文档库 最新最全的文档下载
当前位置:文档库 › 吸波材料在NFC天线领域的应用

吸波材料在NFC天线领域的应用

吸波材料在NFC天线领域的应用
吸波材料在NFC天线领域的应用

吸波材料知识介绍系列

吸波材料知识介绍系列—————之一 吸波材料简介 在解决高频电磁干扰问题上,完全采用屏蔽的解决方式越来越不能满足要求了。因为诸多设备中,端口的设置及通风、视窗等的需求使得实际的屏蔽措施不可能形成像法拉第电笼那样的全屏蔽电笼,端口尺寸问题是设备高频化的一大威胁。另外,困扰人们的还有另外一个问题,在设备实施了有效的屏蔽后,对外干扰问题虽然解决了,但电磁波干扰问题在屏蔽系统内部仍然存在,甚至因为屏蔽导致干扰加剧,甚至引发设备不能正常工作。这些都是屏蔽存在的问题,也正是因为这些问题的存在,吸波材料有了用武之地。 吸波材料是指能够有效吸收入射电磁波并使其散射衰减的一类材料,它通过材料的各种不同的损耗机制将入射电磁波转化成热能或者是其它能量形式而达到吸收电磁波目的。不同于屏蔽解决方案,其功效性在于减少干扰电磁波的数量。既可以单独使用吸收电磁波,也可以和屏蔽体系配合,提高设备高频功效。 目前常用的吸波材料可以对付的电磁干扰频段范围从0.72GHz到40GHz。当然应用在更高和更低频段上的吸波材料也是有的。吸波材料大体可以分成涂层型、板材型和结构型;从吸波机理上可以分成电吸收型、磁吸收型;从结构上可以分为吸收型、干涉型和谐振型等吸波结构。吸波材料的吸波效果是由介质内部各种电磁机制来决定,如电介质的德拜弛豫、共振吸收、界面弛豫磁介质畴壁的共振弛豫、电子扩散和微涡流等。 吸波材料的损耗机制大致可以分为以下几类:其一,电阻型损耗,此类吸收机制与材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。其二,电介质损耗,它是一类与电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。其三,磁损耗,此类吸收机制是一类与铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是与磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是目前吸波材料研究的一大热点。由于篇幅所限,本文对吸波材料的损耗机制仅做了最为简约的叙述,对其详述及其结构设计及结构对吸波效能的影响等方面将在以后的文章中做出解释。 总之,高速发展的新科技正引领着世界范围内的各行各类电气、电子设备向高频化、小型化方向发展,高频EMI问题必将越发突显,吸波材料必然有越来越广阔的应用空间。

吸波材料现状和应用——整理超经典

吸波材料的发展现状 一. 1.目前吸波材料分类较多,现大致分成下面4种: 1.1按材料成型工艺和承载能力可分为涂覆型吸波材料和结构型吸波材料。1.2 按吸波原理 吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 1.3 按材料的损耗机理 吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 1.4 按研究时期 可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石墨、碳化硅、导电纤维等属于传统吸波材料,它们通常都具有吸收频带窄、密度大等缺点。其中铁氧体吸波材料和金属微粉吸波材料研究较多,性能也较好。新型吸波材料包括纳米材料、手性材料、导电高聚物、多晶铁纤维及电路模拟吸波材料等,它们具有不同于传统吸波材料的吸波机理。其中纳米材料和多晶铁纤维是众多新型吸波材料中性能最好的2种。 2.无机吸波剂 2.1 铁系吸波剂 2.1.1 金属铁微粉 金属铁微粉吸波剂主要是通过磁滞损耗、涡流损耗等吸收衰减电磁波,主要包括金属铁粉、铁合金粉、羰基铁粉等。金属铁微粉吸收剂具有较高的微波磁导率,温度稳定性好等优点,但是其抗氧化、抗酸碱能力差,介电常数大,频谱特性差,低频吸收性能较差,而且密度大。 2.1.2 多晶铁纤维 多晶铁纤维具有很好的磁滞损耗、涡流损耗及较强的介电损耗,并且是良好的导体,在外界电场作用下,其内部自由电子发生振荡运动,产生振荡电流,将电磁波的能量转化成热能,从而削弱电磁波。 2.1.3 铁氧体 铁氧体吸波材料是研究较多也较成熟的吸波材料。它的优点是吸收效率高、涂层薄、频带宽;不足之处是相对密度大,使部件增重,以至影响部件的整体性能,高频效应也不太理想。 2.2碳系吸波剂 2.2.1石墨、乙炔炭黑

