文档库 最新最全的文档下载
当前位置:文档库 › din iso 2768-1&2未注长度与角度公差 & 未标注形 状位置公差

din iso 2768-1&2未注长度与角度公差 & 未标注形 状位置公差

din iso 2768-1&2未注长度与角度公差 & 未标注形 状位置公差
din iso 2768-1&2未注长度与角度公差 & 未标注形 状位置公差

德国标准1991年6月

一般公差

第1部分:未注长度与角度公差

前言

ISO(Internationale Organisatioon fuer Normung)是世界统一的国际标准研究所。

ISO-成员体)。编制国际标准属于ISO技术委员会的责任。每个成员体,如其对某个课题感兴趣就可以参加此课题的技术委员会,在这个委员会共同工作。与ISO有联系的国际(国家的和非国家的)组织也可以参加工作。ISO与国际电工委员会(IEC)在所有电工技术标准领域密切合作。

由技术委员会通过的国际标准草案在它被确认为国际标准的建议以前,首先呈送各成员体。如表决的成员体75%赞成,那么草案按ISO的议事规则通过为ISO。

国际标准ISO 2768-1由ISO/TC 3“极限尺寸和配合”技术委员会编制。

本版ISO2768-1和ISO2768-2:1989一起代替ISO2768:1973。

ISO2768在主标题“一般公差”下包括如下部分:

---第1部分:未注长度和角度公差。

---第2部分:未注形状和位置公差。

引言

零件的形状元素有尺寸和几何形状。由于尺寸偏差和几何特性偏差(形状、方向和位置)零件必须有公差。若超过了公差,那么功能就要受损害。

公差在图纸上应是完整的,以便确保包括所有尺寸元素和几何形状元素的质量,也就是说不允许保留含糊或在评价车间和检验时听天由命。

在使用尺寸、形状和位置的一般公差的条件下,满足这个条件的任务就可简化。

1 目的

ISO2768的这部分用来简化图纸并包含不用单独标注的长度和角度的一般公差,分四个级别。

说明1:长度和角度的一般公差草案在附录A中描述。

ISO2768的这部分可用于金属半成品通过切削或冲压变形形成的形状元素。

说明2:这套公差对非金属也可使用。

说明3:类似的铸件公差国际标准已经有或尚在编制,如ISO80621)。

ISO2768的这部分只适用于下列未单独标注公差的尺寸:

a)长度尺寸(如外部尺寸、内部尺寸、台阶尺寸、直径、半径、距离、弯曲半径及倒角尺寸)

b)一般不标注的角度尺寸,如若在 ISO2768第2部分未规定的直角(90o) 或等分的角。

c) 通过加工有接缝零件产生的长度和角度尺寸。

ISO2768的这部分不适用于:

a)未被其它一般公差标准覆盖的长度和角度尺寸。

b)括弧内的辅助尺寸;

c)直角框内的理论尺寸。

2 概述

选择公差级别应考虑各工厂一般的精度。如某个单独的形状元素要求小或大些的公差并且经济,那么这个公差应直接在所属的名义尺寸旁规定。

如在图纸上或所属的资料中按ISO2768本册第5节已说明,那么长度和角度的一般公差就有效。如为其它加工方法规定的一般公差国际标准已规定,那么在图纸上或所属文件中必

须说明此点。对加工表面和不加工表面之间的尺寸,如铸件和锻件,没有单独规定公

差,那么应用两种有效公差中较大的一个,例如铸件。(按 ISO80621))

1) ISO8062:1984铸件--长度公差系统

3 引用的其它标准

下述标准包含的规定,通过引用成为本ISO 68标准组成部分。所列的版本在ISO2768出现时是有效的。因为标准有时要修订,所以向读者户推荐这些标准,以便不断追踪各引用标准

的新版本。IEC和ISO-的成员也有国际标准各有效版本的目录。

ISO2768-2:1989 一般公差-2:未单独标注的形状元素的形状与位置公差

ISO 8015:1985 技术图纸;公差基础

德文版注:

DIN 7167 尺寸、形状和平行度公差的关系;图纸未注时的壳形条件。

4 一般公差

4.1 长度公差

长度尺寸一般公差按表1和2

4.2 角度尺寸

以角度单位规定的一般公差理解为线或面的线元素之公共方向,而不是这些线的形状偏差。实际表面引出线(实际线)的公共方向就是理想几何形状接触线的方向。该接触线和实际线的最大距离必须是最可能小的距离。角度尺寸的极限偏差列在表3中。

表 1 除倒角外长度尺寸的极限偏差

(圆角半径和倒角高度见表2)

表 2 倒角的极限偏差(圆角半径和倒角)

表 3 角度尺寸的极限偏差

5 图纸标注

图纸标注应用本标准ISO2768第一册的一般公差,即在图纸文字区内或旁边标注:a)"ISO 2768"

b)公差级别按ISO 2768本标准第一册, 如:

ISO2768-m

德文版说明:有时为明确起见把名称:

"一般公差"写在前边。

5 拒绝

如无其它规定,在不损害功能的情况下不允许未注一般公差的零件拒绝本标准。

(见附录 A.4)

德文版说明:这种说法和所谓拒绝条款 459BGB意思一样。

附录 A (本附录只用作信息)

长度和角度尺寸一般公差草案

A1一般公差应按本标准ISO2768第一册第5节在图纸上标注。一般公差值按其公差级别应与普通工厂的精度相适应。必须选择合适的公差级别并在图纸上规定。

A2在生产时公差扩大超差一般产生不了经济效益。例如一个要求很高精度的形状元素直径35,在工厂可能用普通中等精度生产。1mm的极限尺寸对这个工厂可能特别没有优点,因为一般公差值0.3mm完全可以达到。

但假如一个形状元素根据功能的要求需要比"一般公差"较小的精度, 那么对这个形状元素应在其确定尺寸和角度的名义尺寸旁单独标注较小的公差。这个公差不包括在一般公差的有效范围之内。

