而且离心式压缩机能够对化工介质进行绝对无油的压缩,可以有效避免化工介质的污染。离心式压缩机作为回转运动机器,能够在工业汽轮机和燃气轮机中直接拖动,通常可以用于蒸汽驱动工业汽轮机做动力,并且可以保证热能的综合利用。当气体流入到离心式压缩机叶轮中。旋转的叶轮会导致气体的离心压力不断升高,而且进一步促进气体的流动速度。通过离心式压缩机能够将原先的机械能转变为气体的动能,而且气体在通过扩压器之后,由于流道截面逐渐增大,气体分子流速下降,所以后面的分子气体不断向前流动,导致气体的大部分都能转变为静压能促进了气体增压的效果。叶轮对于气体的做工是保质期体升高压力的主要原因,所以叶轮在单位时间内产生的单位质量,以及对气体做功的多少是直接影响离心式压缩机运行效率的关键。通常来说,叶轮的圆周速度越大,则气体所做的功就越大。 图1 离心式压缩机结构图 另一方面,由于目前离心式压缩机的研制还处于初期阶段,所以离心式压缩机还存在许多天然的缺点,例如离心式压缩机还不能够适用于仪器量太小或者压缩比过高的场合,另外离心式压缩机的稳定工况比较狭窄,对于气量的调节比较差,离心式压缩机的工作效率要远低于活塞式压缩机[2]。 二、离心式压缩机振动故障 (一)离心式压缩机转子不稳定引发的振动由于在生产离心式压缩机的过程中材料自身存在缺陷或者生产技术不足,所以很容易导致转子结构无法实现离心式压缩机的平衡需求,进一步引发结构偏差,在转子长期旋转的过程中很容易受到离心力的影响,导致轴承的荷载发生偏转而引起振动的问题,在长期使用时由于离心式压缩机材料缺乏耐磨性,在长时间使用之后会因为材料磨损而出现严重的不平衡,也会导致离心式压缩机出现振动。由于大部分的轴承表面积没有进行打磨处理,也会导致整个结构出现不对称的问题,在转子运行的过程中由于人为因素而造成在转子加工过程中出现严重缺陷和偏差也会导致离心式压缩机运转受到影响。(二)转子中偏差问题 在转子运行的过程中由于不对称的现象出现转子运转偏差,主要受到方向、角度、平行等方面的影响。设备机组运行过程中进行观察和记录的过程中,如果轴承压力比较低或者明显减少,则很容易导致轴承的表面与轴承之间出现较大的缝隙,也会引发转子偏差的问题[3]。 (三)油膜振动 在离心式压缩机运行的过程中,油膜会因为运行时间的不断增加而逐渐加重导致油膜振动的现象。另外由于不同轴承的荷载能力也存在较大差异,这样也会造成油膜振动现象受到影响。(四)转子与汽封 在离心式压缩机摩擦现象研究的过程中,能够发现转子与气密封之间的摩擦弧度过大会造成元件的磨损问题,由于器密封与转子的联接部位会出现装机磨损,也会导致元件的磨损现象加重。 三、离心式压缩机安全运行的主要策略

管道的设计计算——管径和管壁厚度(精)

管道的设计计算——管径和管壁厚度 空压机是通过管路、阀门等和其它设备构成一个完整的系统。管道的设计计算和安装不当,将会影响整个系统的经济性及工作的可靠性,甚至会带来严重的破坏性事故。 A.管内径:管道内径可按预先选取的气体流速由下式求得: =i d 8.1821 ?? ? ??u q v 式中,i d 为管道内径(mm );v q 为气体容积流量(h m 3);u 为管内气体平均流速(s m ),下表中给出压缩空气的平均流速取值范围。 管内平均流速推荐值 1m 内的管路或管路附件——冷却器、净化设备、压力容器等的进出口处,有安装尺寸的限制,可适当提高瞬间气体流速。 例1:2台WJF-1.5/30及2台H-6S 型空压机共同使用一根排气管路,计算此排气管路内径。 已知WJF-1.5/30型空压机排气量为1.5 m 3/min 排气压力为3.0 MPa 已知H-6S 型空压机排气量为0.6 m 3/min 排气压力为3.0 MPa 4台空压机合计排气量v q =1.5×2+0.6×2=4.2 m 3/min =252 m 3/h 如上表所示u=6 m/s 带入上述公式=i d 8.1821??? ??u q v =i d 8.1821 6252??? ??=121.8 mm 得出管路内径为121mm 。

