文档库 最新最全的文档下载
当前位置:文档库 › 第五章 跳汰选矿

第五章 跳汰选矿

第五章   跳汰选矿
第五章   跳汰选矿

第五章跳汰选矿

4.5.1 概论

跳汰选矿是指物料主要在垂直上升的变速介质流中,按密度差异进行分选的过程。物料在粒度和形状上的差异,对选矿结果有一定的影响。实现跳汰过程的设备叫跳汰机。被选物料给到跳汰机筛板上,形成一个密集的物料层,这个密集的物料层称为床层。

物料在跳汰过程中之所以能分层,起主要作用的内因,是矿粒自身的性质,但能让分层得以实现的客观条件,则是垂直升降的交变水流。

跳汰机中水流运动的速度及方向是周期变化的,这样的水流称作脉动水流。脉动水每完成一次周期性变化所用的时间即为跳汰周期。在一个周期内表示水速随时间变化的关系曲线称作跳汰周期曲

线。水流在跳汰室中上下运动的最大位移称为水流冲程。水流每分钟循环的次数称为冲次。

煤炭分选中,跳汰选煤占很大比重。全世界每年入选煤炭中,有50%左右是采用跳汰机处理;我国跳汰选煤占全部入选原煤量的70%。另外跳汰选煤处理的粒度级别较宽,在150~0.5mm范围;既可不分级入选,也可分级入选。跳汰选煤的适应性较强,除非极难选煤,均可优先考虑采用跳汰的方法处理。

矿石分选中,跳汰选矿是处理粗、中粒矿石的有效方法。大量地用于分选钨矿、锡矿、金矿及某些稀有金属矿石;此外,还用于分选铁、锰矿石和非金属矿石。处理金属矿石时,给矿粒度上限可达30~50mm,回收的粒度下限为0.2~0.074mm。

4.5.2 跳汰选矿原理

一、按密度分层的位能学说

由热力学第二定律可知,任何封闭体系都趋向于自由能的降低,即一种过程如果变化前后伴随着能量的降低,则该过程将自动地进行。德国人迈耶尔(E.W.Mayer,1947)应用这一普遍原理分析了跳汰过程,认为床层的分层过程是一个位能降低的过程。因此当床层适当松散时,重矿物颗粒下降,轻矿物颗粒上升,应该是一种必然的趋势。图2-5-2表示了床层分层前与分层后的理想变化情况。若取床层的底面为基准面,基准面的面积为A。

)(2

21211m m h h E ++= (2-5-1) 112222)2

(2m h h m h E ++= (2-5-2) )(2

1211221h m h m E E E -=-=? (2-5-3) 将 2111δλAh m =

2222δλAh m =

代入式(2-5-3)中,得

)(2

112221δλδλ-=?A h h E (2-5-4) 当分层过程是可以发生时,则必定是正值。

1122δλδλ> (2-5-5) 分层的位能学说完全不涉及流体动力因素的影响,只就分层前后床层内部能量的变化,说明了分层的趋势,因而属于静力学体系学说。除了跳汰以外,所有其它重选分层过程,皆可用此学说予以解释,故

现常将迈耶尔的位能学说视作重选分层的基本原理。但重选过程离不开流体松散,则流体动力对颗粒运动的影响就不可避免,故迈耶尔学说只是一种理想的情况。

二、分层过程的动力学学说

1.床层中的矿粒在垂直交变流中的受力分析

(1) 矿粒在介质中的重力G 0 ,因其方向向下,故为(+)。即 g d G V )(63

0ρδπ-=

(2) 矿粒与水因有相对运动而引起的介质阻力R 1 。

ρυψ221c V d R -=

(3) 由于介质作加速运动,其加速度所产生的惯性力作用在矿粒上,称为介质流对矿粒的附加推力F 1 。

?

±=u d F V ρπ63

1 (4) 由于矿粒在介质中作加速度运动,势必带动周围部分介质也随其作加速度运动,于是这部分介质便产生了与其方向相反的惯性力,此力反作用在矿粒上。因此,矿粒受到一个附加惯性阻力R g 的作用,由式可知 dt

d d j R c V g υρπ63

-= (5) 床层中的矿粒运动时,要受到机械阻力R j

2. 矿粒在垂直交变介质流中运动微分方程式的建立 g R F R G dt

d m +++=110υ

dt d d j u d d g d dt d d c V V c V V V υρπρπρυψρδπυδπ66)(663

32233-±--=? (2-5-6) 若以 δπ63

V d m =除式(2-5-6)两侧,便可得到单位质量矿粒的运

动微分方程式,即 dt

d j u d g dt d c V c υδρδπρψυδρδυ-±--=?2

6 (2-5-7) 对跳汰过程中颗粒运动微分方程式的分析,可归纳两个重要点:

(1) 矿粒运动状态除和密度有关外,还与粒度及形状有关。而粒度及形状的影响仅体现在介质阻力加速度(即第二项)上,其数值与相对速度的平方成正比。因此,在跳汰过程中,尽量减小矿粒与介质之间的相对运动速度是至关重要的;

(2) 介质的运动状态(速度和加速度)对矿粒的运动或者说对床层的分层有重要影响。因此,只要选择恰当的水速及加速度为按密度分层创造有利的条件。

三、跳汰过程中垂直交变水流的运动特性

(一)跳汰机内垂直交变水流的运动特性

?ωυsin r =

t r ωωυs i n = (2-5-8)

当0=?或π?=时,活塞的瞬时速度为最小,0min =υ; 当2π

?=时,活塞的瞬时速度达到最大值,即 nr nr

r 105.030max ===πωυ m/s

活塞运动的加速度,可由式(2-5-8)的一阶导数求出,即

t r dt d ωωυυcos 2==?

(2-5-9) 经时间t ,活塞的行程h 可由水速对时间的积分求出,即 )cos 1(sin 0

0t r tdt r dt h t

t ωωωυ-===?? (2-5-10) 跳汰室内水速速度u 、加速度?u 及行程s (波高)分别为

t r A A u ωβωsin 2

1= (2-5-11) t r A A u ωβωcos 221=?

(2-5-11) )cos 1(2

1t r A A s ωβ-= (2-5-11)

(二)水流运动特性对床层松散与分层的作用

为了便于分析问题,现以正弦跳汰周期为例,并将该跳汰周期分为 t 1、 t 2、 t 3、 t 4 四个阶段(如图2-5-5)所示。分别讨论跳汰周期的各阶段中水流和床层运动及变化的特点,来考察松散及分层过程。

第Ⅰ个阶段——水流加速上升时期或称上升初期

水流加速上升时期,水流运动的主要任务,是较快地将床层举起,使其占据一定高度,为床层进一步的充分松散与分层,创造一个空间条件。

第Ⅱ个阶段——水流减速上升时期或称上升末期

水流在整个上升期间,所肩负的使命,是使床层尽快扩展松散,并使松散状态持续一段时间,为按密度分层提供足够的空间和时间。因此,上升水流作用的时间(t1+t2)应尽量长些为宜,并且床层的松散过程,以先从床层上下两层扩展,故要求上升水流的运动特性,最理想的是开始短而速,尔后长而缓。

第Ⅲ个阶段——水流加速下降时期或称下降初期

在下降初期,应使水流加速度较小,t3时间宜长些为佳,即下降初期水流特点应是长而缓。

吸啜作用是必不可少的。它既是按密度分层过程的延续,又是分层过程的补充。为了加强吸啜作用,水流应是短而速。顾及两方面要求,下降初期水流长而缓应适度。

第Ⅳ个阶段——水流减速下降时期或称下降末期

在下降末期,吸啜作用应加以适当控制。

水流在整个下降期间,它所肩负的任务,是使床层的松散时间尽可能延长让分层过程得以充分进行;但当分层完毕后,下降水流也应尽快停止,既可防止低密度物混入高密度物中去又可避免使床层过度紧密。故整个下降水流,初期应适度长而缓,末期应尽量短而速。原有跳汰周期一旦完结,应立即开始一个新的跳汰周期。