磁性吸波材料与应用

磁性吸波材料与应用 Magnetic Electromagnetic Wave Absorbing Materials and Applications 余声明 中国西南应用磁学研究所四川绵阳105信箱621000 摘要 本文论述了磁性吸波材料的基本原理、种类、应用及其发展。关键词磁性吸波材料应用发展 1前言 隐身技术是一门新兴边缘科学,涉及多个学科与技术领域,应用十分广泛。从各种武器装备、飞行器的隐身到现代电子信息设备的抗干扰系统都是不可缺少的实用技术和组成部分。 就武器而言,隐身技术是通过降低电器、武器或飞行器的光、电、热可探性而达到隐身目的的一种技术;或者说是采用多种技术措施,降低对外来信号(光、电、磁波、红外线等)的反射,使反射信号与它所处的背景信号难以区别,最大限度地减弱自身的特征信号,以达到自身隐蔽的效果。隐身技术可分为有源隐身技术和无源隐身技术。所谓有源是利用计算机分析外来探测信号,并及时主动发射相应的干扰信号,以达到自身的隐蔽。而无源隐身技术是一种被动隐身技术,它包括隐身结构技术和隐身材料技术。隐身结构技术是在尽量不影响功能的条件下降低自身特征信号,并设法减少雷达反射截面积,这在军事上显得特别重要。可见隐身结构技术和隐身材料技术是隐身技术不可分割的两部分,而隐身材料在实现隐身中起着重要作用,也是研究隐身技术的主要内容之一。 随着电子技术的飞速发展,电子产品特别是移动通讯、计算机、家用电器的普及,人们生存环境遭受到电磁波严重污染,城市高层建筑的增多又引起电子环境的恶化,如何降低电磁波干扰已成为全世界电子行业普遍关注的问题。隐身材料也是解决电子产品抗电磁干扰的有效方法之一。 隐身材料又称之为吸波材料,其作用把外来的电磁波能量转换为热能,降低反射波的强度,达到隐身或抗干扰的效果。按吸波材料损耗机理可分为:电阻型、电介质型和磁介质型。为了达到最佳的隐身效果,常常把多种吸波材料结合起来,构成复合型吸波材料,广泛用于雷达、航天、微波通讯及电子对抗、电子兼容的吸收屏蔽等领域。 本文专门介绍磁性介质主要是铁氧体吸波材料的概貌、应用情况及其发展。2磁性吸波材料 2.1吸波材料工作的基本原理 所谓吸波就是吸收电磁波,吸波材料的工作基本原理是: 对于一般材料,材料的介电常数ε与磁导率μ可写成以下复数形式: μ′′?μ′=με′′?ε′=ε??j ;j (1) 式中:ε′和μ′分别为吸波材料在电场或磁场作用下产生的极化和磁化强度的变量,而ε″为在外加磁场作用下,材料电偶矩产生重排引起损耗的度量,μ″为在外加磁场作用下,材料磁偶矩产生重排引起损耗的度量。对介质而言,承担着对电磁波吸波功能的是ε″和μ″,它们引起能量的损耗,损耗因子为tanδ可由下式表示: μ′ μ′′+ε′ε′′=δ+δ=δμεtan tan tan (2) 可见,tan δ随ε″和μ″的增大而增大。 设计吸波材料除了尽可能提高损耗外,还要考虑另一关键因素,即波阻抗匹配问题,使介质表面对波的反射系数(γ)为0或最小,电磁波入射到介质进而被吸收。反射系数γ的定义如式(3)所示: Zo Z Z Z in o in +?=γ(3)

吸波材料

吸波材料 姓名:王丽君 学院:纺织与材料工程学院 专业:材料工程 科目:材料表面与界面工程技术学号:13208520403408

吸波材料 摘要:介绍了吸波材料的吸波原理和吸波材料的分类,以及几种新型吸波材料,如铁氧体吸波材料,纳米吸波材料、手性材料、导电高分子吸波材料,耐高温陶瓷材料,并简单介绍了纳米复合材料的制备方法。 关键词:吸波材料;吸波原理;新型吸波材料;纳米复合材料的制备 信息化战争中,武器平台的高度信息化和电子化,使飞机、坦克、舰艇等所处的环境日益复杂。它们除受地面或空中的火力威胁和电子干扰外,其一举一动还处于红外、雷达、激光等探测器的严密监视之下,使其生存能力和战斗能力面临极大挑战,这样其隐身性能就显得尤为重要。 隐身技术主要涉及材料隐身和结构隐身两大方面。前者是使用吸波材料或涂料;后者是合理地设计武器外形,以提高隐蔽性。再此,不得不提及吸波材料。 1、吸波材料的吸波原理 吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量,一般由基体材料(或粘接剂)与吸收介质(吸收剂)复合而成。由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。材料吸收电磁波的基本条件是:①电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;②进入材料内的电磁波能迅速地几乎全部衰减掉,即要求材料满足衰减匹配。 2、吸波材料的分类 目前吸波材料分类较多,现大致分成下面4种: (1) 按材料成型工艺和承载能力,可分为涂覆型吸波材料和结构型吸波材料。前者是将吸收剂(金属或合金粉末、铁氧体、导电纤维等)与粘合剂混合后,涂覆于目标表面形成吸波涂层;后者是具有承载和吸波的双重功能,通常是将吸收剂分散在层状结构材料中,或是采用强度高、透波性能好的高聚物复合材料(如玻璃钢、芳纶纤维复合材料等)为面板,蜂窝状、波纹体或角锥体为夹芯的复合结构。 (2) 按吸波原理,吸波材料又可分为吸收型和干涉型两类。吸收型吸波材料本身对雷达波进行吸收损耗,基本类型有复磁导率与复介电常数基本相等的吸收体、阻抗渐变“宽频”吸收体和衰减表面电流的薄层吸收体;干涉型则是利用吸波层表面和底层两列反射波的振幅相等相位相反进行干涉相消。 (3) 按材料的损耗机理,吸波材料可分为电阻型、电介质型和磁介质型3大类。碳化硅、石墨等属于电阻型吸波材料,电磁能主要衰减在材料电阻上;钛酸钡之类属于电介质型吸波材料,其机理为介质极化驰豫损耗;磁介质型吸波材料的损耗机理主要归结为铁磁共振吸收,如铁氧体、羟基铁等。 (4) 按研究时期,可分为传统吸波材料和新型吸波材料。铁氧体、钛酸钡、金属微粉、石

吸波材料简介

吸波材料简介 1、定义 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 2、吸波原理分类 吸波材料的损耗机制大致可以分为以下几类: 其一,电阻型损耗,此类吸收机制和材料的导电率有关的电阻性损耗,即导电率越大,载流子引起的宏观电流(包括电场变化引起的电流以及磁场变化引起的涡流)越大,从而有利于电磁能转化成为热能。 其二,电介质损耗,它是一类和电极有关的介质损耗吸收机制,即通过介质反复极化产生的“摩擦”作用将电磁能转化成热能耗散掉。电介质极化过程包括:电子云位移极化,极性介质电矩转向极化,电铁体电畴转向极化以及壁位移等。 其三,磁损耗,此类吸收机制是一类和铁磁性介质的动态磁化过程有关的磁损耗,此类损耗可以细化为:磁滞损耗,旋磁涡流、阻尼损耗以及磁后效效应等,其主要来源是和磁滞机制相似的磁畴转向、磁畴壁位移以及磁畴自然共振等。此外,最新的纳米材料微波损耗机制是如今吸波材料分析的一大热点。 3、材料种类 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 吸波材料按材料分类主要分为: 铁氧体吸波材料,是利用磁性材料的高频下损耗和磁导率的散射来吸收电磁波的能力。 金属超微粉吸波材料,金属材料因居里点高(770K)而耐高温,Ms可达铁氧体的3-4倍,金属自然共振频率比铁氧体高得多,有更好的吸收性能,但是块