B.管壁厚度:管壁厚度δ取决于管道内气体压力。 a.低压管道,可采用碳钢、合金钢焊接钢管;中压管道,通常采用碳钢、合金钢无缝钢管。其壁厚可近似按薄壁圆筒公式计算: min δ= []c np npd i +-?σ2 式中,p 为管内气体压力(MPa );n 为强度安全系数5.25.1~=n ,取[σ]为管材的许用应力(MPa ),常用管材许用应力值列于下表;?为焊缝系数,无缝钢管?=1,直缝焊接钢管?=0.8;c 为附加壁厚(包括:壁厚偏差、腐蚀裕度、加工减薄量),为简便起见,通常当δ>6mm 时,c ≈0.18δ;当δ≤6mm 时,c =1mm 。 当管子被弯曲时,管壁应适当增加厚度,可取 'δ=R d 20δ δ+ 式中,0d 为管道外径;R 为管道弯曲半径。 b.高压管道的壁厚,应查阅相关专业资料进行计算,在此不做叙述。 常用管材许用应力 例2: 算出例1中排气管路的厚度。管路材料为20#钢 公式 min δ=[]c np npd i +-?σ2中 n=2 , p=3.0 MPa , i d =121 如上表20#钢150o C 时的许用应力为131,即σ=131 ?=1 , C =1 带入公式 min δ=[]c np npd i +-?σ2=1321131212132+?-????=3.8 mm 管路厚度取4 mm

空压机振动波动的原因及预防措施详细版

文件编号:GD/FS-2138 (解决方案范本系列) 空压机振动波动的原因及预防措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

空压机振动波动的原因及预防措施 详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 摘要:本文针对离心式空压机正常运行过程中出现因振动现象及出现喘振的现象,从空压机结构、工作原理及故障特征进行分析,以找到故障原因及影响,并在机组日常维护中做好相关预防措施。 关键词:空压机;振动波动;喘振;原因;措施。 引言 空分装置为化工企业的主要装置,空压机又是空分装置主要设备,空压机长期稳定运行,才能确保空分装置为其它工艺系统装置提供氧气及氮气。而振动是压缩机的常见故障,当振动过大时会影响压缩机的

可靠运行,给生产造成很大的损失,因此保证压缩机的安全可靠运行,对提高生产效率及经济效益有重要的意义。压缩机与电机由刚性联轴节相连接,变速箱中各级齿轮轴与压缩机叶轮为同一根轴,轴承的平衡对压缩机平稳运行至关重要。空压机是将经自洁式空气过滤器过滤后的原料空气,经空压机压缩送至预冷岗位。工作原理:电机将电能转化为机械能并传给叶轮,叶轮通过高速旋转将机械能传给气体,使空气获得速度能并变为压力能。此过程中动平衡和振动的平稳起着重要的作用。 2、流程简述 空气经自洁式空气过滤器过滤后,除去空气中大量灰尘和其它机械杂质,进入空压机中经三级压缩、三级冷却后,压力升至0.88MPa,温度不超过40℃

(完整word版)KCC219系列离心式空气压缩机

KCC215-9系列离心式空气压缩机 技术说明 浙江开山离心机械有限公司

目录 1、相关技术数据 2、产品特点 3、性能保证 4、性能测试情况介绍 5、技术服务和设计联络 6、甲方的备货范围 7、供货范围清单以及供应商 甲方(需方): 乙方(供方):浙江开山离心机械有限公司 2014 年 5 月18 日

KCC215-9 离心式空压机相关技术数据 项目/品牌开山 型号KCC215-9(215m3/min,0.9MPaA) 额定流量(m3/min)215(入口状态) 额定压力(BarG)8 空压机出口空气质量100%无油 节流范围(%)70~105%(对应进口导叶开度40~90°) 压缩段数 3 轴功率(KW)1035 冷却水消耗量(T/hr)130(含后冷却器用水) 冷却水温升(degC)8℃ 剖分形式水平剖分式平行轴斜齿整体齿轮增速齿轮箱 小齿轮材质17CrNiMo6 大齿轮材质17CrNiMo6 叶轮形式半开式、后倾式 叶轮材质17-4PH 高速轴轴向轴承形式推力盘 高速轴径向轴承形式水平剖分式可倾瓦轴承 高速轴油封形式迷宫 高速轴气封形式迷宫 低速轴(大齿轮轴)轴承形式水平剖分式轴套式滑动轴承 低速轴(大齿轮轴)油封形式迷宫式油封 蜗壳材质HT300 联轴器不锈钢膜片式并带防护罩 入口阀动力方式电动执行器调节进口导叶结构~220V ,4-20mA 放空阀动力方式电气动执行器,4-20mA 空气流道防腐处理材质按客户要求 扩压器材质铝合金 冷却器管束材质T2 冷却器翅片材质AL 疏水阀形式带有“V”形缺口的冷却器泄水阀 电机额定功率(KW)1120(华达) 额定电压(KV)10 电机转速(RPM)2975 电机效率:100%/75%/50%负荷0.95/0.95/0.94 电机功率因素:100%/75%/50%负荷0.88/0.85/0.77 绝缘等级 F 温升等级 B 防护等级IP23 启动方式液态软启动 启动电流(A) 3.5倍满载电流 电机轴承滚动轴承 电机轴承润滑脂润滑

《过程流体机械第二版》思考题答案_完整版..