从上述跳汰周期特性对床层松散与分层的作用可以看出,活塞跳汰机水流运动特性,并非是理想的跳汰周期。因为判断一个跳汰周期的水流特性是否合理,一般要从三个方面看,一是对床层的尽快松散是否有利;二是对按密度分层作用的效果;三是针对原料性质的特点,对吸啜作用的影响。

(三)几个典型跳汰周期的分析

1.活塞跳汰机的对称跳汰周期特性曲线

2.上升水速大、作用时间长的跳汰周期特性曲线

3.上升水速大于下降水速但作用时间相等的跳汰周期

4.上升水速大但作用时间短的不对称跳汰周期

5.上升水速较缓但作用时间较长的不对称跳汰周期

实践证明:跳汰周期曲线形式是获得良好选别效果的重要因素之一。合理的跳汰周期曲线应与被选物料性质相适应,使床层呈适宜的松散状态,颗粒主要借重力加速度差相对运动,这是选择跳汰周期曲线的基本原则。

4.5.3 跳汰机

国内外采用各种类型的跳汰机,根据设备结构和水流运动方式不同,大致可以分为以下几种:(1)活塞跳汰机;(2)隔膜跳汰机;(3)空气脉动跳汰机;(4)动筛跳汰机。

活塞跳汰机是以活塞往复运动,给跳汰机一个垂直上升的脉动水流,它是跳汰机的最早型式。现在基本上已被隔膜跳汰机和空气脉动跳汰机所取代。

隔膜跳汰机是用隔膜取代活塞的作用。其传动装置多为偏心连杆机构,也有采用凸轮杠杆或液压传动装置的。机器外形以矩形、梯形为多,近年来又出现了圆形。按隔膜的安装位置不同,又可分为上动型(又称旁动型)、下动型和侧动型隔膜跳汰机,隔膜跳汰机主要

用于金属矿选矿厂。

空气脉动跳汰机(亦称无活塞跳汰机),该跳汰机是借助压缩空气,推动水流作垂直交变运动。按跳汰机空气室的位置不同,分为筛侧空气室(侧鼓式)和筛下空气室跳汰机。该类型跳汰机主要用于选煤。

动筛跳汰机有机械动筛和人工动筛两种,手动已少用。机械动筛是一种槽体中水流不脉动,直接靠板上的物料造成周期性地松散。目前为大型选煤厂尤其是高寒缺水地区选煤厂的块煤排矸提供了有效设备。下面根据使用范围,区分为选煤用跳汰机和选矿用跳汰机两大类。

一、选煤用跳汰机

(一)筛侧空气室跳汰机(鲍姆式跳汰机)

据其结构与用途筛侧空气室跳汰机可分为不分级煤用跳汰机、块煤跳汰机和末煤跳汰机三种。

筛侧空气室跳汰机的基本结构如图2-5-7所示。

1.跳汰机的机体

跳汰机的机体是承受跳汰机全部重量和脉动水流产生的动负荷。

1)机体的段数和隔室

2)机体的形状

3)空气室与跳汰室宽度的比例

空气室的宽度与跳汰室的宽度之比值(即冲程系数):块煤跳汰机约为0.7~1.0,末煤跳汰机和混合入选跳汰机约为0.45~0.8。

国外把跳汰机的背靠背或面对面地合并制造成双室跳汰机。如图2-5-9所示。

2.跳汰机筛板

1)筛板的型式

2)筛板的倾角

3)筛孔尺寸

表2-5-2筛板的孔径和倾角

3.风阀

1)滑动风阀(即立式风阀)

2)旋转风阀(即卧式风阀)

3)电磁风阀

(1)气路系统。包括高压风管至气缸的气动管路;

(2)数控装置。通过控制电磁阀的通、断电时间,实现大范围内无极调节频率与跳汰周期特性;

(3

4.跳汰机排料装置

1)轻产物溢流堰排料装置

2)重产物筛上排料装置(1)排料装置:

(2)排料机构型式

3)透筛排料

4)排料装置自动化

(1)浮标装置

(2)测压管装置

(3)放射性同位素装置:

筛侧式空气室跳汰机

国产筛侧式空气室无活塞跳汰机有WT、LTW和LTG三种系列。WT系列有块煤跳汰机(WT —8K、WT—10K)和末煤跳汰机(WT —10M WT —16M)各两种,末煤跳汰机也可用作不分级煤(50~0mm)

混合入选用。LTW系列中有LTW —M12.6和LTW —15两种型号,都是末煤跳汰机。LTG系列目前只有一种LTW —15型,是混合入选的跳汰机。

LTW —15型筛侧空气室跳汰机的机体为半圆型(图2-5-23)。机身分为第一段和第二段,排料装置采用测压管自动排料装置,通过可控硅直流调速装置调节、驱动排料轮电机,改变转数调节排料量。用垂直闸板控制重产物床层的厚度。

(二)筛下空气室跳汰机

筛下空气室跳汰机,除了把空气室移到筛板下面以外,其它部分与筛侧空气室跳汰机结构基本相同。它的工作原理也是压缩空气经风阀控制,交替地压入和排出筛板下面的空气室,使其中水位交替地下降和上升,从而形成穿过筛板的脉动水流。所产生的脉动水流特性,实测结果与一般筛侧空气室跳汰机的典型特性相似。