高温吸波材料研究应用现状

高温吸波材料研究应用现状(转帖) 高温, 转帖, 应用, 研究 隐身技术是通过控制和降低武器系统的特征信号,使其难以被探测、识别、跟踪和攻击的技术。现代及未来战争中,雷达是探测目标最可靠的手段,隐身技术的研究以雷达隐身为重点[1]。武器系统的隐身能力可以通过外形设计和使用隐身材料来实现,但对外形的过多要求会引起空气动力性能的下降,并导致装容空间的减小和其他损失,所以开展吸波材料的研究 成为隐身技术的关键。 按照吸波材料的结构形式,可将它分为涂料型吸波材料、贴片型吸波材料、吸波腻子、吸波复合材料等[2]。对于吸波/承载一体化吸波材料即结构吸波材料,兼顾了承载和吸波双重功能,不额外增加重量,且材料本身在力学性能和吸波性能上具有较强的可设计性,从而具有较强的实用价值。按照吸波机理可以将吸波材料分为磁损耗型吸波材料、介电损耗型吸波材料和“双复”型吸波材料3类。在飞机的尾喷管等高温部位,其工作温度往往在700℃以上,大部分磁性吸收剂由于居里温度较低而失去吸波性能,致使高温吸波材料仅依靠电损耗机制来吸收雷达波。国外对耐高温吸波材料虽然已进行了较多的研究,但由于涉及军事应用,没有详细报道。从文献分析可以发现,陶瓷基复合材料是国外研制高温吸波材料的主要方向。本文简述了国外高温结构吸波材料基体和吸收剂的研究应用进展,并展望了高温吸波材料的 发展方向。 高温吸波材料基体 为满足低反射、高吸收以及宽频带吸收的要求,吸波材料往往被设计成双层或多层结构,即吸波材料由阻抗变换层和吸收层组成,并通过优化设计使其具有较好的吸波性能。优化设计结果表明,阻抗变换层具有较低的介电常数时,有利于雷达波进入吸波材料内部,从而表现出较好的吸波性能。另外,吸收层中吸收剂的介电常数往往较大,为了使吸收层介电常数不致太大,基体的介电常数不能太大。作为高温结构吸波材料的基体,还应具有较强的承载能力和易烧结制备性。由于材料在高温和常温下工作,基体还应具有较低的热膨胀系数及较强的耐热冲击性,此外,还应考虑到基体与吸收剂的匹配问题。 当前研究较多的高温吸波材料基体可分为两类:(1)陶瓷基体,如Si3N4、Al2O3、AlN、莫来石、堇青石等;(2)耐高温玻璃基体,如LAS玻璃、磷酸盐玻璃、MAS玻璃等。其性能如 表1所示[3-10]。 高温吸波材料用吸收剂 高温吸波材料主要靠吸收剂对电磁波进行吸收。性能优良的吸收剂要求高效吸收、宽带吸收且密度较小。对于耐高温吸收剂来说,控制其介电常数和损耗是关键。目前,国内外研究和 应用较多的耐高温吸收剂主要有以下几类。 1 碳化硅 碳化硅是当前国外研究最为广泛的耐高温吸收剂,其突出优点是具有优良的力学性能、高强度和良好的电性能。另外,碳化硅具有极其优异的耐高温性能,这是普通吸收剂所不具备的。

纳米吸波材料

纳米吸波材料 0930402090 杨苏清 现代科学技术迅速发展,无形无迹的电磁波充斥着人们的生活空间,严重的电磁污染给地球的生态环境带来了严重的破坏,因此,研制开发新型吸波材料已经成为当今社会的热点;同时,随着现代军事技术的不断发展,战争越来越信息化,立体化,雷达探测技术的不断发展,现代军队为提高自身的生存和突防能力,也越来越多的应用到隐身技术,而作为隐身技术关键的吸波材料也成为各国军事科技力量研究和开发的重点和热点。 一、纳米吸波材料原理及特性 纳米材料是指特征尺寸在1~100nm的材料。纳米材料由于其自身结构上的特征而具有小尺寸效应、表面界面效应、量子尺寸效应以及宏观量子隧道效应,因而与同组分的常规材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,在微波吸收方面显示出很好的发展前景。吸波材料是指能够吸收投射到它表面当今电磁波能量,并通过材料的介质损耗使电磁波能量转化为其他形式的能量的一类材料。 当一个微粒的尺寸小到纳米量级时,它的微观结构和性能既不同于原子、分子的微观体系,也不同于显示本征性质的大颗粒材料宏观体系,而是介于二者之间的一个过渡体系。纳米微粒尺寸小,比表面积大,具有很高的表面能,从而对其化学性质有很大影响。实验证明,粒子分散度提高到一定程度后,随着粒子直径的减小,位于粒子表面的原子数与总原子数的比值急剧增大,当粒径降为5nm 时,表面原子所占比例可达50%。由于表面原子数增加,微粒内原子数减少,使能带中的电子能级发生分裂,分裂后的能级间隔正处于微波的能量范围内(l×l0-2-l×lO-5eV),从而导致新的吸波通道。一方面,纳米微粒尺寸远小于雷达波波长,对雷达波的透过率大大高于常规材料,这就大大降低了对雷达波的反射率;另一方面,纳米材料的比表面积比常规微粒大3~4个数量级,对雷达波和红外光波的吸收率也比常规材料高得多。此外,随着颗粒的细化,颗粒的表面效应和