《过程流体机械》思考题参考解答 2 容积式压缩机 ☆思考题2.1 往复压缩机的理论循环与实际循环的差异是什么? ☆思考题2.2 写出容积系数λ V 的表达式,并解释各字母的意义。 容积系数λV (最重要系数) λ V =1-α(n 1ε-1)=1-???? ??????-???? ??11 0n s d S p p V V (2-12) 式中:α ——相对余隙容积,α =V 0(余隙容积)/ V s (行程容积);α =0.07~0.12(低压),0.09~0.14(中压),0.11~0.16(高压),>0.2(超高压)。ε ——名义压力比(进排气管口可测点参数),ε =p d / p s =p 2 / p 1 ,一般单级ε =3~4;n ——膨胀过程指数,一般n ≤m (压缩过程指数)。 ☆思考题2.3 比较飞溅润滑与压力润滑的优缺点。 飞溅润滑(曲轴或油环甩油飞溅至缸壁和润滑表面),结构简单,耗油量不稳定,供油量难控制,用于小型单作用压缩机; 压力润滑(注油器注油润滑气缸,油泵强制输送润滑运动部件),结构复杂(增加油泵、动力、冷却、过滤、控制和显示报警等整套供油系统油站),可控制气缸注油量和注油点以及运动部件压力润滑油压力和润滑油量,适用大中型固定式动力或工艺压缩机,注意润滑油压和润滑油量的设定和设计计算。

☆思考题2.4 多级压缩的好处是什么? 多级压缩 优点:①.节省功耗(有冷却压缩机的多级压缩过程接近等温过程);②.降低排气温度(单级压力比小);③.增加容积流量(排气量,吸气量)(单级压力比ε降低,一级容积系数λV 提高); ④.降低活塞力(单级活塞面积减少,活塞表面压力降低)。缺点:需要冷却设备(否则无法省功)、结构复杂(增加气缸和传动部件以及级间连接管道等)。 ☆思考题2.5 分析活塞环的密封原理。 活塞环 原理:阻塞和节流作用,密封面为活塞环外环面和侧端面(内环面受压预紧);关键技术:材料(耐磨、强度)、环数量(密封要求)、形状(尺寸、切口)、加工质量等。 ☆思考题2.6 动力空气用压缩机常采用切断进气的调节方法,以两级压缩机为例,分析一级切断进气,对机器排气温度,压力比等的影响。 两级压缩机分析:1级切断进气→节流(实际ε1↑)→停止进气排气→2级节流(实际ε2↑)→(短暂)排气温度T2↑→(逐渐)停止进气排气(级间存气);活塞力↑(ε↑),阻力矩变化。 ☆思考题2.7 分析压缩机在高海拔地区运行气量的变化规律并解释其原因。 高海拔地区当地大气压力即吸气压力p s↓,若排气压力p d不变,则名义压力比ε↑,根据(2-12)式和(2-11)式,容积系数λV↓,实际吸气量V s0↓,容积流量q V↓。 ☆思考题2.8 一台压缩机的设计转速为200 r/min,如果将转速提高到400 r/min,试分析气阀工作情况。 定性分析,定量分析难。如压缩机结构参数(行程s、缸径D1、阀片尺寸等)不变,则容积流量q V↑↑(理论增加一倍),使气阀流速和阻力损失↑↑(激增),进排气频率↑,阀片启闭速度↑,阀片撞击阀座程度↑(加剧),阀片寿命↓(缩短),故障概率↑(增加)。解决问题需改变结构(缩短行程、减小缸径,增加气阀通道面积等)。 ☆思考题2.9 画出螺杆压缩机过压缩和压缩不足的指示图,并分析其对压缩机性能的影响。 压力比:内压力比(工作腔压缩终压/进气压力)、外压力比(排气管压/进气压力);(图2-42)内外压力比不相等时指示图。过压缩:内压力比>外压力比;欠压缩(压缩不足):内压力比<外压力比;过压缩和欠压缩均增加功耗,等压力比减少功耗。 3 离心压缩机 ☆思考题3.1 何谓离心压缩机的级?它由哪些部分组成?各部件有何作用?