LTX系列跳汰机是我国自行设计制造的筛下空气室跳汰机,这个系列共有七种规格。目前生产使用的主要有LTX-8型、LTX-14型、LTX-35型和SKT系列等几种。

长石选矿-产品质量-工艺流程

一、概述 长石是由钾、钠、钙、钡的铝硅酸盐组成的一族矿物。主要化学成分为SiO2,Al2O3,CaO,K2O,Na2O。 长石族矿物是自然界最主要的造岩矿物,占地壳矿物组成的50%~60~左右。长石族矿物广泛产于各种成因类型的岩石中,为岩浆岩和变质岩的主要造岩矿物。 由于长石作为造岩矿物,在大多数情况下难与其它矿物分离,因而具有工业意义的长石矿床,只有结晶巨大而易于分离的伟晶岩矿床。 1. 长石的种类 按其化学成份和结晶特征,可以分为两个亚族:钾钠长石和斜长石亚族。 (1)钾钠长石亚族 系由钾长石分子和钠长石分子组成。自然界产出的钾长石都混有钠长石,所以常称的钾长石,都属于钾钠长石,常见的钾钠长石种类: 透长石,(K,Na)[AlSi3O8],含钠长石的 分子可达50%,K︰Na=1︰1 正长石,(K,Na)[AlSi3O8],含钠长石的 分子可达30%,K︰Na=2︰1 微斜长石,(K,Na)[AlSi3O8],含钠长石的 分子可达20%,K︰Na=4︰1 (2)斜长石亚族 系由钠长石分子与钙长石分子组成,两者可以任何比例混合组成连续的类质类象系列。可分为钠长石、更长石、中长石、拉长石、培长石、钙长石等六种。其中: 钠长石,含钙长石分子0~10%,产于伟晶岩、细晶岩、片晶岩中。 钙长石,含钙长石分子90~100%,产于辉长岩及相关岩石中。 2.长石的化学成分 在玻璃、陶瓷工业中有使用价值的长石种属主要为微斜长石、正长石和钠长石。 钾长石的理论化学成分为:K2O 16.90%,Al2O3 18.40%,SiO2,64.70% (其中:正长石常含有钠长石,多者可达30%;微斜长石是较纯的钾长石,但它含有钠长石,多者可达20%)钠长石的理论化学成分为:Na2O 11.80%,Al2O3 19.50%,SiO2,68.70% 但纯的钠长石少见,Na2O的含量常低于理论值,并含有K2O、CaO 等。 二、长石的物化性能 长石族矿物一般为白、灰白、浅肉红色,玻璃光泽,解理发育,硬度为6~6.5,密度为2.5~2.7g/cm3。 作为重要的工业原料,长石的熔点、熔融间隔、熔体的粘度等具有重要的应用意义。 1. 熔点和熔融间隔 钾长石的熔点为1290℃,钠长石为1215 ℃, 钙长石为1552 ℃,钡长石为1715 ℃。 熔融间隔比较宽也是长石的优良工艺性能之一,长石组分含量不同,熔融间隔也不一样。钾微斜长石在1160~1180 ℃时呈液态,至1210~1280 ℃时才完全熔融。 2.熔融液粘度 长石熔融时,熔融粘度取决于矿石的矿物组成、化学成分及熔融温度。 在同一温度下钾长石熔融液比钠长石熔融液粘度大,而且随着温度增高,钠长石熔融液迅速成为粘度小而易稀释的流体,使陶瓷坯体变形。 由于钾长石熔点不高,熔融间隔时间长,熔融液粘度高等优点,故在工业上利用较之其它长石更广 3.化学稳定性 钾长石玻璃和钠长石玻璃均具有高度的化学稳定性,除高浓度的硫酸和氢氟酸外,不受其它任何酸、碱的腐蚀。 4.助熔性 长石熔融体对其它物质有助熔作用,其助熔能力与温度及长石种类有关。钠长石熔融体对石英的助熔作用大于钾长石熔融体。 5.易磨性和可碾性 长石的解理发育,有较好的易磨性和可碾性。 三、长石的用途 长石主要用于玻璃和陶瓷行业。长石在玻璃工业中的用量占长石的50%~60%,陶瓷工业中的用量占30%,其余用在填料和其它部门。 1.玻璃熔剂 长石是玻璃混合料的成分之一。主要用来提高玻璃配料中的氧化铝含量,降低玻璃生产中的熔融温度和增加碱含量,以减少碱的用量。 长石熔融后变成玻璃过程比较慢,结晶能力小,可防止在玻璃形成过程中析出晶体而破坏制品。调节玻璃粘度。 一般作玻璃的混合料等用钾长石和钠长石。长石还可作玻璃纤维原料。 2.陶瓷坯体原料 烧成前起瘠性原料作用,减少坯体干燥收缩变形,改善干燥性能,缩短干燥时间。 烧成时作为熔剂降低烧成温度,促使石英和高岭土熔融,加速莫来石的形成,使坯体致密而减少空隙,提高其机械强度和介电性能,提高坯体的透光性。掺入量一般在20%左右。 3.陶瓷釉料 釉料主要由长石、石英和粘土原料组成,其中长

我国重介质选煤工艺分析

我国重介质选煤工艺分析 摘要:随着全球可持续发展战略的实施,人类也就开始重视节约能源和保护生态环境。然而煤炭资源是我国的工业原料和重要能源,而选煤工艺技术在煤炭生产上又是节约能源和保护生态环境的技术源头,因此,选煤工艺是直接影响可持续发展战略的,为此,本文对几种目前应用较为成功的重介质选煤工艺进行分析介绍。 关键词:重介质选煤工艺 1 概述 煤炭是工业原料和重要能源,在国民经济发展中占有很重要的地位。在一次性能源消费的结构中,把煤炭作为主要能源的格局在短时间内是不会改变的。随着我国洁净煤技术的发展,我国的原煤入选比例也在提高,目前原煤入选量已经达到11亿吨,占生产原煤总量的43%以上。而我国得重介质选煤技术研究是在20世纪50年代中期开始起步的,在“十五”期间,在党中央的政策引导和经济市场的拉动下,我国的重介质选煤技术发展迅速,并开发了具有自主知识产权的新设备、新工艺,为煤炭企业经济效益的提升和重介质选煤技术的推广应用作出了杰出的贡献。 2 几种典型的重介质选煤工艺 2.1 块煤重介质分选机—末煤重介质旋流器分选工艺 在块煤重介质分选机—末煤重介质旋流器分选工艺中的块煤和末煤均是应用重介质分选,这样就充分体现了重介质分选机处理量大、旋流器分选精度高的优良特点,满足了大型选煤厂所要求的生产工艺。在我国,最大的选煤厂是安家岭选煤厂,此厂就是应用此工艺,因为此工艺的投入使用,年入选原煤已经达到1500万吨,因为其优良的特点,此工艺主要适用于含煤泥量较大,矸石易泥化,或对块煤产品有特殊用途的大型选煤厂,但此工艺介质回收系统比较复杂,管理起来较为不便。 2.2 块煤跳汰—末煤重介质旋流器分选工艺 块煤跳汰—末煤重介质旋流器分选工艺充分体现了跳汰机处理量大、重介质旋流器分选精度高及选煤成本低等特点,应用此工艺可明显降低选煤成本,并能很好的保证末精煤产品的优良质量,我国的第一座全部设备国产化的三产品重介质选煤厂——铁东选煤厂就是应用此工艺,应用效果表明,精煤产品质量较高,但是产率相对较低。因此,此工艺可在末煤可选性较难、块煤可选性较好并有块精煤用户的选煤厂使用。 2.3 跳汰粗选—重介质旋流器精选工艺 对于此工艺,应用跳汰机进行预排矸,这样可以很好的降低了矸石含量波动对重介质旋流器分选的影响,同时也减少了重介质的入料量和旋流器的磨损,并且精煤产品质量较高。但是工艺较为复杂,工艺设备种类也很多,在选煤时会损失一些精煤,因此精煤产率较低。我国自主设计的盘北选煤厂、桃山选煤厂、北岗选煤厂和兴隆庄选煤厂等均是应用此工艺,这么多年的实践表明,此工艺可生产低灰精煤,但精煤产率不高,并且中煤中-114g/cm3密度级含量高达15%。但此工艺对于煤质波动较大、原煤含矸率较高和对已有跳汰分选系统进行改造时,其优越性就能很好的体现出来。因此,此工艺适用于原煤可选性好,排矸密度约1180kg/L的选煤厂,那么应用应用跳汰方法即可实现高效分选。 2.4 两产品重介质旋流器分选工艺

钾钠长石选矿试验报告

选矿试验报告 技术中心 2016年07月26日

选矿试验人员 刘国华王爱明陈东训李安李旺代明

目录 1、前言 2、样品的采集及制备 3、原矿性质 3.1原矿x-衍射分析 3.2原矿化学多项分析 3.3原矿石主要物理指标测试 4、选矿试验 4.1、强磁选除铁试验 4.2、酸洗除铁试验 4.2.1 酸洗浓度条件试验 4.2.2酸洗浸出时间条件试验 5、产品考查 6、结语