如形状元素的功能允许某个等于或大于一般公差值的公差,那么这个值不应象A.1所述那样在图纸名义尺寸旁标注。这个公差允许全面使用一般公差的说明。

即有个“规则的例外”,这时形状元素的功能允许有比一般公差大的公差,并且用较大的公差在生产时可有经济效益。在这种特殊的情况下较大的公差应该在图纸上有关形状元素名义尺寸旁单独标注;例如装配

时加工的底孔深度。

A3使用一般公差有以下优点:

a)使图纸便于阅读和与用户交流

b)设计节省时间,因为不必进行详细公差计算;就足可知道功能所允许的大于或等于一般公差的公差。。

c)由图纸可很快得出结论,何种形状元素可用一般的成本生产。还使质量检验降低成本成为可能。

d)其余单独标注公差的尺寸主要指其功能要求小的公差且在生产时必须特别小心。这对生产

计划是有帮助的并有助于质量检验分析检验要求

e)客户和供货商可能更快签订合同,因为“工厂普通精度”在合同签订前已知。因为图纸在这一点上都明白,所以在供货时就可避免买卖双方的矛盾。因此每个工厂都应该

---测量确定它的工厂一般精度;

---只接收其一般公差等于或大于工厂自身的精度的图纸,

---通过抽样检验确认,它的工厂自身精度不坏。

有这个形状和位置一般公差说明就不应再出现未定义的完全不可靠以及错误理解的“好工厂”概

念。而精确的“好工厂”概念则需用形状和位置一般公差来定义。

A4

功能常常允许比一般公差较大的公差。因此假如零件任一个形状元素的一般公差未被遵守的话,并不妨

害该零件的功能。超过一般公差的极限只有当损害其功能时才导致零件报废。

引用标准

----在德文译本中见第3节

----在德文译本中增加:

DIN 7167 尺寸、形状和平行度公差;无图纸标注的壳形条件

DIN 7168 一般公差;不用于新设计

DIN ISO 2768 Teil 2 形状和位置一般公差;与ISO 2768-2:1989相同

DIN ISO 5459 工程制图;形状和位置公差;几何公差的基准和基准系

DIN ISO 8015 工程制图;公差基础;与ISO 8015:1985相同

ISO 2768-2:1989 一般公差-2册:Geometrical tolerances for features

without individual tolerance indications 未单独标注的形

状几何公差

ISO 5459:1981 工程制图-几何公差-几何公差数据与数据系统

ISO 8015:1985 工程制图-公差原则基础

ISO 8062:1984 铸造-尺寸公差系统

以前版本

DIN ISO 2768 Teil : 04.91

修改

与1991年版本进行了如下修改:

----改正印刷错误:表3,最后一行,改正最后两栏的数值。

国际专利分类

G 01 B 21/02

G 01 B21/22

德国标准1991年6月

一般公差

第2部分:未单独标注长度和角度尺寸公差

前言

ISO(Internationale Organisatioon fuer Normung)是世界统一的国际标准研究所。ISO-成员体)。编制国际标准属于ISO技术委员会的责任。每个成员体,如其对某个课题感兴趣,就可以参加此课题的技术委员会,在这个委员会共同工作。与ISO有联系的国际(国家的和非国家的)组织也可以参加工作。ISO与国际电工委员会(IEC)在所有电工技术标准领域密切合作。

由技术委员会通过的国际标准草案在它被确认为国际标准的建议以前,首先呈送各成员体。如表决的成员体75%赞成,那么草案按ISO的议事规则通过为ISO。

国际标准ISO 2768-2由ISO/TC 3“极限尺寸和配合”技术委员会编制。

本版ISO2768-1和ISO2768-2:1989一起代替ISO2768:1973。

ISO2768在主标题“一般公差”下包括如下部分:

---第1部分:未注长度和角度公差。

---第2部分:未注形状和位置公差。

引言

零件的形状元素有尺寸和几何形状。由于尺寸偏差和几何特性偏差(形状、方向和位置)零件必须有公差。若超过了公差,那么功能就要受损害。

公差在图纸上应是完整的,以便确保包括所有尺寸元素和几何形状元素的质量,也就是说不

允许保留含糊或在评价车间和检验时听天由命。

在使用尺寸、形状和位置的一般公差的条件下,满足这个条件的任务就可简化。

1 目的

ISO2768的这部分用来简化图纸标注并规定图纸包含的各个形状元素的形状和位置的一般公差,而不必各个标注形状与位置公差。

ISO 2768的这一册主要用于通过切削加工的形状元素。用其它方法制造的形状元素也可以用;但它必须特别注意,工厂的普通精度是否位于ISO2768本册规定的形状和位置一般公

差范围之内。

2 概述

选择确定的公差级别应考虑各个工厂的普通精度。如某个单独的形状元素需要小的或大的公

差是经济的,那么这个公差就直接按ISO 1011规定(见A.2节)。

当图纸上或所属的资料中符合本ISO2768本册第6节所规定,ISO2768本册的形状位置一般

公差就是有效的。它适用于形状和位置公差未单独规定的形状元素。形状与位置的一般公差

对所有形状元素的公差特性都是可用的,但圆柱、任意线截面、任意平面截面、斜度、同轴

度、位置度和全跳动特性除外。假如公差基础符合ISO 8015 及在图纸上加以标注(见B.1),那么ISO2768本册的形状与位置一般公差对所有工况都是可用的。

3 引用的其它标准

下述标准包含的规定,通过引用成为本ISO 2768标准组成部分。列出的版本在ISO2768 出现时是有效的。因为标准有时要修订,所以向读者户推荐这些标准,以便不断追踪各引用标

准的新版本。 IEC 和 ISO-的成员也有国际标准各有效版本的目录。

ISO 1101工程制图;形状和位置公差;形状、方向、位置和跳动公差、一

般公差、概念、符号、图纸标注

ISO 2768-1一般公差-T1:未单独标注的长度和角度的公差

ISO 5459工程制图;形状和位置公差的基准和基准系统。

ISO 8015工程制图;公差基础

德文版说明

DIN 7167尺寸、形状和平行度公差间的关系;图纸未注时的壳形条件

说明1: 圆柱偏差由圆度、直线度和平行度三个分量在外母线迭加,每一个分量均可理解为单独标注的公差或它的一般公差。

说明2: 如果圆柱偏差由于功能要求比圆度、直线度和平行度的组合要小那么圆柱公差必须按DIN 1101,在相应的形状元素旁单独标注。常常有目的地例如在配合

部位必须确定壳形条件 E

如适合DIN7167,那么圆柱偏差用理想几何壳形最大实体尺寸限制。

德文版

说明:

4 概念

使用ISO 2768本部分需ISO 1101和ISO 5459所确定的形状与位置公差概念有效。

5 形状和位置一般公差(见B.1节)

5.1 单个形状元素的公差

5.1.1 直线度和平面度

直线度和平面度一般公差在表1中给出。为选择公差值,有关直线的长度适用直线度公差 ,而平面的较大边长或圆表面直径适用平面度公差

表 1 度和平面度公差

单位 mm

5.1.2 圆度

圆度的一般公差数值上等于直径公差,但绝不允许大于表4给出的圆跳动公差值(见B.2举例)

5.1.3 圆柱形状

圆柱的一般公差不规定。

5.2 形状元素的相关公差

5.2.1 概述

在第5.2.2至5.2.6中规定的公差适用于可以相互作基准而又不能单独规定这些基准的形状元素。

5.2.2 平行度

平行度一般公差数值上等于尺寸公差、平面度公差或直线度公差中较大的。两个形状元素较长的作为基准元素。如两个形状元素。

5.2.3 垂直度

垂直度的一般公差包括在表2中。形成直角的两边中较长的一个作为基准元素。如果2形状元素有相等的名义尺寸,任何一个皆可作为基准元素。

表 2 垂直度一般公差

5.2.4 对称度

对称度一般公差在表3中规定。两个形状元素中较长的作基准元素。如两个形状元素有相等的名义尺寸,任一可作基准。

说明:下列情况适用对称度一般公差:

--两组形状元素至少一种有中间平面;

--两组形状元素的轴线互相垂直。

举例见B.5节

表 3 对称度一般公差

5.2.5 同轴度

同轴度的一般公差不作规定

说明:同轴度偏差在极限情况下可以和表4规定的圆跳动值相同。因为圆跳动是由不同轴度和不圆度组成的

5.2.6 跳动

跳动的一般公差(圆跳动、端面跳动和任意旋转表面的跳动)在表4中规定。支撑表面用作跳动一般公差的基准,因为这是其特征。另外两个形状元素中较长的也可作为跳动的基准。如两个形状元素有相同的名义尺寸,任意一个皆可作为基准。

表 4 跳动的一般公差

6 图纸标注

6.1 若一般公差应按ISO2768本部分和ISO2768第1部分联合使用,那么在图纸文字区或其

附近应如下标注:

a) "ISO 2768";

b)按ISO2768-1的公差级别;

c)按ISO2768-2的公差级别。

例如:ISO 2768-mk

在这种情况下按ISO2768-1角度的尺寸的一般公差只适合非900角,因为在ISO2768-2中规定了垂直度一般公差。

6.2 若不用尺寸的一般公差(公差级m),那么就取消相应的字母。

例如:ISO2768-k

6.3 若必须为所有单个尺寸元素1)使用壳形条件注),那么按6.1节一般标注要增加字母

E 。例如:ISO 2768-mk-E

说明:壳形条件 E 可以不适用于单独标注直线度公差的形状元素,这个直线度公差比尺寸公差大。例如半成品。

德文版说明:如使用DIN7167,那么E字母可以取消。

7 拒绝

如无其它规定,在不损害功能的情下不允许未注一般公差的零件拒绝本标准。

(见附录 A.4)

德文版说明:这种说法和所谓拒绝条款 459BGB意思一样。

1) ISO2768这个题目的意思,一个单独的尺寸元素由圆柱面和两个平行平面组成。

注)壳形条件---也翻译作包容条件

附录A

(本附录只作为信息)

几何形状特性一般公差的草案

A.1 一般公差应按本ISO2768-2第6节在图纸上标注。一般公差的数值按普通工厂精度的公差级别。必须合理选择相应的公差级别并在图纸上标注。

A.2 由于生产时公差扩大,超过一定的、和普通工厂精度适应的公差值一般不会产生经济效益。在一般的谨慎和普通机床时一般形状元素不会产生很大的偏差。例如一个形状元素长

80mm直径25mm+0.1mm在工厂生产,其工厂普通精度等于或更精于ISO2768-mH,呈现的几何偏差:圆度小于0.1mm,外表面直线度0.1mm,圆跳动0.1mm(这些值已在本

ISO2768-2中采用)。规定过大的公差特别对工厂并无优点。

但如果某个元素功能要求小于一般公差值的几何偏差,那么这个相关元素小的公差应作标注。即这个公差已超过一般公差的适用范围。

如果形状元素的功能允许有等于或大于一般公差的公差,那么这在图纸上就不用标注,而应按第6节在图纸上标。这个公差允许全面应用形状和位置一般公差的草案。

还有个“规则的例外”,这时,功能允许用比一般公差较大的公差并且在用较大公差生产时可达到经济效益。在这种特殊的情况下较大的形状与位置公差应该在图纸上单独标注;例如很大的薄壁圆环之圆度公差

A.3 使用形状和位置的一般公差可产生如下优点:

a) 图纸容易阅读,与用户便于交流。

b) 设计节省时间,因为不必进行详细公差计算;就足可知道功能所允许的大于或等于一般公差的公差。

c) 由图纸可很快得出结论,何种形状元素可用一般的成本生产。还可以使质量检验降低成本。

d) 其余用单独标注公差的尺寸主要指其功能需要相对小的形状位置公差且在生时必须特别小心。这对生产计划是有帮助的并有助于质量检查分析检验要求。

e) 客户和供货商可能更快签订合同,因为“工厂普通精度”在合同签订前已知。图纸在这一点上都明白,所以在供货时就可避免买卖双方的矛盾。

这个优点只有当不超过一般公差的概率很高时才能全部被利用。即在某个工厂中工厂普通精度应等于或大于图纸规定的一般公差。

因此每个工厂都应该:

--应通过测量确定工厂的普通精度

--只应接收其一般公差等于或大于工厂自身的精度的图纸

--通过抽样检验确认,它的工厂自身精度不坏。

有这个形状和位置一般公差说明就不应再出现未定义的完全不可靠以及错误理解的“好工厂”概念。而精确的“好工厂”概念则需用形状和位置一般公差来定义。

A.4功能常常允许比一般公差较大的公差。因此假如零件任一个形状元素的一般公差未被遵守的话,并不妨害该零件的功能。超过一般公差的极限只有当损害其功能时才导致零件报废

附录 B

(此附录只作为信息)

其它资料

B.1 形状和位置的一般公差(见第5节)

根据独立性原则(见ISO80150)形状和位置的一般公差与零件形状元素实际尺寸无关。这样形状和位置的一般公差甚至当形状元素处处有最大实体尺寸时仍可使用。 (见图B.1)

假如当壳形条件 E 不但在有关形状元素旁单独直接标注,而且按本标准第6节对一般对所有形状元素都单独标注,那么这个要求必须特别注意。

-----举例

例 1 (见图B.2):

直径的极限尺寸直接在图纸上标注。圆度的一般公差等于直径公差数值。

例2 (见图B.2):

按标注ISO2768-mK的一般公差,其直径25 mm极限尺寸+0.2 mm。这个极限尺寸就是公差值0.4, 大于者表4的值0.2 mm。因此有效圆度公差为0.2 mm。

B.3 圆柱形(见5.1.3说明2)

圆度、直线度和平行度一般公差的综合作用由于几何缘故小于三个公差的和,因为是用尺寸公差确定的极限偏差。为简化决定是否采用壳形条件 E 还是单个的圆柱形状公差,也可用三个单独公差之和作为考虑。

B.4 平行度(见5.2.2节)

平行度偏差由尺寸偏差值(见B.3)或直线度公差值或平面度公差值限制(见图B.4).

图 B.4 平行度偏差等于直线度公差

图 B.5 对称度一般公差举例(见5.2.4节) B.6 图纸举例

比ISO2768-mK小或相等的工厂普通精度并且一般不需要检验。

说明2:因为一些公差特性限制了同一形状元素其它的形状位置偏差,例如垂直度公差限制了直线度偏差,所以在图B.6中未标注所有的一般公差。

形位公差的代号

、形位公差的代号(GB/T 1182-1996)

注:形位公差符号的线型宽度为b/2~b(b为粗实线宽),但跳动符号的箭头外的线是细实线。 二、形状、位置公差带的定义和图例说明GB/T 1182-1996 1 直线度 a. 在给定平面内的公差带定义——公差带是距离为公差值t的两平行直线之间的区域。 b. 在给定方向上的公差带定义——当给定一个方向时,公差带是距离为公差值t的两平行平面之间的区域;当给定互相垂直的两个方向时,公差带是正截面尺寸为公差值t1×t2的四棱柱内的区域。 c. 在任意方向上的公差带定义——公差带是直径为公差值t的圆柱面内的区域。

2. 平面度 公差带定义——公差带是距离为公差值t的两平行平面之间的区域。 3. 圆度 公差带定义——公差带是在同一正截面上半径差为公差值t的两同心圆之间的区域。 4.圆柱度 公差带定义——公差带是半径差值t的两同轴圆柱面之间的区域。 5. 线轮廓度 公差带定义——公差带是包络一系列直径为公差值t的圆的两包络线之间的区域,诸圆圆心应位于理想轮廓线相对基准有位置要求时,其理想轮廓线系指相对基准为理想位置的理想轮廓线。

6.面轮廓度 公差带定义——公差带是包络一系列直径为公差值t的球的两包络面间的区域,诸球球心应位于理想轮廓面上。 注:当被测轮廓面相对基准有位置要求时,其理想轮廓面系指相对于基准为理想位置的理论轮廓面。 7. 平行度 a. 在给定的方向上的公差带定义——当给定一个方向时,公差带是距离为公差值t,且平行于基准平面(或直线、轴线)的两平行面之间的区域;当给定相互垂直的两个方向时,是正截面尺寸为公差值t1×t2,且平行于基准轴线的四棱柱内的区域。 b. 在任意方向的公差带定义——公差带是直径为公差值t,且平行于基准轴线的圆柱面内的区域。

尺寸公差 形位公差关系

同一工件上所标注的尺寸公差要求小还是形位公差要求小? 尺寸公差与形位公差是否有联系? 1.形位公差要小,两都有联系。 2.表面形状公差(t),尺寸公差(T)及表面粗糙度Ra,Rz有一定相互关系的: t≈0.6T 则Ra≤0.05T,Rz≤0.2T; t≈0.4T 则Ra≤0.025T,Rz≤0.1T; t≈0.25T 则Ra≤0.012T,Rz≤0.05T; t<0.25T 则Ra≤0.015T,Rz≤0.06T; 3. 尺寸公差有标准公差\极限公差 形位公差共有14个,根据零件的功能要求,有时尺寸公差与形位公差之间应遵循一些特定的关系,也就是尺寸公差控制形位公差;形位公差补偿给尺寸公差。 图样上给定的每一尺寸和形状\位置要求均是独立的并分别满足要求的原则,这是独立原则 粗糙度是根据配合来定的 4. 除了独立原则和包容原则外还有最大和最小实体要求及其各自的可逆要求.到底使用哪种原则和要求要看具体情况. 对于孔轴配合来说,包容原则和最大最小实体要求都是常用的,这些要求的目的是在保证配合的 同时根据形位误差适当的放宽对尺寸公差的要求,允许部分尺寸超差的零件合格,降低加工难度 和成本. 5.尺寸公差与形位公差的联系要在实践中细细体会。 例如:一、一块矩形板上有四个孔。四个孔的相对位置要求很高(因为相应的装配是一组轴类零件),而孔本身的加工要求不高(相应装配的轴类件其单个的表面精度低或是很松的间隙配合等),这时的形位公差的要求高于尺寸公差的;二、一块板上有一孔。这孔的装配要求很高(装配上相应的轴类零件后要求板与轴件的垂直度相当高),这时尺寸的公差的要求可能就要高于形位公差了。 公差的设计就是要保障装配的实现,本着这个原则就可以了。 6.尺寸分为绝对尺寸和关联尺寸,如果是关联尺寸,就和形位公差挂上钩了哟 7. Sorry,一条好的经验法则:1/3D