离心压缩机振动分析及处理

龙源期刊网 https://www.wendangku.net/doc/bf8555753.html, 离心压缩机振动分析及处理 作者:余长雄 来源:《科技视界》2015年第28期 【摘要】独山子石化热电厂燃化车间现有四台200Nm3/min的离心式空气压缩机,2008 年投运以来运行平稳,但从2013年至今发生多次由于压缩机机体振动大跳停事件,通过分析压缩机振动大原因,制定相对应的防范措施,确保空气压缩机长周期平稳运行。 【关键词】压缩机;振动;防范措施 0 引言 独山子热电厂燃化车间现有4台200Nm3/min 0.8MPa的英格索兰3CⅡ80MX3型离心式空气压缩机,每台离心空气压缩机独立对应一台自洁空气过滤器和一台空气干燥器。 1 英格索兰3CⅡ80MX3型离心式空气压缩机介绍 英格索兰CENTAC离心式空压机是一种可靠高效的离心式压缩机,设计用来提供无油压缩空气,广泛应用在化工、炼油、电力行业等工业领域。该型空气压缩机拥有三级压缩缸,气体在流过离心式压缩机的叶轮时,高速旋转的叶轮使气体在离心力的作用下,一方面压力有所提高,另一方面速度也极大增加,即离心式压缩机通过叶轮首先将原动机的机械能转变为气体的静压能和动能。此后,气体在流经扩压器的通道时,流道截面逐渐增大,前面的气体分子流速降低,后面的气体分子不断涌流向前,使气体的绝大部分动能又转变为静压能,也就是进一步起到增压的作用。 2 离心空气压缩机振动故障分析 2.1 离心空气压缩机振动故障简介 1-3级压缩缸振动过大是离心空压机最常见的故障,其危害性最大。通常离心压缩机运行时1-3级振动不超过0.6mils,该机设定最高振动值第一级为1.3mils,第二级为1.15mils,第三级为1.1mils,超过此振动值时压缩机便会自动停机报警。如果设备长期处在高振动值状况下 运行,过高的振动会增加设备功率的消耗,加速摩擦接触面的磨损,使设备使用寿命缩短,严重时会引起拉缸、烧瓦等故障。虽然空压机对预防高振动加装了保护装置,但故障的存在使该装置频繁动作,影响到企业的正常生产。 2.2 空压机1-3级压缩缸振动故障及排除 2015年2月3日12:00时1#离心压缩机在备用近两个月后正常投入运行,0:41时监盘人员发现1#离心压缩机跳闸,班员迅速到空压机厂房检查,确认1#离心压缩机跳闸,1#离心

空压机振动波动的原因及预防措施

空压机振动波动的原因及预防措施摘要:本文针对离心式空压机正常运行过程中出现因振动现象及出现喘振的现象,从空压机结构、工作原理及故障特征进行分析,以找到故障原因及影响,并在机组日常维护中做好相关预防措施。 关键词:空压机;振动波动;喘振;原因;措施。 引言 空分装置为化工企业的主要装置,空压机又是空分装置主要设备,空压机长期稳定运行,才能确保空分装置为其它工艺系统装置提供氧气及氮气。而振动是压缩机的常见故障,当振动过大时会影响压缩机的可靠运行,给生产造成很大的损失,因此保证压缩机的安全可靠运行,对提高生产效率及经济效益有重要的意义。压缩机与电机由刚性联轴节相连接,变速箱中各级齿轮轴与压缩机叶轮为同一根轴,轴承的平衡对压缩机平稳运行至关重要。空压机是将经自洁式空气过滤器过滤后的原料空气,经空压机压缩送至预冷岗位。工作原理:电机将电能转化为机械能并传给叶轮,叶轮通过高速旋转

将机械能传给气体,使空气获得速度能并变为压力能。此过程中动 平衡和振动的平稳起着重要的作用。 2、流程简述 空气经自洁式空气过滤器过滤后,除去空气中大量灰尘和其它机械 杂质,进入空压机中经三级压缩、三级冷却后,压力升至0.88MPa,温度不超过40℃之后,经送气阀送往预冷机冷却。上图中1是叶轮,使空气具有很高的速度;2是扩压器部分,在那里将空气动能转化成势能;3是中间冷却器,除去压缩过程中所产生的热量,以便于实现等温压缩从而提高压缩效率;4是不锈钢丝网制成的的水气分离器,以除去空气中的水份。 离心式压缩机振动现象主要包括转子不平衡、对中不良、联轴器故障、油膜振荡等。

3.1转子的不平衡,旋转机械的转子由于受到材料质量和加工技术等各方面的影响,转子上的质量分布对中心线不可能绝对地轴对称,固此任何一个转子不可能做到绝对平衡,转子质量中心与旋转中心线之间总是有偏心距存在。这就使转子旋转时形成周期性的离心力干扰,在轴承上产生动载荷,使机器产生振动。转子质量不平衡的原因有:设计问题、材料缺陷、加工与装配误差、工艺过程等问题。转子不平衡故障特征是:在转子径向测检的频谱图上,转速频率成分具有凸出的峰值;转速频率的高次谐波值很低,因此反映在时域波形图上是一个正弦波;对于普通两端支撑的转子,轴向测点上的振值并不明显。 3.2转子的对中不良,各转子之间用联轴器联接传递运动和转矩,由于机组的安装误差、工作状态下热膨胀、承载后的变形以及机组基础的不均匀沉降等,有可能会造成机组工作时各转子轴线之间产生不对中。不对中将导致轴向、径向交变力,引起轴向振动和径向振动,而且振动会随不对中严重程度的增加而增大。