1、前言 受委托方的委托,技术中心对其所送钾、钠长石矿样品进行选矿试验。 经原矿粉晶X-衍射分析、化学多元素分析,矿石主要矿物以长石、石英为主,长石含量65%-75%,石英含量25-30%,次要矿物有白云母占2-3%、其它为微量。 通过强磁脱铁试验,最终得到长石精矿K2O含量为4.86%,Na2O 含量为3.44%,回收率为93.67%,Fe2O3含量0.35%。 通过洗矿+强磁脱铁试验,最终得到长石精矿K2O含量为4.73%,Na2O含量3.39%,回收率为76.82%,Fe2O3含量0.24%。 通过高温酸洗除铁试验,最终长石精矿K2O含量为4.62%,Na2O 含量3.20%,回收率为98.91%,Fe2O3含量0.17%。 本试验自2014年07月25日开始,2014年08月15日结束,历时20天。本试验结果仅对委托方所送样品负责。 2、样品的采集及制 试验样品由委托方自行采集后送到技术中心。样品重量约为150Kg。 将样品进行破碎加工至-1mm,作为试验样品,并缩分出1kg样品,作为化学分析样品。试样的破碎缩分流程如图2.1。

原矿(d<50mm) 化学分析样选矿试验样图2.1 原矿破碎缩分流程图

长石

1.长石概括 长石是由硅氧四面体组成架状构造的钾、钠、钙的铝硅酸盐矿物。其主要成分为SiO2、Al2O3、K2O、Na2O, CaO、Ba0等。只有在相当富集时,长石才可能成为工业矿物。自然界中纯的长石矿物很少,多数是以各类岩石的集合体产出,共生矿物有石英、云母、霞石、角闪石、金红石、方解石等,其中以云母(尤其是黑云母)、角闪石、金红石、和铁的化合物等为有害杂质。 2.长石选矿概述 2.1一般选矿方法 长石主要产于伟晶岩、风化花岗岩、某些白岗岩、某些细晶岩和长石质砂中。对于不同来源的长石矿,根据其矿石性质,一般采用的选矿原则工艺流程如下: (1)伟晶岩中产出的优质长石:手选一破碎一磨矿(或水碾)一分级。 (2)风化花岗岩中的长石:常采用的选矿工艺流程为“破碎一磨矿一分级一浮选(除铁矿物、云母等)一浮选(石英、长石分离)”。 (3)细晶岩中的长石:该类型长石矿一般含有云母,有时含铁,采用的工艺流程为“破碎一磨矿一筛分一磁选”。 (4)白岗岩中的长石:该类型长石矿一般含有石英、云母和铁矿物,工艺流程为“破碎一磨矿一浮选(除云母、铁矿物)一浮选(除石英)”。 (5)长石质砂矿:工艺流程为“水洗脱泥一筛分(或浮选分离石英)”。 生产对铁含量要求很高的用于高级陶瓷的长石产品,有时也采用酸浸的方法除铁。 2.2长石选矿提纯的现状与发展趋势 (1)洗矿和脱泥 洗矿适用于产于风化花岗岩和长石质砂中的长石,主要是去除长石矿中的粘土矿物、细泥和云母等杂质。利用粘土矿物、细泥和云母矿物粒度小或沉降速度慢等特点,在水流作用下使其与粗粒矿物分离。洗矿一方面可以降低矿石中的Fe203含量,另一面也可以提高K2O, Na2O含量。 脱泥的主要目的是去除矿石中的原生矿泥和破碎磨矿过程中产生的次生矿泥,从而防止细泥影响后续的选矿作业(磁选、浮选等)。 (2)磁选 长石矿中的铁矿物、云母和石榴子石等都有一定的磁性,而长石没有磁因此,可以在外加磁场的条件下实现长石与磁性矿物的分离。由于矿石中的毛物、云母和石榴子石的磁性较弱,通常需采用强磁选设备才能将其有效去除。 (3)浮选 浮选是长石选矿提纯的有效途径,一方面浮选可以去除矿石中的铁、钛矿物,一般均采用反浮选去除铁、钛矿物;另一方面浮选可以实现长石与石英的分离,使长石矿物得到进一步的提纯。 ①含铁矿物的浮选:一般情况下长石矿物中的铁主要赋存在云母、赤褐铁矿、黄铁矿和含铁碱金属硅酸盐矿物中(如石榴子石、电气石和角闪石)。通常在pH=2.5-3.5条件下,采用胺类阳离子捕收剂可以有效浮选云母;pH=3-4条件下,采用磺酸盐类捕收剂,可以对含铁碱金属硅酸盐矿物进行浮选;在pH=5-6条件下,采用黄药类捕收剂可以有效浮选黄铁矿等硫化矿。 ②含钛矿物的浮选:长石矿中的含钛矿物主要赋存在金红石中,少量赋存在榍石中。在pH=4-6的酸性条件下,采用脂肪酸类捕收剂可以对金红石进行浮选,也可以在pH=2.5条件

重介质选煤工安全生产岗位责任制(正式)

编订:__________________ 单位:__________________ 时间:__________________ 重介质选煤工安全生产岗位责任制(正式) Standardize The Management Mechanism To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9942-55 重介质选煤工安全生产岗位责任制 (正式) 使用备注:本文档可用在日常工作场景,通过对管理机制、管理原则、管理方法以及管理机构进行设置固定的规范,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 1、负责本岗位所存设备、仪器、工具、信号及通讯设施的使用和保养,保持设备完好。 2、严格遵守厂制定的各项规章制度,遵守劳动纪律,坚持八小时工作制度,执行现场交接班制度。 3、严格执行技术操作规程,不违章作业,注意设备及人身安全,做到不安全不生产。 4、熟悉设备性能,做到应知应会,工作时间精力集中,经常检查设备运转情况,完成当班生产任务。 5、保持岗位卫生清洁,照明良好,消防器材完好。 6、上岗时按规定穿好工作服、戴好劳保用品。 7、具有环保和节能意识,熟知并能够正确辨识本岗位的危险源与环境因素以及控制措施。 8、认真填写岗位记录,做到清楚完整。

责任追究: 1、违反《煤矿安全规程》、《煤矿技术操作规程》规定,不正规操作,罚20元。 2、不经过培训不得上岗,否则罚款50元。不持证上岗,罚20元。 3、不熟悉设备性能及构造原理不得操作,并扣20元。 4、对分管范围内卫生不及时清理及不按规定防尘的罚20元。 5、不按规定现场交接班,出现空岗及早脱岗现象罚20元。 6、不按煤流方向启、停车罚20元。 7、试运转中发现问题不处理,处理时未断电罚20元。 8、运转中发现异常情况不进行妥善处理罚20元。 9、因司机操作不当,造成产品质量不合格,按洗煤厂《煤质考核办法》执行。 9、产品质量完成情况奖罚按《洗选厂煤质考核办

选矿名词解释

选矿之名词解释与概念总汇 绪论 选矿:就是利用矿物的物理或物理化学性质的差异,借助各种选矿设备将矿石中的有用矿物与脉石矿物分离,并达到使有用矿物相对富积的过程。 矿石:指能被利用的矿物资源,一般由矿石矿物和脉石矿物两部分组成有用矿物;可以利用的金属或非金属矿物。 脉石:在矿石中,除了有用矿物外,还含有目前无法富积或尚不能利用的一些矿物,这些无用的矿物称为脉石。 品位:指产品中金属或有用成分的质量与该产品质量之比,常用百分数表示。通常用α表示原矿品位;β表示精矿品位;Θ表示尾矿品位。 产率:产品质量与原矿质量之比,叫该产品的产率,通常以γ表示。 回收率:精矿中有用成分的质量与原矿中该有用成分质量之比,称为回收率,常用Ξ表示。 选矿比:原矿质量与精矿质量的比值。 富矿比:精矿品位与原矿品位的比值,常用Ε表示。 第一篇筛分破碎与磨矿 粒度;描述单一颗粒大小的尺寸称为粒度。 粒级:用某种方法(如筛分)将粒度范围宽的物料群分离成若干个粒度范围窄的级别,这些级别均称为粒级,各粒级均以其上限粒度(d1)及下限粒度(d2)表示,如d1~d2或d2~d1或—d1+d2。 粒度组成:上述各粒级按粗、细不同顺序排列,并指明各粒级站物料群总量的质量百分率,这种资料称为粒度组成。