吸波建筑材料的研究及应用进展

吸波建筑材料的研究及应用进展 发表时间:2014-12-25T08:58:25.343Z 来源:《防护工程》2014年第9期供稿作者:官举红 [导读] 随着科技的日益进步,电磁技术给人类创造了巨大的物质文明,但也把人们带进一个充满人造电磁辐射的环境里。 官举红 重庆热展建筑工程咨询服务中心重庆 400012 [摘要]随着现代科学技术的发展,吸波材料被广泛的应用于人体安全防护、微波暗室、通讯以及导航系统的电磁干扰等多方面。本文对吸波建筑材料的研究及应用进展进行了详细分析。 [关键词]建筑吸波材料;应用前景;发展趋势 一、前言 目前,微波吸收材料的发展越来越明显地呈现出功能上频谱兼容化、材料形态上低维化、材料设计上智能化超长化、材料组成上复合化、材料性能上多样化和材料应用上民用化的发展趋势。 二、开发研制新型建筑吸波材料的必要性 随着科技的日益进步,电磁技术给人类创造了巨大的物质文明,但也把人们带进一个充满人造电磁辐射的环境里。电磁辐射污染已经成为继大气污染、水污染和噪声污染之后的第四污染源[1],且随着电子、电信技术快速发展而日趋严重。常规电磁屏蔽的方法会带来电磁波的高反射,因此寻找低反射高吸收的材料成为吸波材料的研究热点。 民用方面,大功率电磁波发射塔、电台等向外界不断发射的电磁波,常常会带来通讯干扰、电子迷雾等问题。更为严重的是,数以百万计的人们由于长期暴露在来自电缆和家庭电器的电磁辐射中,患癌症和退化性疾病的危险正在增加,高频电磁波对生物肌体细胞、人体神经系统、循环系统、免疫、生殖和新陈代谢功能具有极强的辐射伤害。研究开发新型建筑吸波材料,为人们提供弱电磁辐射的居住及办公环境十分必要。 军事上,随着世界上许多国家对现代战争的第四战场——电磁战的深入研究,目前电磁战已主要应用于以下两个方面:一是在战争中对敌方进行大规模、高强度的持续电磁干扰,使得敌方的指挥、通讯等系统不能够正常运作;二是近些年来一些军事强国越来越重视对电磁武器的研究。目前,美国等国家已经研制出一种威力巨大的电磁武器——电磁炸弹。这种特殊的炸弹在爆炸时能够向周围空间辐射极强的脉冲电磁波,能够迅速使得敌方的电力通讯设施陷入瘫痪。由于以上原因,建筑吸波材料作为防电磁战中的重要一环越来越受到重视。如对于一些要害部门的建筑物、设备设施可以使用吸波建筑材料来防止敌方的电磁干扰或电磁武器的攻击。另外,为了更好地保护指挥机关、仓库等一些重要军事场所及设施,需在这些建筑物表面使用吸波材料来吸收电磁波以减小被敌方雷达探测到的可能性,从而提高它们的战场生存能力。因此,从民用与军用两方面考虑,有关非运动目标(如:大型建筑物、军事掩体、机场、雷达站等)建筑吸波材料的研究十分必要。 三、吸波材料的吸波机理 吸波涂料能够吸收投射到它表面的电磁波能量,并通过材料的损耗转变成热能等其他形式的能量。材料吸收电磁波的基本条件:1)电磁波射入材料时能最大限度地进入材料内部(匹配特性);2)进入材料内部的电磁波能迅速衰减掉(衰减特性)。损耗大小,可用电损耗因子和磁损耗因子来表征。对于单一组元的吸收体,阻抗匹配和强吸收之间存在矛盾,有必要进行材料多元复合,以便调节电磁参数,使它尽可能在匹配条件下,提高吸收损耗能力。 四、建筑吸波材料的应用前景 1.钢纤维混凝土 混凝土是用量最大、用途最广的建筑材料,吸波混凝土及功能、环保、结构于一体,在传统高耐久性的基础上赋予吸收电磁波的功能,符合高新技术改造传统材料的发展方向。在建筑工程中,厘米级的钢纤维与混凝土粘接性能好,复合基体能共同承受荷载,与普通同级的混凝土相比塑性、韧性显著增大,抗拉、抗弯性能也显著提高[3],但是关于厘米级的钢纤维掺入混凝土后的吸波性能研究未见有公开报道。华中科技大学的杨海燕等,研究了不同长度、不同占空比钢纤维混凝土对军用频率范围电磁波的吸收衰减特性,并分析了它们之间的关系。2-18GHz其最大吸收率达9.8dB,4dB带宽最高15.28GHz。 2.手性吸波混凝土 在近年的研究中发现,在混凝土中掺入晶须,试样干燥后试件外形出现弯曲;掺入,虽然改善了混凝土的吸波性能,但随着掺量的增大,试件出现脆裂。这表明仅靠调整混凝土的电解质损耗以及磁介质损耗,吸波性能的改善存在极限,同时还伴随了混凝土力学性能的降低甚至破坏。康青[4]提出在混凝土中掺入螺旋结构钢纤维线圈,即制得手性吸波混凝土,结合混凝土中的电损耗介质、磁损耗介质,建立手性吸波混凝土的理论模型,制备不同配合比的实验样品,研究电磁损耗机理及规律,获取优化的吸波混凝土设计方案。这样既克服了吸波混凝土改性中力学性能下降的难题,有增大了吸波混凝土的损耗机制。 3.碳纤维混凝土 研究了波纹型单纤维的吸波性能和能量耗散机理,推到了波纹型碳纤维混凝土结构能量耗散因子计算公式,并进行了能量耗散分析。对于碳纤维混凝土板,板厚,碳纤维弹性模量,纤维密度,碳纤维混凝土弹性模量,混凝土密度,实验结果表明,碳纤维在纤维混凝土中的体积分数为时,有较高的结构损耗因子,此后随着体积分数的增大,结构损耗因子也不会增高,甚至降低。 4.防辐射涂料 防辐射涂料一般是在普通涂料中加入吸波材料制成,并要求施工性能好、不易脱落且成本不能太高。目前相关的研究成果较多,如有专利采用含有铁、锌、钴、铜、锂等成分的原料预烧、球磨、热处理、粉磨后按照一定比例和普通涂料混合制备成环保型建筑吸波涂层,可吸收500MHz-5600MHz的电磁波。还有专利将吸波组分与其他环保手段结合起来,制备出多功能环保吸波建筑涂料。 五、吸波建筑材料的发展趋势 随着吸波建筑材料的应用不断扩大,人们对其性能要求也越来越高,已有的吸波建筑材料很难满足实际应用的要求。目前吸波建筑材料的研究主要有以下趋势。 1.宽频薄层吸波建筑材料 电子技术的迅速发展要求吸波建筑材料的工作频段越来越宽。目前的宽频吸波建筑材料主要应用在微波暗室,不但厚度大,而且成本很