形位公差--符号

常用形位公差符号.jpg 形位公差开放分类: 专业术语、公差、形位公差 加工后的零件不仅有尺寸误差,构成零件几何特征的点、线、

面的实际形状或相互位置与理想几何体规定的形状和相互位置还不可避免地存在差异,这种形状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。 xingwei gongcha 形位公差 tolerance of form and position 包括形状公差和位置公差。任何零件都是由点、线、面构成的,这些点、线、面称为要素。机械加工后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。这类误差影响机械产品的功能,设计时应规定相应的公差并按规定的标准符号标注在图样上。20世纪50年代前后,工业化国家就有形位公差标准。国际标准化组织(ISO)于1969年公布形位公差标准,1978年推荐了形位公差检测原理和方法。中国于1980年颁布形状和位置公差标准,其中包括检测规定。形状公差和位置公差简称为形位公差 (1)形状公差:构成零件的几何特征的点,线,面要素之间的实际形状相对与理想形状的允许变动量。给出形状公差要求的要素称为被测要素。 (2)位置公差:零件上的点,线,面要素的实际位置相对与理想位置的允变动量。用来确定被测要素位置的要素称为基准要素。 形位公差的研究对象是零件的几何要素,它是构成零件几何特征的点,线,面的统称.其分类及含义如下: (1) 理想要素和实际要素 具有几何学意义的要素称为理想要素.零件上实际存在的要素称为实际要素,通常都以测得要素代替实际要素. (2) 被测要素和基准要素 在零件设计图样上给出了形状或(和)位置公差的要素称为被测要素.用来确定被测要素的方向或(和)位置的要素,称为基准要素. (3) 单一要素和关联要素 给出了形状公差的要素称为单一要素.给出了位置公差的要素称为关联要素. (4) 轮廓要素和中心要素 由一个或几个表面形成的要素,称为轮廓要素.对称轮廓要素的中心点,中心线,中心面或回转表面的轴线,称为中心要素 形状公差有直线度,平面度,圆度和圆柱度.其含义和标注如下: 1) 直线度 2) 平面度 平面度公差带只有一种,即由两个平行平面组成的区域,该区域的宽度即为要求的公差值. 3) 圆度

尺寸公差、形位公差、粗糙度数值关系

一、尺寸公差、形位公差、表面粗糙度数值上的关系 1、形状公差与尺寸公差的数值关系 当尺寸公差精度确定后,形状公差有一个适当的数值相对应,即一般约以50%尺寸公差值作为形状公差值;仪表行业约20%尺寸公差值作为形状公差值;重型行业约以70%尺寸公差值作为形状公差值。由此可见.尺寸公差精度愈高,形状公差占尺寸公差比例愈小所以,在设计标注尺寸和形状公差要求时,除特殊情况外,当尺寸精度确定后,一般以50%尺寸公差值作为形状公差值,这既有利于制造也有利于确保质量。 2、形状公差与位置公差间的数值关系 形状公差与位置公差间也存在着一定的关系。从误差的形成原因看,形状误差是由机床振动、刀具振动、主轴跳动等原因造成;而位置误差则是由于机床导轨的不平行,工具装夹不平行或不垂直、夹紧力作用等原因造成,再从公差带定义看,位置误差是含被测表面的形状误差的,如平行度误差中就含有平面度误差,故位置误差比形状误差要大得多。因此,在一般情况下、在无进一步要求时,给了位置公差,就不再给形状公差。当有特殊要求时可同时标注形状和位置公差要求,但标注的形状公差值应小于所标注的位置公差值,否则,生产时无法按设计要求制造零件。 3、形状公差与表面粗糙度的关系 形状误差与表面粗糙度之间在数值和测量上尽管没有直接联系,但在一定的加工条件下两者也存在着一定的比例关系,据实验研究,在一般精度时,表面粗糙度占形状公差的1/5~1/4。由此可知,为确保形状公差,应适当限制相应的表面粗糙度高度参数的最大允许值。 在一般情况下,尺寸公差、形状公差、位置公差、表面粗糙度之间的公差值具有下述关系式:尺寸公差>位置公差>形状公差>表面粗糙度高度参数 从尺寸、形位与表面粗糙度的数值关系式不难看出,设计时要协调处理好三者的数值关系,在图样上标注公差值时应遵循:给定同一表面的粗糙度数值应小于其形状公差值;而形状公差值应小于其位置公差值;位置各差值应小于其尺寸公差值。否则,会给制造带来种种麻烦。可是设计工作中涉及最多的是如何处理尺寸公差与表面粗糙度的关系和各种配合精度与表面粗糙度的关系。 一般情况下按以下关系确定: 1、形状公差为尺寸公差的60%(中等相对几何精度)时,Ra≤0.05IT; 2、形状公差为尺寸公差的40%(较高相对几何精度)时,Ra≤0.025IT; 3、形状公差为尺寸公差的25%(高相对几何精度)时,Ra≤0.012IT; 4、形状公差小于尺寸公差的25%(超高相对几何精度)时,Ra≤0.15Tf(形状