平均粒度:描述物料的粒度称为平均粒度。 网目:单位长度的筛面上所具有的筛孔数称为网目数,简称网目。 筛分:碎散物料通过一层或数层筛面被分成不同粒级的过程称为筛分。在实验室或试验场地为完成粒度分析而进行的筛分称为试验筛分。在工厂或矿厂为完成生产任务而进行的筛分称为工业筛分。 筛分效率:实际得到的筛下产物量与入筛物料中所含粒度小于筛孔的物料量的比的百分数 筛下产物:筛分过程一般是连续的,筛分原料给到筛分机械上以后,小于筛孔尺寸的物料透过筛孔,称为筛下产物。 筛上产物:大于筛孔尺寸的物料从筛面上不断排出,称为筛上产物。 筛分粒度:在一定条件下,筛上产物中的最小粒度与筛下产物中的最大粒度,都近似等于筛面的筛孔尺寸没,筛孔尺寸可简单地认为是筛分粒度。 准备筛分:当筛分是为分选作业提供不同粒级的入选矿物时,称为准备筛分, 辅助筛分:当筛分作业和破碎作业配合进行时称为辅助筛分。 预先筛分:若用在破碎前把合格粒级预先筛出叫预先筛分。 检查筛分:若用在破碎后以控制破碎产品的粒度则叫检查筛分。 脱水筛分:将伴有大量水的碎散物料(如渣浆、泥浆、矿浆等 作为筛分原料,以脱出其中液相为目的的筛分称为脱水筛分。 脱泥、介筛分:为达到一定的工艺目的,将碎散物料或伴水的碎散物料作为筛分原料,脱除其中细粒的筛分,称为脱泥筛分或脱介筛分。

长石浮选工艺研究

长石-石英浮选分离工艺研究 【摘要】:通过对某钾、钠长石的浮选试验研究,成功实现了钾长石与石英等杂质矿物的有效分离,并对浮选分离的机理进行了初步研究。文章从“引言、矿石性质、试验研究、矿石难选因素分析、结语”介绍了长石-石英浮选分离工艺研究成果,给出了“长石多元素分析、小型试验结果、不同磁场强度除铁效果”等8张插表,以及“原矿除铁试验流程、pH值条件试验流程、HF法长石-石英分选试验流程”等4张图。 一、引言 石英砂资源,由于其含有较多的长石等杂质,铝、铁含量较高,原砂中SiO2含量有时仅74%,远不能满足玻璃行业对石英砂纯度的要求。采用选矿方法提高石英砂纯度,对开发利用石英砂资源有重要意义。 本次试验通过对某钾、钠长石的浮选试验研究,成功地实现了钾长石与石英等杂质矿物的有效分离,并对浮选分离的机理进行了初步研究。 二、矿石性质 送选的钾和钠长石原矿样的物相分析见表1。 表1 长石多元素分析(%) 组分K2O Na2O SiO2Al2O3CaO MgO Fe2O3 钾长石 5.45 3.05 74.02 10.65 0.57 0.53 1.36 钠长石 4.79 2.74 74.78 11.54 0.91 0.62 0.90 矿样通过较系统的试验,两种长石原矿在常规酸性和碱性条件下都不能有效地分离,得不到合格的长石与石英精矿产品。只有在采用HF作抑制剂的条件下,通过粗精再磨,才能最终得到合格的长石、石英精矿产品,其小型试验结果见表2。 表2 小型试验结果(%) 产品产率品位回收率

K2O Na2O SiO2K2O Na2O SiO2长石1 65.90 6.50 3.04 67.81 78.59 65.68 60.21 长石2 12.07 5.48 3.45 70.50 12.13 13.65 11.46 石英21.28 96.74 27.34 N杂0.75 58.89 0.59 给矿100.00 5.45 3.05 74.22 100.00 100.00 100.00 石英与长石都属于架状结构硅酸盐矿物,具有相同的晶体结构:硅(铝)氧四面体与4个硅氧四面体共角顶相互联结,形成在三维空间无限延伸的架状结构。两者在水溶液中的荷电机理也基本相同:矿物经破碎后,晶体破裂、硅(铝)氧键断裂;在水溶液中吸附定位离子生成羟基表面;在介质不同pH值条件下,产生解离或吸附,形成不同的表面电位。 由于矿物破碎断面上极化程度较高、亲水性很强,所以石英和长石在很宽的pH值范围内均呈现负电性,零电点都很低。 由于长石结构中,铝氧四面体对硅氧四面体的取代,导致两者在很多方面也有细徽的差别: A13+与Si4+电价不同,为补偿A13+对Si4+的取代所造成的电价不平衡,而引进K+、Na +等碱土金属离子,这些金属离子与O2-之间的离子键键强低、联结力弱、易在水中解离,使矿物表面留有负电荷的品格,这使得通常情况下长石的零电点比石英低。同时由于Al-O 键比Si-O键键强低,破碎时Al-O键更易于断裂,使长石表面暴露大量A13+化学活性区。这些差异导致石英和长石的可浮性略有不同,为石英与长石的浮选分离提供了依据。 三、试验研究 (一)原矿除铁试验 长石中含铁杂质矿物主要是磁铁矿、黑云母、褐铁矿。磁铁矿具有磁性,黑云母、褐铁矿具有弱磁性,故用高梯度磁选可将其分离出一部分。在磨矿过程中,对不同细度检查筛析没有筛分出黑云母片,因而不能用筛分或分级等方法将黑云母与长石分离,只能用高梯度磁选分离出含铁矿物。为了去除含铁杂质,选用Slon-100实验型脉动高梯度磁选机进行试验。流程见图1,结果见表3。

重介质选矿

第4章重介质选矿 全章内容 4.1 概述 4.1.1 重介质选矿的基本原理 4.1.2 重介质的种类与加重质的选择1.重介质的种类2.加重质的选择 4.1.3 重介质选矿的应用 4.2 重悬浮液的性质 4.2.1 悬浮液的密度1.悬浮液密度的特点2.悬浮液的有效密度 4.2.2 悬浮液的粘度和流变性1.悬浮液的粘度和流变性2.悬浮液粘度的测定 4.2.3 悬浮液的稳定性 4.2.4 影响悬浮液密度、粘度及稳定性的因素 1.悬浮液中加重质容积浓度的影响2.加重质的密度、粒度和形状影响 4.3 重介质分选机4.3.1 选煤用块煤重介质分选机{其余略} 4.4 旋转重介质流选矿{P159}4.4.1圆锥型重介质旋流器4.4.2圆筒型重介质旋流器{P166-167} 4.5 重悬浮液的回收与净化4. 5.1重悬浮液回收与净化系统4.5.2重悬浮液中煤(矿)泥量的动平衡 4.5.3重悬浮液回收与净化的主要设备4.5.4重悬浮液回收与净化中的损失4.6重悬浮液密度的自动控制 4.6.1 双管压差密度计4.6.2水柱平衡密度计 4.6.3 放射性密度测定仪 4.6.4 悬浮液密度自动控制系统{重点讲授} 4.1 概述 4.1.1 重介质选矿的基本原理 通常将密度大于水的介质称为重介质.在这样的介质中进行的选矿称为重介质选矿,它是按阿基米得原理进行的.任何物体在介质中都将受到浮力的作用,浮力F的大小等于物体排开的同体积介质的重量,即 F=V ρzj g 颗粒在介质中的有效重力G0与重力加速度g0分别为: G0=G—F=V(δ-ρzj )g g0=[(δ-ρzj)/ δ] g 可见,G0及g0均随ρzj增大而减小。 在重介质中,当δ>ρzj时,g0为正,与g的方向一致,矿粒将向下沉降;而当δ<ρzj时,g0为负,与g的方向相反,矿粒将向上浮起。因此,为使分选过程能有效进行,重介质密度应介于矿石中轻、重两种矿物的密度之间,即δ2>δ1。在这样的介质中,分选完全属于静力作用过程,流体的运动和颗粒的沉降不再是分层的主要作用因素,而介质本身的性质却是影响分选的重要因素。 则密度差(高密度矿物与分选介质之差比密度矿物与分选介质之差)比可以判定分选的难易程度。 例如:煤矸石δ煤矸石=2.2 ;δ煤=1.5 ρ水=1 若在水中分选,则密度差为:(δ煤矸石—ρ水)/(δ煤—ρ水)=2.4 若ρzj =1.4的介质分选中:则密度差(δ煤矸石——ρ水)/(δ煤—ρ水)= 8 {ρ空气=1.23kg/m3}