泵和压缩机第四章 活塞压缩机课后思考题答案

1比较活塞式压缩机理论工作循环和实际工作循环的区别,定性画出相应的工作循环图。(1)由于存在余隙容积,实际工作循环由膨胀、吸气、压缩和排气四个过程组成,而理论循环则无膨胀过程,这就使实际吸气量比理论值少。 (2)实际吸气和排气过程存在阻力损失,使实际气缸内吸气压力低于吸气管内压力Ps,实际气缸内排气压力高于排气管内压力Pd,而且压力有波动,温度有变化。 (3)压缩机工作中,活塞环、填料和气阀等不可避免会有泄漏。 (4)在膨胀和压缩过程中,气体与缸壁间的热交换使膨胀过程指数m’和压缩过程指数m 不断变化。 图书上P199 图4.3 书上P203 图4.4 2用简图说明压缩机吸气阀和排气阀的工作原理 压缩机气阀主要靠缸内外气体压力差控制启闭,只有当缸内气体膨胀到压力低于吸气管内压力P1并足以客服流动阻力时,才能顶开吸气阀,开始吸气。在吸气过程中缸内压力有波动,活塞到内止点A时吸气终了,吸气阀关闭。活塞自内止点回行时,缸内容积减小,气体进行压缩过程。当缸内压力P高于排气管内压力P2并足以克服阻力而顶开排气阀时才开始排气过程。图如书上P203 图4.4 3何为压缩机的标准排气量与实际排气量 实际排气量是经压缩机压缩并在标准排气位置排出气体的容积容量,换算到第一级进口标准吸气位置的全温度、全压力及全组分的状态的气体容积值。 标准排气量是将压缩压缩在标准排气位置的实际容积容量,换算到标准工况(760mmHg,0℃)的气体容积值称为标准排气量。 4了解活塞压缩机功率和效率的定义方法 (1)指示功率 压缩机中直接消耗于压缩气体的功即由示功器记录的压力—容积图所对应的功称为指示功。(2)轴功率 轴功率是压缩机驱动轴所需要的功率。 (3)驱动功率 驱动功率是原动机输出轴的功率。 效率 (1)等温理论效率 压缩机理论循环所需的等温理论功率是理想的最小功率,与相同吸气压力、相同吸气量下的实际指示功率的比值。 (2)等温总效率 等温总效率是等温理论功率与相应条件下的轴功率之比。 (3)绝热理论效率 压缩机的绝热理论功率与相同吸气压力、相同吸气量下的实际指示功率之比。 (4)绝热总效率 绝热总效率是绝热理论功率与相同条件下的轴功率的比值。 5分析多级压缩的特点 (1)节省压缩气体的指示功 (2)提高气缸容积利用率

管道承压计算公式

管道承压计算公式 一、根据设计压力计算壁厚 参照规范GB50316-2000<工业金属管道设计规范>计算公式P44,当直管计算厚度S1小于管子外径D 的1/6时,按照下面公式计算 公式1 S1= ) ]([21PY E PD +σ 公式2 S=S1+C1+C2 二、根据壁厚简单计算管道承受压力校核验算 公式1 P=S D ES +2)]([2σ