吸波材料

吸波材料的用途与分类 从吸波材料的应用上来分类,它的用途可以分为,军用、商用以及民用,吸波材料的吸波实质是吸收或衰减入射的电磁波,并通过材料的介质损耗使电磁波能量转变成热能或其它形式的能量而耗散掉。吸波材料一般由基体材料(黏结剂)与吸收介质(吸收剂)复合而成。吸波材料可以分为电损耗型和磁损耗型,电损耗型材料主要靠介质的电子极化、离子极化、分子极化或界面极化来吸收、衰减电磁波。磁损耗型材料主要是靠磁滞损耗、畴壁共振和后效损耗等磁激化机制来引起电磁波的吸收和衰减。由于纳米晶粒细小,使其晶界上的原子数多于晶粒内部的,即产生高浓度晶界,使纳米材料有许多不同于一般粗晶材料的性能。纳米微粒具有小尺寸效应、表面与界面效应、量子尺寸效应、介电效应和宏观量子隧道效应等。纳米材料之所以具有非常优良的吸波性能,主要是以下原因:首先,纳米材料具有高浓度晶界,晶界面原子的比表面积大、悬空键多、界面极化强,容易产生多重散射,在电磁场辐射作用下,由于纳米粒子的表面效应造成原子、电子运动的加剧而磁化,使电磁能更加有效地转化为热能,产生了强烈的吸波效应;其次,量子尺寸效应的存在使纳米粒子的电子能级发生分裂,分裂的能级间隔正处于微波的能级范围(10-2~10-5eV),从而成为纳米材料新的吸波通道;此外纳米离子具有较大的饱和磁感、高的磁滞损耗和矫顽力,使得纳米材料具有涡流损耗高、居里点及使用温度高、吸波频率宽等性能。纳米材料的这种结构特征使得纳米吸波材料具有吸收频带宽、兼容性好、质量轻和厚度薄等特点,易满足雷

达吸波材料“薄、轻、宽、强”的要求,是一种非常有发展前景的高性能、多功能吸收剂。随着现代军事技术的迅勐发展,世界各国的防御体系被敌方探测、跟踪和攻击的可能性越来越大,军事目标的生存能力和武器系统的突防能力受到了严重威胁。隐身技术作为提高武器系统生存、突防,尤其是纵深打击能力的有效手段,已经成为集陆、海、空、天、电、磁六维一体的立体化现代战争中最重要、最有效的突防战术技术手段,并受到世界各国的高度重视。现代化战争对吸波材料的吸波性能要求越来越高,一般传统的吸波材料很难满足需要。由于结构和组成的特殊性,使得纳米吸波涂料成为隐身技术的新亮点。纳米材料是指三维尺寸中至少有一维为纳米尺寸的材料,如薄膜、纤维、超细粒子、多层膜、粒子膜及纳米微晶材料等,一般是由尺寸在1~100nm的物质组成的微粉体系。 随着电子化、信息化的高速发展,产业界对电磁干涉屏蔽和吸波材料的民用需求与日俱增,高度集成原件,与高频原件的应用,导致电子兼容性EMC问题难于解决,传统的屏蔽材料已经不能够解决现代电子信息条件下的电磁屏蔽,而且传统的屏蔽材料只能通过反射原理防止被骚扰,在许多特殊电磁环境中显得“无能为力”,那么在电子信息高度发展的今天,有没有什么更高端的产品来彻底解决电磁辐射,和电磁干扰(EMI)的问题?吸波材料的问世肯定的回答了这一问题,在国内来说,深圳市兆荣软磁材料有限公司,通过国防科大、北矿磁材等企事业的通力合作,研发出具有国内领先水平的薄片类,吸波材

纳米吸波材料

00 杨苏清 现代科学技术迅速发展,无形无迹的电磁波充斥着人们的生活空间,严重的电磁污染给地球的生态环境带来了严重的破坏,因此,研制开发新型吸波材料已经成为当今社会的热点;同时,随着现代军事技术的不断发展,战争越来越信息化,立体化,雷达探测技术的不断发展,现代军队为提高自身的生存和突防能力,也越来越多的应用到隐身技术,而作为隐身技术关键的吸波材料也成为各国军事科技力量研究和开发的重点和热点。 一、纳米吸波材料原理及特性 纳米材料是指特征尺寸在1~100nm的材料。纳米材料由于其自身结构上的特征而具有小尺寸效应、表面界面效应、量子尺寸效应以及宏观量子隧道效应,因而与同组分的常规材料相比,在催化、光学、磁性、力学等方面具有许多奇异的性能,在微波吸收方面显示出很好的发展前景。吸波材料是指能够吸收投射到它表面当今电磁波能量,并通过材料的介质损耗使电磁波能量转化为其他形式的能量的一类材料。 当一个微粒的尺寸小到纳米量级时,它的微观结构和性能既不同于原子、分子的微观体系,也不同于显示本征性质的大颗粒材料宏观体系,而是介于二者之间的一个过渡体系。纳米微粒尺寸小,比表面积大,具有很高的表面能,从而对其化学性质有很大影响。实验证明,粒子分散度提高到一定程度后,随着粒子直径的减小,位于粒子表面的原子数与总原子数的比值急剧增大,当粒径降为5nm 时,表面原子所占比例可达50%。由于表面原子数增加,微粒内原子数减少,使能带中的电子能级发生分裂,分裂后的能级间隔正处于微波的能量范围内(l×l0-2-l×lO-5eV),从而导致新的吸波通道。一方面,纳米微粒尺寸远小于雷达波波长,对雷达波的透过率大大高于常规材料,这就大大降低了对雷达波的反射率;另一方面,纳米材料的比表面积比常规微粒大3~4个数量级,对雷达波和红外光波的吸收率也比常规材料高得多。此外,随着颗粒的细化,颗粒的表面效应和量子尺寸效应变得突出,颗粒的界面极化和多重散射成为重要的吸波机