选钾长石工艺流程

随着人类生活水平不断提高以及科学技术的发展,能源需求也随之不断增加,对于能源的发展也由起初的不注重能源存量到重视能源结构调整的新阶段。 因此,近几年,能源替代品和新能源渐渐成为社会发展的主要角色,拿钾长石矿为例,钾长石的使用为现代工业的发展提供了强有力的动力。 钾长石虽然外表不及金属类矿石那样华美富贵。但他自身所产生的价值不十分巨大的,他可以运用到很多行业,化肥工业,显像管技术,陶瓷生产领域,等。给人们的生产生活做出了许多显而易见的成就。 如同一个人,在获得自身价值之初都要经历一个漫长的发展过程,诚然,钾长石矿本身也经历了一个十分漫长的发展阶段,几年前,钾长石还跟世界上大部分矿石一样不起眼,还不被人们所认知,直到钾长石选矿技术的发展和高纯度钾长石被提炼出来之后,钾长石才慢慢进入人们视眼,逐渐被诸多行业的人们所使用和熟悉,让钾长石的身价一路上涨。 那么,高纯度钾长石是如何被提取出来的,钾长石期间经历了哪些艰辛,下面,荥矿机械将为大家揭开钾长石工艺流程面纱。 钾长石的经历了重重关卡,最终修成正果,升级为高纯度的钾长石粉为大众开发利用,他先是经过给料机到达鄂破体内,经受住了一次破碎之后,落到皮带机上,紧接着被皮带机带到细破机体内,在经受住敲打之后再次落入第二段皮带机上面,被皮带机送往磁力滚筒,在洗涤过身上的污垢(铁元素)之后,进入料仓待命,再进入给料机,经皮带机到达球磨机体内,第三次进入磨合,接着继续闯关,进入到了螺旋分级机,合格的进入下一环节,不合规格的再次进入球磨机,进行循环敲打,直到合格,修炼合格之后,进入磁选机再次除污(铁),然后在矿浆搅拌桶中搅拌均匀,进入药剂搅拌桶,之后流入浮选机,紧接着再次去除污垢(铁),进行沉淀,过滤。在经受住沉淀和过滤之后,就意味着钾长石闭关修炼成功,合格的高纯度钾长石经最后一段皮带机运出山门。此时的钾长石已经百炼成钢。练就成了顶尖事物。 钾长石成功路上,说明一个道理,那就是,主要功夫深铁杵磨成针,只要坚持自己的信念,执着面对困难,就能够将自身的价值得以涌现,成为大写的人。

钾长石选矿设备(附:钾长石钾离子提取方法)

钾长石选矿设备(附:钾长石钾离子提取方法) 钾长石选矿生产线都需要哪些选矿设备?钾长石选矿设备如何配置和选型?我国可溶性钾资源贫乏,为了相应国家加大对钾矿资源开发利用的攻关力度,荥矿机械以先进的钾长石选矿工艺和钾长石选矿设备为支撑,提高钾长石矿资源的开发利用价值。 钾长石选矿设备: 要实现从钾长石原矿中游离出钾离子,首先要把钾矿石从钾长石中分离出来。钾长石选矿工艺根据矿石性质的不同可分为磁选工艺和浮选工艺。磁选工艺是为了除掉伴生磁性矿物质,浮选工艺是为了分离钛、云母等共生矿物质。 钾长石破碎磨矿设备: 选钾长石生产线,无论哪种选矿工艺,都需将钾长石进行破碎、研磨,破碎工艺选用两段一闭路,磨矿选用一段闭路,保证钾长石选矿生产线磁选或浮选工艺的粒度要求,提高选矿效率和质量。破碎设备有粗、细鄂式破碎机,圆锥破碎机;磨矿设备有格子球磨机,棒磨机等。 钾长石磁选设备: 磁选工艺流程比较简单,可与重选工艺相结合,先使钾矿石富集;还可配置洗矿脱泥设备,提高磁选效率和质量。磁选设备有干式、湿式磁选机,强磁选、弱磁选等多种型号,需根据生产需求进行配置。 钾长石浮选工艺流程: 为了更好满足浮选工艺的需求,钾长石破碎工艺往往采用两段一闭路破碎方法,通过双层振动筛,为使钾长石矿料粒度达到合理要求反复破碎,粗、细鄂式破碎机在破碎工艺中应用最为广泛,破碎比大,破碎效率高,操作、维修简单方

便。破碎矿料输送到高效节能格子球磨机(新型球磨机)再次研磨,输出矿浆经分级机分级,合格矿浆进入浮选机浮选,为了进一步提高浮选纯度和浮选效率,还可在浮选工艺前布置磁选工艺。湿式强磁选机筒表平均磁感应强度为100~600mT,根据用户需要,可提供顺流、半逆流、逆流型等多种不同表强的磁选。本磁选机具有结构简单、处理量大、操作方便、易于维护等优点。 附:钾长石钾离子提取方法 难溶性钾矿中的钾常以离子形式存在于钾长石矿物中,一般酸碱条件下很难将钾离子游离出来。利用湿化学法、微生物法破坏钾长石矿物的晶格结构,使钾离子从难溶性钾矿中游离出来再提取是从难溶性钾矿中提取钾的基本思路。1、焙烧-熔融法 焙烧-熔融法是将难溶性钾矿石与某些配料混合后在高温条件下焙烧,破坏其结构,从而使钾元素从钾长石晶格中游离出来,钾长石选矿设备厂家荥矿机械以钾长石为原料,经配料、粉碎、制粒、焙烧、熟料浸取、分离、碳酸化分解和碳酸钾的提纯、氢氧化铝的制取,提出了利用钾长石提取碳酸钾的工艺流程。 2、碱加压-水热法 以CaO为助剂,在一定条件下采用动态水热法进行钾长石精矿粉分解反应,制得碳酸钾产品,K2O的溶出率达82%以上。基于低温水热反应理论,以无水氯化钙和钾长石为反应物,在一定温度和磷酸体系中进行钾长石溶出反应,钾长石中K2O溶出率达75%以上。在水热条件下,荥矿机械厂家进行了钾长石-NaOH 体系水热法提钾工艺研究,在最优条件下钾的溶出率高达90%以上。通过原矿和滤渣的XRD物相分析表明,NaOH添加剂破坏了钾长石的晶体结构,形成了新物相。