常用形位公差符号

常用形位公差符号.jpg 形位公差 开放分类:专业术语、公差、形位公差

加工后的零件不仅有尺寸误差,构成零件几何特征的点、线、面的实际形状或相互位置与理想几何体规定的形状和相互位置还不可避免地存在差异,这种形状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。 xingwei gongcha 形位公差 tolerance of form and position 包括形状公差和位置公差。任何零件都是由点、线、面构成的,这些点、线、面称为要素。机械加工后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。这类误差影响机械产品的功能,设计时应规定相应的公差并按规定的标准符号标注在图样上。20世纪50年代前后,工业化国家就有形位公差标准。国际标准化组织(ISO)于1969年公布形位公差标准,1978年推荐了形位公差检测原理和方法。中国于1980年颁布形状和位置公差标准,其中包括检测规定。 形状公差和位置公差简称为形位公差 (1)形状公差:构成零件的几何特征的点,线,面要素之间的实际形状相对与理想形状的允许变动量。给出形状公差要求的要素称为被测要素。 (2)位置公差:零件上的点,线,面要素的实际位置相对与理想位置的允变动量。用来确定被测要素位置的要素称为基准要素。 形位公差的研究对象是零件的几何要素,它是构成零件几何特征的点,线,面的统称.其分类及含义如下: (1) 理想要素和实际要素 具有几何学意义的要素称为理想要素.零件上实际存在的要素称为实际要素,通常都以测得要素代替实际要素. (2) 被测要素和基准要素 在零件设计图样上给出了形状或(和)位置公差的要素称为被测要素.用来确定被测要素的方向或(和)位置的要素,称为基准要素. (3) 单一要素和关联要素 给出了形状公差的要素称为单一要素.给出了位置公差的要素称为关联要素. (4) 轮廓要素和中心要素 由一个或几个表面形成的要素,称为轮廓要素.对称轮廓要素的中心点,中心线,中心面或回转表面的轴线,称为中心要素 形状公差有直线度,平面度,圆度和圆柱度.其含义和标注如下: 1) 直线度 2) 平面度

机械制图的公差与配合及其标注方法

一、公差与配合的概念 (一)零件的互换性 在成批生产进行机器装配时,要求一批相配合的零件只要按零件图要求加工出来,不经任何选择或修配,任取一对装配起来,就能达到设计的工作性能要求,零件间的这种性质称为互换性。零件具有互换性,可给机器装配、修理带来方便,也为机器的现代化大生产提供了可性。 (二)公差的有关术语 零件在加工过程中,足球机床精度、刀具磨损、测量误差等的影响,不可能把零件的尺寸加工得绝对准确。为了保证互换性,必须将零件尺寸的加工误差限制在一定范围内,为例,说明公差的有关术语(轴,类同)。 1、基本尺寸 根据零件的强度与结构要求,设计时确定的尺寸。其数值应优先用标准直径或标准长度。 2、实际尺寸 通过测量所得到的尺寸。 3、极限尺寸 允许尺寸变动的两个界限值。它就是以基本尺寸为基数来确定的。两个界限值中较大的一个称为最大极限尺寸;较小的一个称为最小极限尺寸。

4、尺寸偏差(简称偏差) 某一尺寸减去其基本尺寸所得的代数差。尺寸偏差有: 上偏差=最大极限尺寸—基本尺寸 下偏差=最小极限尺寸—基本尺寸 上、下偏差统称为极限偏差,上、下偏差可以就是正值、负值或零。 国家标准规定:孔的上偏差代号为ES,孔的下偏差代号为EI;轴的上偏差代号为es,轴的下偏差代号为ei、 5、尺寸公差(简称公差) 允许尺寸的变动量。 尺寸公差=最大极限尺寸—最小极限尺寸=上偏差—下偏差 因为最大极限尺寸总就是大于最小极限尺寸,亦即上偏差总就是大于下偏差,所以尺寸公差一定为正值。 如图1a所示的孔径: 基本尺寸=?30 最大极限尺寸=?30、010 最小极限尺寸= ?29、990 上偏差ES=最大极限尺寸—基本尺寸 =30、010-30=+0。010 下偏差EI=最小极限尺寸—基本尺寸 =29、990-30=-0、010 公差=最大极限尺寸—最小极限尺寸

形位误差和形位公差

形位误差和形位公差 吕华福 授课课题:形位误差和形位公差 课题内容:1、形位误差的评定与检测;2、形位公差带定义、特点 本次重点:形位误差的评定、检测;形位公差精度分析 本次难点:形位公差精度分析 教学时间:4课时 教学过程: 实例引入,承上启下 一、形状误差和形状公差(解释概念,明确内容) 1、形状误差:被测实际要素对理想要素的变动量。 2、形状公差:单一实际要素的形状所允许的变动全量。 二、位置误差和位置公差 1、位置误差:关联被测实际要素对其理想要素的变动量。 2、位置公差:关联实际要素的位置对基准所允许的变动全量。 位置公差按几何特征分: *定向公差:具有确定方向的功能,即确定被测实际要素相对基准要素的方向精度。 *定位公差:具有确定位置功能,即确定被测实际要素相对基准要素的位置精度。 *跳动公差:具有综合控制的能力,即确定被测实际要素的形状和位置两方面的综合精度。 (提出问题,引导思考)零件的形位究竟是多少,该如何评定呢? 三、形位误差的评定 形位误差是指被测要素对其理想要素的变动量。 形位误差值小于或等于相应的形位公差值,则认为合格。 1、形状误差的评定 (1)形状误差的评定准则——最小条件 所谓最小条件,是指被测实际要素相对于理想要素的最大变动量为最小,此时,对被测

实际要素评定的误差值为最小。 (2)形状误差值的评定 评定形状误差时,形状误差数值的大小可用最小包容区域(简称最小包容区域)的宽度或直径表示。 3个区域比较,引出最小条件、最小区域 的概念,用以评定形状误差。 2、位置误差的评定 *定向误差是被测实际要素对一具有确定方向的理想要素的变动量,该理想要素的方向由基准确定。 定向误差值用定向最小包容区域(简称定向最小区域)的宽度或直径表示。定向最小区域是指按理想要素的方向包容被测实际要素时,具有最小宽度或直径的包容区域。(通过定向误差的评定分析,比较定向最小区域与最小区域的差别。) *定位误差是被测实际要 素对一具有确定位置的理 想要素的变动量。该理想 要素的位置由基准和理论 正确尺寸确定。 定位误差用定位最小包容区域(简称定位最小 区域)的宽度或直径表示。定位最小区域是指以理想要素定位来包容被测实际要素时,具有最小宽度或直径的包容区域。 明确定位最小区域,引出基准的概念*跳动是当被测要素绕基准轴线旋转时,以指示器测量被测实际要素表面来反映其几何误差,它与测量方法有关,是被测要素形状误差和位置误差的综合反映。 跳动的大小由指示器示值的变化确定,例如圆跳动即被测实际要素绕基准轴线作无轴向移动回转一周时,由位置固定的指示器在给定方向上测得的最大与最小示值之差。(跳动先给出概念,在跳动公差中再详细介绍)