阀门磅级,MPA, BAR, PSI和公斤的含义和换算 阀门磅级,MPA, BAR, PSI和公斤的含义和换算 class 150 300 400 600 800 900 1500 2500 LB Mpa 1.6-2.0 2.5-5.0 6.3 10.0 13.0 15.0 25.0 42.0 MPA 150LB对应1.6-2.0MPa,300LB对应2.5-5.0MPa,400LB对应6.3MPa,600LB对应10MPa,800LB对应13MPa,900LB对应15MPa,1500LB对应25MPa,2500LB对应42MPa 我通常所用的PN,CLass,都是压力的一种表示方法,所不同的是,它们所代表承受的压力对应参照温度不同,PN欧洲体系是指在120℃下所对应的压力,而CLass美标是指在425.5℃下所对应的压力。所以在工程互换中不能只单纯的进行压力换算,如CLass300#单纯用压力换算应是2.1MPa,但如果考虑到使用温度的话,它所对应的压力就升高了,根据材料的温度耐压试验测定相当于5.0MPa。 阀门的体系有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120度)的许用工作压力为基准的“公称压力”体系。一种是美国为代表的以某个温度下的许用工作压力为代表的“温度压力体系” 美国的温度压力体系中,除150LB以260度为基准外,其他各级均以454度为基准。 150磅级(150psi=1MPa)的25号碳钢阀门在260度时候,许用应力为1MPa,而在常温下的许用应力要比1MPa大得多,大约是2.0MPa。 所以,一般说美标150LB对应的公称压力等级为2.0MPa,300LB对应的公称压力等级为5.0MPa等等。因此,不能随便按照压力变换公式来变换公称压力和温压等级。 PN是一个用数字表示的与压力有关的代号,是提供参考用的一个方便的圆整数,PN是近似于折合常温的耐压MPa数,是国内阀门通常所使用的公称压力。对碳钢阀体的控制阀,指在200℃以下应用时允许的最大工作压力;对铸铁阀体,指在120℃以下应用时允许的最大工作压力;对不锈钢阀体的控制阀,指在250℃以下应用时允许的最大工作压力。当工作温度升高时,阀体的耐压会降低。 美标阀门以磅级为表示公称压力,磅级是对于某一种金属的结合温度和压力的计算结果,他根据ANSI B16.34的标准来计算。磅级与公称压力不是一一对应的主要原因是磅级与公称压力的温度基准不同。我们通常使用软件来计算,但是也要懂得使用表格来查磅级。日本主要用K值表示压力等级。 对于气体的压力,在中国,我们一般更常用其质量单位“公斤”描述(而不是“斤”),单位kg。其对应的压强单位是“kg/cm2”,一公斤压力就是一公斤的力作用在一个平方厘米上。 同样,相对应于国外,对于气体的压力,常用的压强单位是“psi”,单位是“1 pound/inch2”, 就是“磅/平方英寸”,英文全称为Pounds per square inch。但是更常用的是直接称呼其质量单位,即磅(LB.),实际这LB.就是前面提到的磅力。把所有的单位换成公制单位就可以算出: 1 psi=1磅/inch 2 ≈0.068bar,1 bar≈14.5psi≈0.1MPa,欧美等国家习惯使用psi作单位。 在Class600和Class1500中对应欧标和美标有两个不同数值, 11MPa(对应600磅级)是欧洲体系规定,这是在《ISO 7005-1-1992 Steel Flanges》里面的规定;10MPa(对应600磅级)是美洲体系规定,这是在ASME B16.5里面的规定。 因此不能绝对地说600磅级对应的就是11MPa或者10MPa,不同体系的规定是不同的。 阀门的体系主要有2种:一种是德国(包括我国)为代表的以常温下(我国是100度、德国是120

离心压缩机噪音和震动

离心式制冷压缩机的振动和噪声 离心式制冷压缩机的振动和噪声 一、振动 高速旋转的叶轮受旋转的离心力及气体轴向力的合力作用。在正常运转时,作用于叶轮上各种力处于平衡状态,若机组出现较大的振动,则破坏这种平衡。大的振动可使转子与固定元件之间相互接触。摩擦、挤压、冲撞而酿成大的事故,应予以注意; 1.1、振动损坏机组的现象 1.1.1、转子在轴承间振动,当振幅的大小通过了规定允许的数值时将出现较大的噪声。 1.1.2、转子轴向窜动,使推力块上的巴氏合金磨损、烧熔、拉痕等。在机内会发生尖厉的金属撞击声。轴承部位振动加剧,甚至达到振幅最高时的极限值。轴承温度急剧升高。 1.1.3、铝叶轮与铁机壳表面接触后会发生磨损、挤烂、开裂、破碎。叶轮内孔与油连接的平键、螺钉等变形、扭弯、断裂。机内气封、油封等磨损、挤烂。 1.1.4、大小齿轮的啥合面磨损、齿联、挤烂。径向轴承巴氏合金内孔拉痕、磨损、烧熔。箱体连接部分松动等。 1.2、产生振动的原因 1.2.1、转子的动不平衡 任何一个振动系统的物体,都具有本身的振动频率,称为该物体的固有频率。对设计好的压缩机转子也有确定的固有频率。当离心式压缩机旋转时,转子总会受到一些干扰力的作用,如转子本身重量、材质的不均匀,加工过程中的偏差等,使转子质量产生偏心,并使转子在运转过程中产生动不平衡。当干扰力的频率(即转子旋转的频率)与振动系统的固有频率相等时,出现共振现象。 1.2.2积垢或变形 在停车或运行中由于制冷剂中含有空气或水分形成化合物而积垢在叶轮表面(有的积垢达3mm以上);或者由于主轴刚度不够产生弯曲或扭曲变形、螺钉松动、齿轮破坏等原因引起较大的振动。或者推力块的磨损过大。改变了推力轴承间隙使主轴窜动,造成转子与蜗室相撞等也是造成转子振动的原因。 1.2.3安装质量不良 如离心式压缩机与电动机连接时轴承孔不同心;径向滑动轴承间隙过大或轴承盖的过盈过小;梳齿密封或油封齿与转子的径向间隙过小,甚至小于主轴的挠度值,造成转子与齿尖的碰撞;在安装进、出气管时,考虑的热膨胀间隙不够而引起附加的扭曲变形,破坏了转子旋转时与固定元件的同心;机组的基础浇灌不好以致下沉或机组防振措施失效等。这些均会引起机组较大的振动。 1.2.4油膜不稳定 油温过高或过低,或者油中溶入大量制冷刺时,形不成油膜或油膜不稳定,亦使转子振动。。 1.2.5喘振 离心式压缩机发生喘振的原因是:进口压力或流量突然(瞬间)降低,低过最低允许工况点时,压缩机内的气体由于流量发生变化会出现严重的旋转脱离,形成突变失速(指气体在叶道进口的流动方向和叶片进口角出现很大偏差),这时叶轮不能有效提高气体的压力,导致机出口压力降低.但是系统管网的压力没有瞬间相应地降下来,从而发生气体从系统管网向压缩机倒流,当系统管网压力降至低于机出口压力时,气体又向系统管网流动.如此反复,使机组与管网发生周期性的轴向低频大振幅的气流振荡现象.