重介质选煤工理论培训考试题4

重介质选煤工理论培训考试题(A卷) 单位:姓名:成绩: 一、选择题(每题1分,共20分) 1、下列哪种重介质属于重介质选煤所用的有机重液() A、四氯化碳 B、氯化铁 C、磁铁矿粉 2、对重力分选机,粒度愈(),浮沉运动速度愈慢,设备通过能力(),一般小于8mm就难以分选。() A、小,增大 B、大,减小 C、小,减小 3、总的来说,重介质选煤中对粒度的要求是粗粒比细粒分选效果()。 A、好 B、差 C、一样 4、在重介质选煤中,当矿粒密度大于悬浮液密度时,矿粒()。 A、上浮 B、下沉 C、在介质中悬浮 5、在重介质旋流器内,中央离心力比外缘离心力()。 A、大 B、小 C、相等 6、选末煤,对磁铁矿粉的粒度要求是<325网目的含量不低于()%。 A、80 B、85 C、90 7、悬浮液的粘度随容积浓度的增加而()。 A、增大 B、减小 C、不变 8、在浅槽重介质分选机中,()的循环悬浮液从给料侧的原煤入口下面沿水平方向给入,以形成纵向水平液流。 A、10%-20% B、50%-60% C、80%-90% 9、我国选煤厂设计规范中规定,加重质(磁铁矿粉)消耗(技术损失)指标:块煤系统<()kg/(t原煤);末煤系统<()kg/(t原煤)。() A、, B、,1.0 C、, 10、重介质旋流器底流嘴检查周期为每()个月1次,以保证底流嘴直径符合设计要求。 A、1 B、2 C、311、在生产过程中,原煤入洗量应控制在一定范围内,不超过()%。 A、5 B、10 C、20 12、重介质选煤中,如果原煤质量好,入洗密度则()。 A、偏高 B、偏低 C、不变 13、()是悬浮液净化回收的关键设备,磁选回收率直接影响到介耗高低。 A、脱介筛 B、磁选机 C、浓缩机 14、在同一条件下,分选密度越高,旋流器的分选可能偏差值越()。 A、大 B、小 C、不变 15、矿浆通过量、入料浓度过大会使磁选效率(),介耗()。() A、降低,增大 B、提高,减少 C、降低,减少 16、观察筛上物料时,在()上可以观察出原煤质量的好坏。 A、精煤筛 B、中煤筛 C、矸石筛 17、当稀悬浮液量少,磁选机处理量大时,重介质悬浮液的回收净化工艺应采用()。 A、浓缩-磁选流程 B、旋流器预先分级流程 C、直接磁选流程 18、重介质选煤工艺效果的评定指标不包括()。 A、可能偏差和不完善度 B、可燃体回收率 C、数量效率 19、在实际生产过程中,为了及时地反映原煤及分选情况,并为控制和操作提供依据,往往通过()试验评价分选效果。 A、快速浮沉 B、筛分 C、小浮选 20、滴萨(DISA)型立轮重介分选机采用的传动方式为()。 A、棒齿传动 B、环形皮带传动 C、链轮、链条传动 二、填空题(每空1分,共20分) 1、重介质选煤的基本原理是()。 2、重介选煤应用于()和()。 3、在重力分选机中,()是影响分选效果的主要因素。

重介质选矿悬浮液的稳定性

第二篇重力选矿第4章重介质选矿 4.2 重悬浮液的性质 4.2.3 悬浮液的稳定性 悬浮液的稳定性是悬浮液维持自身密度不变的性质。由于悬浮液中的加重质受自身重力作用始终有向下沉降的趋势,从而使上下层密度发生变化。显然加重质的沉降速度直接影响悬浮液的稳定性,因此通常用加重质在悬浮液中的沉降速度v的倒数表示稳定性的大小,称作稳定性指标Z(s/cm),即 Z = 1/v Z值愈大,表示悬浮液的稳定性愈好,分选愈易进行。 由于加重质粒度的不均匀,v值很难用计算方法求得,而多用试验方法测定。试验时将悬浮液倒入1000mL或2000mL的量筒中,搅拌均匀后静置沉降。经过一段时间后,由于加重颗粒的沉降,在上部出现一清水层,清水层与混浊液界面的下降速度即可视为加重质的沉降速度。取直角坐标纸,以纵坐标自上而下表示清水层高度,横坐标自左而右表示沉降时间,将沉降开始后各时间段内沉降的距离对应地标注于坐标纸上,即可获得沉降曲线,如图2—4—6所示。曲线上任一点的切线与横轴夹角的正切即为该时刻的沉降速度。在开始沉降的相当长一段时间内,曲线斜率基本不变,评定悬浮液稳定性的指标即以这一段的沉降速度为准。 4.2.4 影响悬浮液密度、粘度及稳定性的因素 1.悬浮液中加重质容积浓度的影响 加重质的容积浓度不仅影响悬浮液的假定密度,而且在浓度较高时又是影响粘度的主要因素。试验表明,悬浮液的粘度随容积浓度的增加而增加。在浓度较低时,粘度增加较为缓慢;当浓度超过某临界值λL时,粘度急剧增大,如图2—4—7所示。λL称为临界容积浓度。临界容积浓度因加重质的种类和性质而异,一般介于25%~30%之间。当悬浮液的容积浓度超过临界值时,矿粒在其中的沉降速度急剧降低,设备生产能力相应减小,分选效率变低。 2.加重质的密度、粒度和形状影响 悬浮液的容积浓度受流动性(主要是粘度)的限制,常不允许超过某最大值。因此要求配制的悬浮液的密度愈高,则加重质的密度亦应愈高,即加重质的选择应与所配制的悬浮液密度相适应。 由于悬浮液的粘度和结构化的形成均与加重质的比表面积有关,因此一切与比表面积有关的因素:颗粒粒度、形状以及含泥量等亦均影响悬浮液的视粘度。一般来说,在同样容积浓度下,加重质的粒度愈小,视粘度将愈大,开始形成结构化的浓度亦愈低。加重质的形状愈接近球形,悬浮液的粘度愈小。矿泥含量对悬浮液视粘度的影响也是很大的,对结构化的形成尤为敏感。这里所说的矿泥系指小于10-20μm的颗粒。在原矿中含泥量多时即须事先通过洗矿脱除;在介质循环过程中也会产生一部分矿泥,可在加重质的再生系统中予以脱除. 悬浮液的稳定性和粘度常常是矛盾的。粘度大则稳定性高,粘度小则稳定性低。而生产上则希望悬浮液既有小的粘度又有高的稳定性,可是这两者是难以兼得的,所以在选择悬浮液时,应综合利弊,统一考虑。为使悬浮液能够更好地稳定,保持上下层的密度尽可能地一致,可在分选机内采用机械搅拌、机械振动或使悬浮液流动等办法予以改善。另外加入胶溶性药剂,如六聚偏磷酸钠、水玻璃、亚硫酸盐、铝酸盐等,它们能够吸附在加重质颗粒表面上,使之具有亲水性,从而避免或减少悬浮液的结构化;同时还可增加颗粒的分散性,这样则可收到既降低悬浮液粘度又增加稳定性的效果。 复习思考题:1.悬浮液的稳定性在重介质选矿中的意义、表示及测试方法。 2.悬浮液中加重质容积浓度对重介质选矿中的影响? 3.加重质的密度、粒度和形状对重介质选矿中影响? 4.悬浮液的稳定性和粘度的矛盾性及其处理方法? 1