复合羰基铁吸波材料

说起吸波材料,行业外人士可能不是很清楚,何为吸波材料?所谓吸波材料,指能吸收或者大幅减弱投射到它表面的电磁波能量,从而减少电磁波的干扰的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。而本文中我们主要要说的复合羰基铁吸波材料,将磁性吸收剂羰基铁粉分散于环氧、橡胶、聚乙烯及尼龙等高分子基体中,可以制成不同吸收特性、不同应用场景的吸收体,主要应用场合为普通负载片、吸波贴片、吸波尖锥等。 羰基复合铁是红棕色液体,它不溶于水,溶于乙醇、乙醚、苯、强碱和浓酸,遇光以及热容易分解,暴露在空气中能自燃。遇明火、高热能引起燃烧爆炸。与氧化剂能发生强烈反应。其蒸气比空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。与锌及过渡金属卤化物发生剧烈反应。 下面看看吸收剂复合对提升羰基铁涂层吸波性能的影响: 为提升羰基铁(CIP)涂层吸波性能,分别添加了电阻型吸收剂炭黑(CB)和透波材料二氧化硅(SiO2),研究不同吸收剂的加入对其吸波性能的影响。用扫描电子显微镜表征其断面形貌,用弓形法测试其反射损耗(2~18 GHz频段)。结果表明,吸收剂的复合化显著提升了涂层的吸波性能。SiO2的加入显著改善了吸收峰值,且随SiO2含量的增加,峰值的改善更加显著。CB的加入也提升了涂层的吸波性能,但由于CB的高导电性,其加入量达到一定程度时,涂层的阻抗匹配条件恶化,吸

波性能的提升也逐渐减小。当CB、CIP与聚氨酯质量比为0.1:5:1时,此时涂层吸波性能最佳,在6 GHz处可达?22.1 dB。吸收剂的复合化可以有效的提高传统吸波涂层性能,合理设计吸收剂的用量,可以获得吸波性能优异的涂层材料。 复合羰基铁吸波材料在此为大家推荐昊王。 南京昊王电子材料有限公司成立于2006年,公司坐落于南京江宁经济技术开发区,主要为航天科工集团,航天科技集团及中电科技集团等相关科研院所提供稀土原料,化工原料及碳化硅吸收材料,是相关科研院所的合格供应方。公司生产的碳化硅吸收材料主要用于微波吸收负载,微波暗室,暗箱。微波吸收性能良好,耐高功率,耐高温,稳定性好,无毒、无挥发、可加工成各种形状同时因性能一致性高随着微波技术在各行业中广泛应用,碳化硅微波吸收材料也能为更多的行业提供更好的服务。有需要的朋友们可以直接联系咨询昊王公司官网https://www.wendangku.net/doc/b29237406.html,

柔性吸波材料的应用范围

柔性吸波材料的应用范围 早在第二次世界大战期间,美、英、德等国出于各自的军事目的,针对雷达电子侦察和反侦察,开始对电磁波吸收材料进行了大量探索性工作。美国于20世纪60年代开始把柔性吸波材料应用于空军的F-14、F-15、F-18战斗机和F-117隐形飞机上。80年代以来,世界各国投巨资加大对吸波材料研究的力度。随着电信业务的迅速发展,吸波材料也被应用到通信、环保及人体防护等诸多领域。随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 城市内高楼林立,高大的建筑反射电磁波会造成重影。将吸波材料应用于建筑材料中,可使这个问题迎刃而解。而吸波材料制作的微波暗室可广泛地应用于雷达、通信和航空航天领域。此外,吸波材料在改善机载、航载雷达设备的兼容性,提高整机性能等方面也有着广阔的应用空间。在各种雷达目标的表面,涂覆吸波材料用以减少武器系统的有效反射截面,从而使这些武器易于突破敌方雷达的防区,这是反雷达侦察的一种有力手段,也是减少武器系统遭受红外制导导弹和激光武器攻击的一种方法。吸波材料还可用于着落灯等机场导航设备,航船桅杆、甲板,潜艇的潜望镜支架或通气管道等。 将吸波材料应用于各类电子产品,如电视、LED显示屏、音响、VCD 机、计算机、数码相机、游戏机、微波炉、移动电话中,可以使电磁

波泄露降到国家卫生安全限值(10微瓦每平方厘米)以下,确保人体健康。将其应用于高功率雷达、微波暗室、微波医疗器、微波破碎机、电子兼容的吸收屏蔽,能保护操作人员免受电磁波辐射的伤害。柔性吸波材料系列产品应用频率为10MHz-10GHz,根据不同的应用频率,调正吸收剂的配伍,制成不同厚度的电磁波吸收贴片,广泛应用于移动装置、显示装置、计算机、数字设备、电子产品等抗电磁辐射干扰、微波暗室、屏蔽箱、微波辐射防护技术领域吸波材料具有较高的介电常数和磁导率以及较大的损耗因子。