2020年中国石油大学网络教育040107泵与压缩机-20考试试题及参考答案

《泵与压缩机》课程综合复习资料 一、简述题 1.简述离心泵工况调节方法,说明较为节能实用的工况调节措施。 2.简述往复活塞式压缩机的主要性能参数,说明较为重要的性能参数。 3.简述离心压缩机的喘振工况和堵塞工况,说明对离心压缩机性能影响较大的特殊工况。 4.简述往复活塞式压缩机的排气量调节方法,说明较为实用有效的调节方法。 二、计算题 1.一台离心泵流量Q1=50.0 m3/h,扬程H1=32.0 m,功率N1=6.4 kW,转速n1=2900 r/min。求离心泵转速调节至n2=1450 r/min时的流量Q2(m3/h)、扬程H2(m)和功率N2(kW)。 2.一台离心水泵,泵装置吸液面压力p A=90000 Pa,水饱和蒸汽压力p v=4240 Pa,泵安装高度H g1=4.0 m,水密度ρ=1000 kg/m3,吸入管阻力损失h A-S=2.751 m,泵本身汽蚀余量Δh r=2.5 m。求泵装置有效汽蚀余量Δh a(m),并判断离心泵装置是否发生汽蚀现象。 3.一台多级离心式空气压缩机,第一级理论能头H T=45113.0 J/kg,内漏气损失系数βl=0.015,轮阻损失系数βdf=0.030,有效气体流量m=25200 kg/h。求离心压缩机第一级的总功率H tot(kW)。 4.一台多级离心式空气压缩机,第一级进口气体温度t s=20.0 ℃,进口气体速度c s=30.0 m/s,出口气体速度c d=70.0 m/s,级总能头H tot=47355 J/kg,空气绝热指数k=1.40,气体常数R=288 J/kg·K。 求离心压缩机第一级出口温度t d(℃)。 5.一台往复活塞式空气压缩机,单级三缸单作用结构型式,压缩机容积系数λv=0.739,系数λp λT λl =0.850,转速n=1460 r/min,气缸直径D=0.115 m,活塞行程S=0.070 m。求往复压缩机的排气量Q(m3/min)。 6.一台单级往复活塞式空气压缩机,吸气压力p1=0.10 MPa,排气压力p2=0.35 MPa,吸气温度t1=24.45℃,多变压缩过程指数m=1.32。求往复压缩机的排气温度t2(℃)。 7.一台离心水泵,离心泵样本允许汽蚀余量[H s]=6.0 m,使用当地大气压p a′=0.08 MPa,使用当地饱和蒸汽压p v′=1602 Pa,水密度ρ=1000 kg/m3。求离心泵在当地使用的允许真空度[H s]′(m)。8.一台多级离心式空气压缩机,第一级进口气体温度t s=20.0 ℃,进口气体速度c s=30.0 m/s;级出口气体温度t d=67.95 ℃,出口气体速度c d=65.06 m/s,空气绝热指数k=1.40,气体常数R=288 J/kg·K。求离心压缩机第一级总能头H tot(J/kg)。 9.一台两级往复活塞式空气压缩机,第I级吸气压力p1I=0.10 MPa,吸气温度下饱和蒸汽压p v I=4240 Pa,吸气相对湿度φI=0.80;第II级吸气压力p1 II=0.30 MPa,吸气温度下饱和蒸汽压p v II=7248 Pa,吸气相对湿度φII=1.0。求往复压缩机的第二级凝析系数μd II。 泵与压缩机第1页共4页