选矿方法的一般原则

选矿方法的一般原则 在确定选矿试验方案或推荐流程时,要对各种方法进行选择和比较。选择选矿方法必须以“鼓足干劲,力争上游,多快好省地建设社会主义”的总路线和党关于经济建设的一系列方针和政策为指导,具体分析技术和经济等各方面因素,综合考虑决定取舍,使所选择的方法符合实际,生产可靠,指标先进和经济合理。下面是考虑的一般原则。 (一)生产要求 1.采用先进的选矿工艺,大力提高选矿指标,充分利用矿石资源,满足冶炼要求。所选择的方法应该保证生产优质精矿,提高金属回收率和劳动生产率,降低生产成本和缩短建设周期。 2.对含多金属铁矿石必须全面考虑综合利用一切有用成分,对选矿生产中的尾矿和废水也要尽可能综合利用。 3.注意劳动保护和环境卫生。例如,避免采用氰化物或氟化物等有毒药剂,尽可能少采用细粒矿石的干选等。 4.选择的方法应该力求简单可靠,便于生产操作和管理;采用复杂的方法必须有明显的技术经济效果。 5.选择的方法应该与当地的建设条件相适应。例如,矿区的矿石储量丰富,选矿厂服务年限较长,应该采用完善的流程;资源分散的矿区,如砂矿,应该采用设备轻便而又高效率的方法,便于建成可移动的选矿厂;多雨地区避免采用干选;交通不便,机械加工能力较差的地区应该采用简易的方法;选矿的主要原材料,如药剂、燃料和介质应考虑当地有来源等。 6.生产选矿厂流程的改进,必须充分利用原有的生产基础,包括厂房、设备和生产经验等。 7.选择的方法应该经过生产或试验证明是有效和可靠的。 例如,新技术必须经过试验和鉴定,才能采用;采用的设备应该是定型的或暂列定型的产品。 (二)矿石性质 1.含有块状脉石的贫化矿石,应该考虑用重介质选矿、跳汰或干式磁选等方法剔除脉石。 2.含泥矿石应该考虑用洗矿方法除去矿泥。 3.强磁性矿物用弱磁选方法回收。 4.弱磁性矿物根据其物理或化学性质和嵌布粒度,用重选、焙烧磁选、浮选、强磁选或电选等方法回收。 5.硫化物和磷矿物等比较易浮的矿物,常用浮选方法回收。 6.含多金属铁矿石和难以用单一方法选别的多铁矿物铁矿石,常用几种方法联合的联合流程。

锂辉石选矿工艺概述讲解

衣1?1 锂的LMEtr物 矿物名称分子式理论品位 (%. Li2O) 密度 (lg/cm1) 莫氏硬度 锂辉石LiAKSiOA 8.1 3」?3.2 6?7 锂云母(LiX)2(EOH)2AI2(SiO3)2 5.9 2.8-33 2.5-4 铁钾云母(LiNaK)2AhFeSi|5Oi4EOH)2 4.13 3 3 锂磷铝石L!A1(EOH)PPO410.1 3」 6 透锂长石LiAKSi^Os): 4.89 2.5 6-6.5 龙13 锂林石秸矿标准山】 种类级别Li2O% (>) 朵质含呈(<).% go;PO MnO K>O^NaiO ■ ?7.00 0」5 130 0」0 1.50 低铁律桥矿二 6.50 0.20 1.30 0」5 I.K0 6.00 0.25 130 0.20 2.00 —7.00 0.50 130 0.20 1.50 陶轻用钾梢矿二 6.50 0.70 130 0.25 1.80 三 6.00 0.90 1.30 030 2.00 — 6.50 2.50 1.30 030 1.50 化匸用趣精旷二 6.00 2.80 1.30 0.40 1.80 三 5.50 3.00 1.30 0.50 2.00 丧1.4 镌云母精矿标准S 锂盐用级别 主成分(>).% Li,O?RbQCs,O ■ ■ ? Li,O ■ 待级 6.0 4.7 一级 5.0 4.0 M.陶瓷用品级別 主成分(>).% 朵质(<).% Li,O?Rb,O*Cs,O AAA Li2O K:O*Na:O Fe.O, AbO; 一级 5.0 4.0 X.0 0.4 26.0 二级 4.0 3.0 7.0 0.5 28.0 三级 3.0 2.0 6.0 0.6 2?.O

铁矿石常用的选矿方法

第一章铁矿石常用的选矿方法 第一节磁铁矿选矿流程 磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿 矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱 磁选工艺为主的选别流程: 1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的易 选单一磁铁 矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。 1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。根据 铁矿无的嵌布 粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。 2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。在一段磨矿 石进行磁选粗 选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。 2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精 矿中SiO2等 杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。

3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精 矿石中SiO2 等杂质组分偏高的问题开发出来的。 4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石, 分为三类: 1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。根据矿石性质 进一步分为先 磁后浮和先浮后磁两种。 2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。特点是采用弱磁选 首先分离弱磁 性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。 3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。 第二节赤铁矿选矿流程 赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物 矿物。与等轴晶系的磁赤铁矿成同质多象。晶体常呈板状; 集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。 呈红褐、钢灰至铁黑等色,条痕均为樱红色。 1、焙烧磁选流程:当矿物组成比较复杂而其他选矿方法难以获得良好的选别指 标时,往往 采用磁化焙烧宣发;对于粉矿常用强磁选、重选、浮选等方法及其联合流程进行选别。 2、赤铁矿浮选流程:

花岗岩提取石英长石的选矿方法研究

从花岗岩中提取长石和石英的选矿方法研究 杨明星 (蚌埠玻璃工业设计研究院安徽蚌埠233018)摘要:针对国内某地一种典型的花岗岩矿,采用“破碎—筛分—分级—磁选—浮选—浮选”的选矿工艺,提纯得到石英和长石,其中石英产率γ=24.79%,SiO2=99.33%,Al2O3=0.17%,Fe2O3=0.018%,达到优质浮法汽车玻璃及超白器皿玻璃用硅质原料的质量要求;长石产率γ=48.49%,K2O +Na2O =12.55%,Fe2O3 =0.28%,Al2O3=18.42%,满足陶瓷、玻璃等行业的要求。本研究为花岗岩的开发提供一种新的选择。 Utilizing the process of “crushing, screening, classifying, magnetic separation, floatation, floatation”, this article could purify a domestic typical granite mineral into: quartz: productivityγ=24.79%,SiO2=99.33%,Al2O3=0.17%,Fe2O3=0.018%; The quartz quality could meet the material requirement of high quality floating glass for automobile and ultra-white glassware;feldspar: productivityγ=48.49%,K2O +Na2O =12.55%;Fe2O3 =0.28%;Al2O3 =18.42%. The feldspar quality could meet the requirement of glass and ceramic industry. 关键词:花岗岩;长石;石英;选矿提纯 1、前言 花岗岩是火成岩的一种,在地壳上分布广泛,是岩浆在地壳深处逐渐冷却凝结成的结晶岩体,主要成分是石英、长石和云母。一般呈黄色、肉红~粉红色,也有灰白色的,因质地坚硬,色泽美丽,主要用作建筑石材。根据花岗岩中富含长石和石英的特点,本文探讨选矿分离工艺,将石英和长石从中提取出来,应用于玻璃、陶瓷领域,使其具有一种新的工业价值,鉴于花岗岩资源分布的广泛性,将极大的降低传统建材行业对石英长石矿山资源的依赖程度,具有重要的科技意义和社会意义。 本文以国内某地一种典型的花岗岩矿为例,通过试验,最终得到石英和长石产品的质量如下: 石英:产率γ=24.79%, SiO2=99.33%,Al2O3=0.17%,Fe2O3=0.018%; 长石:产率γ=48.49%,

相关文档