吸波材料及其应用

吸波材料及其应用 随着现代科学技术的发展,电磁波辐射对环境的影响日益增大。在机场,飞机航班因电磁波干扰无法起飞而误点;在医院,移动电话常会干扰各种电子诊疗仪器的正常工作。因此,治理电磁污染,寻找一种能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 电磁辐射通过热效应、非热效应、累积效应对人体造成直接和间接的伤害。 研究证实,铁氧体吸波材料性能最佳,它具有吸收频段高、吸收率高、匹配厚度薄等特点。将这种材料应用于电子设备中可吸收泄露的电磁辐射,能达到消除电磁干扰的目的。根据电磁波在介质中从低磁导向高磁导方向传播的规律,利用高磁导率铁氧体引导电磁波,通过共振,大量吸收电磁波的辐射能量,再通过耦合把电磁波的能量转变成热能。 在日益重要的隐身和电磁兼容(EMC)技术中,电磁波吸收材料的作用和地位十分突出,已成为现代军事中电子对抗的法宝和“秘密武器”,其工程应用主要在以下几个方面。 1、隐身技术 在飞机、导弹、坦克、舰艇、仓库等各种武器装备和军事设施上面涂复吸收材料,就可以吸收侦察电波、衰减反射信号,从而突破敌方雷达的防区,这是反雷达侦察的一种有力手段,减少武器系统遭受红外制导导弹和激光武器袭击的一种方法。如美国B-1战略轰炸机由于涂复了吸收材料,其有效反射截面仅为B-52轰炸机的1/50;在0H-6和AH-1G型眼镜蛇直升机发动机的整流罩上涂复吸收材料后可使发动机的红外辐射减弱90%左右。在1990年的海湾战争中,美国首批进入伊拉克境内的F-117A飞机就是涂复了吸收材料的隐形飞机,它们有效避开了伊拉克的雷达监测。据悉,瑞典海军近年来研制成功的世界上第一艘隐形战舰已投入使用,美、英、日、俄等国均已研制出自己的隐形坦克和其它隐形作战车辆。此外,电磁波吸收材料还可用来隐蔽着落灯等机场导航设备及其它地面设备、舰船桅杆、甲板、潜艇的潜望镜支架和通气管道等设备。 2、改善整机性能 飞机机身对电磁波反射产生的假信号,可能导致高灵敏机载雷达假截获或假跟踪;一驾飞机或一艘舰船上的几部雷达同时工作时,雷达收发天线间的串扰有时十分严重,机上或舰上自带的干扰机也会干扰自带的雷达或通信设备……。为减少诸如此类的干扰,国外常用吸收材料优良的磁屏蔽来提高雷达或通信设备的性能。如在雷达或通信设备机身、天线和周围一切干扰物上涂复吸收材料,则可使它们更灵敏、更准确地发现敌方目标;在雷达抛物线天线开口的四周壁上涂复吸收材料,可减少副瓣对主瓣的干扰和增大发射天线的作用距离,对接收天线则起到降低假目标反射的干扰作用;在卫星通信系统中应用吸收材料,将避免通信线路间的干扰,改善星载通信机和地面站的灵敏度,从而提高通信质量。

吸波材料吸波原理及其研究进展

吸波材料的吸波原理及其研究进展 张开庆 (山东科技大学应用物理学2010-01 201001090134) 摘要:介绍了吸波材料的重要性,阐述了吸波材料的吸波原理,综述了铁氧体吸波材料、金属微粉吸波材料、纳米吸波材料及光学透明吸波材料近几年来的国内外研究进展及应用,最后指出,多频谱隐身材料和智能隐身材料是吸波材料中两个最主要的发展方向。 关键词:吸波材料;吸波原理;进展 Absorbing Mechanism and Progress of Wave-absorbing Materials Zhang Kai-qing (Shandong university of science and technology college of science, Applied physics class level 2010-01) Abstract:The sign if icance of wave-absorbing materials was explained. The absorbing mechanism indifferent conditions, the species and the characteristics of general wave-absorbing materials were introduced. The recent progress and application of ferrite material, surperfine metal powders, nanam eter absorbing material and optics transparent absorbing materials were reviewed. Finally points out that the multiple spectra and intelligent stealth materials are tow most essential developing trends for radar wave absorbing materials. Key words: wave-absorbing materials; wave-absorbing mechanism; progress 随着现代科技技术尤其是电子工业技术的高速发展,不同频率的电磁辐射充斥着人们的生活空间,破坏了人类良好的生态环境,造成了严重的电磁污染。不少科学家预言,在二十一世纪,电磁污染将成为生态环境首屈一指的物理污染[1]。电磁场以电磁波的形式传递能量,只有使用电磁波吸波材料。使电磁波能转化为热能或其他形式的能,才能有效清除电磁污染。因此解决电磁污染的吸波材料的研究和应用成为人们研究. 隐身技术也称为目标特征信号控制技术,是一种通过控制和降低武器系统的特征信号,使其难以被发现、识别、跟踪和攻击的技术。由于隐身技术能极大地提高武器的生存能力和作战效果,受到许多国家的高度重视,成为集陆、海、空、天四位一体的立体化现代战争中最重要、最有效的突防战术手段,成为现代军事研究的关键技术[2]。在现代战争中,雷达是探测目标的最可靠手段,因此雷达隐身技术是隐身技术的重点。 雷达隐身技术的核心是降低目标的雷达散射截面(RCS)。其技术主要途径有两条:一是通过目标的外形设计降低RCS,简称为外形技术。二是目标应用能吸收雷达波的材料,即利用雷达吸波材料(RAM)降低目标的RCS,简称为雷达吸波材料技术[3]。 雷达吸波材料简称吸波材料。吸波材料是指能吸收投射到它表面的电磁波能量,并通过材料的介质损耗使电磁波能量转化为热能或其他形式的能量而消散掉的一类材料。它的工作原理与材料的电磁特性有关。良好的吸波材料具备两个条件,一是雷达波射入的吸波材料内,其能量损耗尽可能大;二是吸波材料的阻抗与雷达波的阻抗相匹配,此时满足无反射。实际上常要求吸波材料在一定频宽范围内对电磁波强烈的吸收,理想的情况是全吸收,即反射系数为零[2]。 由于各类材料的化学成分和微观结构不同,吸波机理也不尽相同。尽管如此,吸波材料的吸波性能还是可以用宏观的电磁理论进行分析,工程上也常常使用材料宏观的介电常数和磁导率来评价吸波材料的反射和传输特性材料吸收电磁波的基本条件是:一是电磁波入射到材料上时,它能尽可能不反射而最大限度地进入材料内部,即要求材料满足阻抗匹配;二