形位公差符号及标注含义

形位公差符号及标注含义 一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 三形状公差 3.1 直线度(-)——直线度公差是实际直线对理想直线的允许变动量,限制了加工面或线在某个方向上的偏差,如果直线度超差有可能导致该工件安装时无法准确装入工艺文件规定的位置。 标注含义:被测表面投影后为一接近直线的“波浪线”(如下图),该“波浪线”的变化范围应该在距离为公差值t(t=0.1)的两平行直线之间。 3.2 平面度——平面度表示面的平整程度,指测量平面具有的宏观凹凸高度相对理想平面的偏差,一般来讲,有平面度要求的就不必有直线度要求了,因为平面度包括了面上各个方向的直线度。 标注含义:被测加工表面必须位于距离为公差值t(t=0.01)的两平行平面内,如下图区域。

3.3 圆度(○)——是指工件横截面接近理论圆的程度,工件加工后的投影圆应在圆度要求的公差范围之内。 标注含义:被测圆柱面的任意截面的圆周必须位于半径差为公差值t (t=0.025)的两同心圆之内,如右图区域。 3.4 圆柱度()——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 标注含义:被测圆柱面必须位于半径差为公差值t(t=0.1)的两同轴圆柱面之间,如图。

圆柱面截面的单个圆而言的,圆柱度包括圆度,控制好了圆柱度也就能保证圆度,但反过来不行。 动机的活塞环,控制好活塞环的圆度可保证其密封性,而活塞的圆柱度则对于其在缸套中上下运动的顺畅性至关重要。 四位置公差 4.1 平行度()——,指两平面或者两直线平行的程度,即其中一平面(边)相对于另一平面(边)平行的误差最大允许值。 标注释义:被测轴线必须位于距离为公差值t(t=0.1),且在给定方向上平行于基准轴线的两平行平面之间。

机械制图-尺寸公差标注

第八节尺寸公差与配合注法(GB/T 4458.5-2003) 公差是反映对制造零件精度要求的,配合是反映相配零件之间存在的间隙或过盈情况的,即互相结合的松紧关系。所以,标注公差与配合是图样中不可缺少的内容。 本标准规定了机械图样中尺寸公差与配合公差的标注方法, 适用于机械图样中尺寸公差(线性尺寸公差和角度尺寸公差)与配合的标注方法。本标准从2003年12月1日实施,并自实施之日起代替GB/T 4458.5-1984《机械制图尺寸公差与配合注法》。 一、基本要求 1、公差带的代号及公差等级的代号等要符合GB/T 1800《极限与配合基础》的规定。 2、字体的写法应符合GB/T 14691-1993《技术制图字体》的规定。 3、尺寸注法要符合GB/T 4458.4-2003《机械制图尺寸注法》的规定。 二、在零件图上的公差注法 (一)线性尺寸公差的注法 在图样中标注线性尺寸公差的方法,常用的有标注公差带代号、标注极限偏差、同时标注公差带代号和极限偏差等三种形式。 1、标注公差带代号 随着公差与配合标准化工作的进展,对于采用标准公差的尺寸,可以直接标注公差带代号,这对于用量规(公差带的代号往往就是量规的代号)检验的场合十分简便。标注公差带代号对公差等级和配合性质的概念都比较明确,在图样中标注也简单。但缺点是具体的尺寸极限偏差不能直接看出。 (注意:当采用公差带代号标注线性尺寸的公差时,公差带的代号应注在基本尺寸的右边,如图2-160、图2-161)。 图2-160 注写公差带代号的公差注法(一) 图2-161 注写公差带代号的公差注法(二) 2、标注极限偏差

在基本尺寸后标注极限偏差的方法,尺寸的实际大小比较直观,为单件、小批生产所欢迎。至于标注极限偏差的具体方法,现说明如下: ①极限偏差数字的高度:GB/T 4458.5-2003仍规定极限偏差数字比基本尺寸的数字小一号,其优点是突出了基本尺寸,标注极限偏差所占地位较小。 ②极限偏差标注的位置:上偏差应注在基本尺寸数字的右上方,下偏差注在基本尺寸数字的右下方,并且下偏差的数字必须与基本尺寸数字注在同一底线上,如图2-162、图2-163。 图2-162 注写极限偏差的公差注法(一) 图2-163注写极限偏差的公差注法(二) ③在标注极限偏差时,上下偏差的小数点必须对齐,小数点后右端的“0”一般不予注出;如果为了使上、下偏差值的小数点后的位数相同,可以用“0”补齐,如图2-164。 图2-164 极限偏差的注法(一) ④当极限偏差中的某一偏差(上偏差或下偏差)为“零”时,用数字“0”标出,这个“0”为个位数,应与另一偏差(下偏差或上偏差)小数点前的个位数对齐,但“0”前不加符号“+”或“-”,后不加小数点,如图2-165。 图2-165 极限偏差的注法(二) ⑤当公差带相对于基本尺寸对称地配置,即上下偏差的绝对值相同时,极限偏差数字可以只注写一次,并应在极限偏差数字与基本尺寸之间注出符号“±”,且两者数字高度相同,如图2-166。 图2-166 极限偏差的注法(三)

形位公差的定义和符号

形位公差的定义和符号 加工后的零件不仅有尺寸误差,构成零件几何特征的点、线、面的实际形状或相互位置与理想几何体规定的形状和相互位置还不可避免地存在差异,这种形状上的差异就是形状误差,而相互位置的差异就是位置误差,统称为形位误差。 形位公差包括形状公差和位置公差。任何零件都是由点、线、面构成的,这些点、线、面称为要素。机械加工后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。这类误差影响机械产品的功能,设计时应规定相应的公差并按规定的标准符号标注在图样上。20世纪50年代前后,工业化国家就有形位公差标准。国际标准化组织(ISO)于1969年公布形位公差标准,1978年推荐了形位公差检测原理和方法。中国于1980年颁布形状和位置公差标准,其中包括检测规定。 形状公差和位置公差简称为形位公差 (1)形状公差:构成零件的几何特征的点,线,面要素之间的实际形状相对与理想形状的允许变动量。给出形状公差要求的要素称为被测要素。