立式涡旋压缩机的振动分析

2008-06-17 11:45:03 作者:来源:互联网 涡旋式压缩机目前在美国、日本等国的应用相当广泛,尤其是在空调领域,已能达到微振、静音的水平。与之相比,我国尚处在涡旋压缩机的应用起步阶段,但是其前景可观。涡旋压缩机的振动研究是随着它的应用而开展的。国内对于往复式、离心式等压缩机的振动研究进行得较多,在涡旋压缩机振动方面的研究较少。从研究的结果来看,振动研究可以带来较高的经济效益。应该说,振动研究是对涡旋压缩机深入认识、解决实际问题的一种方法。涡旋压缩机的工作状况的正常与否将直接或间接地通过其振动情况反映出来。对于涡旋压缩机在我国的应用,虽然加大投资、提高加工精度可以起到很大的推动作用,但是依据实际中得来的振动信号的分析,建立合理的装配工艺也不失是一种有效的途径。 关键字:压缩机[160篇] 涡旋式压缩机目前在美国、日本等国的应用相当广泛,尤其是在空调领域,已能达到微振、静音的水平。与之相比,我国尚处在涡旋压缩机的应用起步阶段,但是其前景可观。涡旋压缩机的振动研究是随着它的应用而开展的。国内对于往复式、离心式等压缩机的振动研究进行得较多,在涡旋压缩机振动方面的研究较少。从研究的结果来看,振动研究可以带来较高的经济效益。应该说,振动研究是对涡旋压缩机深入认识、解决实际问题的一种方法。涡旋压缩机的工作状况的正常与否将直接或间接地通过其振动情况反映出来。对于涡旋压缩机在我国的应用,虽然加大投资、提高加工精度可以起到很大的推动作用,但是依据实际中得来的振动信号的分析,建立合理的装配工艺也不失是一种有效的途径。 1涡旋压缩机的振源分析 涡旋压缩机的动力传输链如图1所示(不考虑随变机构): 图1 假设: (1)电机的振动由国标加以限制,振动分析时忽略它的影响。; (2)十字滑块的影响可以忽略不计; (3)涡旋压缩机作为一个整体,与支撑底座组成的振动系数的影响也可以不计; (4)忽略由于气流脉动所造成的振动。 在工程界,旋转机械的转子振动分析的历史悠久,但是不同设备上所用的转子其振动特性及引起振动的原因有很大的差别。比如,高速转子动平衡程度要求高,同时轴承的运转情况及润滑油膜的自激振动都要仔细地分析;中、低速转子,油膜的影响可以不作为重要的分析对象。涡旋压缩机的转子转速在3000r/min 左右,可认为是中低速转子,其所受载荷的不平稳性、动平衡程度及安装情况是振动分析要考虑的方面。 动涡旋盘作为传输链上的第二个环节,而且也是涡旋压缩机的关键部件,它的运转情况直接影响机器 的性能好坏,它是研究的重点。

透平压缩机的振动分析

透平压缩机的振动分析 原作者: 出处: 【关键词】透平压缩机,振动分析 【论文摘要】透平压缩机的振动是压缩机设计制造、安装和运行管理的综合反映。也就是说,导致或影响透平压缩机正常运行的内部和外界因素很多,而众多因素反映出的就是振动。西方简述我单位三台H200-6.3/0.97型透平压缩机组几年来的运行情况,和由于振动所造成的严重危害。 透平压缩机的振动是压缩机设计制造、安装和运行管理的综合反映。也就是说,导致或影响透平压缩机正常运行的内部和外界因素很多,而众多因素反映出的就是振动。西方简述我单位三台H200-6.3/0.97型透平压缩机组几年来的运行情况,和由于振动所造成的严重危害。 一、振动的原因 1、开车运行后的振动 1.1 原先在安装时电动机和大齿轮的同轴度完全根据设计要求来校正。由于机组启动电流大,瞬间扭力也很大,造成电动机有移位感。根据气温,设计要求安装时径向轴向误差允许在±0.02mm,我们严格照办。机组运行一段时间后再测,明显测得轴向无变动,而径向的水平方向走动了0.18~0.20mm左右。这说明机器在对中后走调的情况下运行,振动就会很大。 1.2 空气中带有腐蚀性气体的冷凝水造成转子(尤其是3~4级)、气封、扩压器、碳钢空气管道等腐蚀十分严重,产生空气涡流的振动。管道氧化物的被冲刷造成子平衡百战不殆,振动激烈,因此而被迫停车,此类事故已发生两次。 1.3 频繁开停车对机组振动也有影响。由于客观条件不允许或机械故障被迫一年中开停多次,使转子平衡被破坏。停车时会把积在转子上的尘土或其他氧化物不均衡地脱落,破坏了转子的平衡。 2、检修后的振动 2.1 齿轮偏载造成工频振动。透平机的转速很高,1~2级转速为15200rpm,3~4级为19200rpm,因而齿轮的精度要求也很高。保持较高的齿轮接触面很重要,在静态下检查齿轮接触面无法得到动态的实际接触情况,我们的做法是在静态下使接触面不低于85%。其中一台机组在检修时发现齿轮接触面差,一只新齿轮只运行两个多月就严重点蚀和大齿面剥落(一只大齿现价30万元左右)。机组振动很大,齿轮的损坏就呈恶性循环,难以挽救。 2.2 油膜涡动引起的低频振动。轴承中的油膜在转轴和轴承间运行起着盗运和润

相关文档
相关文档 最新文档