吸波材料简介、应用,及未来发展趋势

吸波材料简介、应用,及未来发展趋势 一、吸波材料简介: 吸波材料是近年来发展的一种新型的复合型聚合物合成材料,用于电子元器件上屏蔽和防止电磁干扰的磁性吸波材料. 所谓吸波材料,指能吸收投射到它表面的电磁波能量的一类材料。在工程应用上,除要求吸波材料在较宽频带内对电磁波具有高的吸收率外,还要求它具有质量轻、耐温、耐湿、抗腐蚀等性能。 电磁辐射通过热效应、非热效应、累积效应对人体造成直接和间接的伤害。研究证实,铁氧体吸波材料性能最佳,它具有吸收频段高、吸收率高、匹配厚度薄等特点。将这种材料应用于电子设备中可吸收泄露的电磁辐射,能达到消除电磁干扰的目的。根据电磁波在介质中从低磁导向高磁导方向传播的规律,利用高磁导率铁氧体引导电磁波,通过共振,大量吸收电磁波的辐射能量,再通过耦合把电磁波的能量转变成热能。 其中铁氧体的磁损耗特性在300MHz以下可有效吸引电波,而导电性发泡聚苯乙烯材料在300MHz 以上的作用更为明显。 二、吸波材料的应用范围: 早在第二次世界大战期间,美、英、德等国出于各自的军事目的,针对雷达电子侦察和反侦察,开始对电磁波吸收材料进行了大量探索性工作。美国于20世纪60年代开始把吸波材料应用于空军的F-14、F-15、F-18战斗机和F-117隐形飞机上。80年代以来,世界各国投巨资加大对吸波材料研究的力度。随着电信业务的迅速发展,吸波材料也被应用到通信、环保及人体防护等诸多领域。 能抵挡并削弱电磁波辐射的材料——吸波材料,已成为材料科学的一大课题。 城市内高楼林立,高大的建筑反射电磁波会造成重影。将吸波材料应用于建筑材料中,可使这个问题迎刃而解。而吸波材料制作的微波暗室可广泛地应用于雷达、通信和航空航天领域。此外,吸波材料在改善机载、航载雷达设备的兼容性,提高整机性能等方面也有着广阔的应用空间。 在各种雷达目标的表面,涂覆吸波材料用以减少武器系统的有效反射截面,从而使这些武器易于突破敌方雷达的防区,这是反雷达侦察的一种有力手段,也是减少武器系统遭受红外制导导弹和激光武器攻击的一种方法。吸波材料还可用于着落灯等机场导航设备,航船桅杆、甲板,潜艇的潜望镜支架或通气管道等。 将吸波材料应用于各类电子产品,如电视、LED显示屏、音响、VCD机、电脑、数码相机、游戏机、微波炉、移动电话中,可以使电磁波泄露降到国家卫生安全限值(10微瓦每平方厘米)以下,确保人体健康。将其应用于高功率雷达、微波暗室、微波医疗器、微波破碎机、电子兼容的吸收屏蔽,能保护操作人员免受电磁波辐射的伤害。

吸波材料原理

: 波材料消除屏蔽腔体内电磁波的来回反射,减少杂波对自身设备的干扰,也有效防止电磁辐射对周围设备及人员的骚扰和伤害,是一种消除电磁波污染的高级手段。常用厚度包括:0.08mm 0.1mm 0.2mm 0.3mm 在NFC支付手机等手持式设备中,电子标签(RFID)要集成或贴合到电子设备上,作为设备的一个部件发挥功能,往往因空间有限,不可避免要将RFID标签(通常是被动式的)贴在金属等导电物体表面或贴在临近位置有金属器件的地方。这样一来,标签在读卡器发出的信号作用下激发感应出的交变电磁场很容易受到金属的涡流衰减作用而使信号强度大大减弱,导致读取过程失败。因此,为了产品能够更好的应用读卡,需要在产品中增加吸波材料。 吸波材料在手机nfc用得很多。 所谓吸波材料,是指能吸收投射到它表面的电磁波能量并且反射、折射和散射都很小的一类材料。电磁波吸收体以导电损耗、介电损耗、磁性损耗等来划分,可分为导电吸收体材料、介电吸收体材料和磁性吸收体材料。主要以介电损耗为损耗机理,在外界交变电场的作用下,材料纤维内的电子产生振动,将电磁能转化成为热能散耗掉。研究表明,这种材料具有相对重量轻(1kg/m2)、吸收频带宽(10MHz-18GHz)、吸收性能好(5-30db)、耐候性强(-40℃—180℃)、抗老化、易弯折、可任意裁剪、耐湿、耐压、长期使用、无毒环保等突出优点。在生产中可以通过调节纤维的长度、直径、排列方式、分散剂的含量等相应调节材料的电磁吸收参数,根据客户需要制造成(10MHz-18GHz)的不同频段宽度、用于(军事、工业和民用)等不同用途、从(0.5-6mm)不同的厚度和(平板型、波纹状、蜂窝状等)不同形状。 材料吸波原理主要有三类: 1.吸收型,将电磁波吸收在材料中并耗散掉。 2.反射型,将电磁波(雷达波)屏蔽在材料表面,减少雷达波反射截面,并通过反射到非重要区域,使雷达波接受达到最低。 3.干涉型,通过在材料表面进行某种结构或材料设计,使电磁波存在光程差发生相互干涉相消。

相关文档
相关文档 最新文档