(2)位置公差:零件上的点,线,面要素的实际位置相对与理想位置的允变动量。用来确定被测要素位置的要素称为基准要素。 形位公差的研究对象是零件的几何要素,它是构成零件几何特征的点,线,面的统称.其分类及含义如下: (1)理想要素和实际要素 具有几何学意义的要素称为理想要素.零件上实际存在的要素称为实际要素,通常都以测得要素代替实际要素. (2)被测要素和基准要素 在零件设计图样上给出了形状或(和)位置公差的要素称为被测要素.用来确定被测要素的方向或(和)位置的要素,称为基准要素. (3)单一要素和关联要素 给出了形状公差的要素称为单一要素.给出了位置公差的要素称为关联要素. (4)轮廓要素和中心要素 由一个或几个表面形成的要素,称为轮廓要素.对称轮廓要素的中心点,中心线,中心面或回转表面的轴线,称为中 心要素 描述曲面尺寸准确度的主要指标为轮廓度误差,它是指被测实际轮廓相对于理想轮廓的变动情况。 自由曲面的加工精度是以其面轮廓度来测量的,是一种较难定义的几何要素,它不像一般规则几何要素那样,能用少量的参数给出精确定义,所以自由曲面加工精度的检验也变得较为复杂,主要表现在无法直接利用被测曲面本身作为测量基准,从而使测量结果中包含由于测量坐标系与设计坐标系不重合而造成的系统性误差 测量方法:如果你针对的是点的话,你把它放在三坐标上就可以了。检出的数值是很精准的。如果针对的是面,就只有一条线一条线的来检了,不知道是不是有这样的检测装置,估计高级的会有的,比如用激光来扫的。一般的是利用导轨来实现就可以了,导轨的精度在实测的数据中把它刨除就行了。 形状公差有直线度,平面度,圆度和圆柱度.其含义和标注如下: 1)直线度 2)平面度 平面度公差带只有一种,即由两个平行平面组成的区域,该区域的宽度即为要求的公差值. 3)圆度 在圆度公差的标注中,箭头方向应垂直于轴线或指向圆心. 4)圆柱度 形位公差的标注应注意以下问题: (1)形位公差内容用框格表示,框格内容自左向右第一格总是形位公差项目符号,第二格为公差数值,第三格以后为基准,即使指引线从框格右端引出也是这样. (2)被测要素为中心要素时,箭头必须和有关的尺寸线对齐.只有当被测要素为单段的轴线或各要素的公共轴线,公共中心平面时,箭头可直接指在轴线或中心线,这样标注很简便,但一定要注意该公共轴线中没有包含非被测要素的 轴段在内. (3)被测要素为轮廓要素时,箭头指向一般均垂直于该要素.但对圆度公差,箭头方向必须垂直于轴线. (4)当公差带为圆或圆柱体时,在公差数值前需加注符号"Φ",其公差值为圆或圆柱体的直径.这种情况在被测要素为轴线时才有.同轴度的公差带总是一圆柱体,所以公差值前总是加上符号"Φ";轴线对平面的垂直度,轴线的位置度一般也是采用圆柱体公差带,需在公差值前也加上符号"Φ". (5)对一些附加要求,常在公差数值后加注相应的符号,如(+)符号说明被测要素只许呈腰鼓形外凸,(-)说明被测要素只许呈鞍形内凹,(>)说明误差只许按符号的小端方向逐渐减小.如形位公差要求遵守最大实体要求时,则需

公差与配合的标注

3、公差与配合的标注 (l)在装配图中的标注 国家标准规定,在装配图上标注公差与配合时,配合代号一般用相结合的孔与轴的公差带代号组合表示,即在基本尺寸的后面将代号写成分数的形式,分子为孔的公差带代号。分母为轴的公差带代号。孔和轴的公差带代号分别由基本偏差代号与公差等级两部件组成。 也可以注写成Φ50H7/K6和Φ50F8/h7的形式。 当配合代号的分子中出现基孔制代号H,而分母中同时出现基轴制代号h 时,则称为基准件相互配合,如Φ50H7/K6,它既可以视为基孔制,也可视为基轴制,是一种最小间隙为零的间隙配合。如分子分母均无基准件代号,则属于某一孔公差带与某一轴公差带组成的配合.在装配图中公差号配合的标注见图8. (2)零件图中尺寸公差的标注 在零件图中尺寸公差的标注形式有三种:

l)在基本尺寸后面只标注公差带代号。公差带代号应注写在基本尺寸的右边,如图9 所示,这种标注形式适合于大批量生产的零件。 2)在基本尺寸后面标注极限偏差、表示极限偏差的数字要比基本尺寸的数字小一号,如图9.b所示,偏差值一般要注写三位有效数字,上偏差注写在基本尺寸的右上力;下偏差应与基本尺寸注写在同一底线上。若其中有一个偏差值为零时,要以占位,并与上偏差或下偏差小数点前的个位数字对齐。如果上下偏差数值相同。符号相反,则应首先在基本尺寸的右边注上“士”号,再填写偏差数字,其高度与基本尺寸数字相同,如图10所示.这种标注形式适合于单件或小批量生产的零件。 3)在基本尺寸的后面同时标注公差带代号和极限偏差数值,此时极限偏差数值应加括号,如图9c所示。 如有侵权请联系告知删除,感谢你们的配合! 如有侵权请联系告知删除,感谢你们的配合!

机械制图常用形位公差符号表示方法

机械制图常用形位公差符号表示方法

一、形位公差 零件加工时,不仅会产生尺寸误差,还会产生形状和位置误差。零件表面的实际形状对其理想形状所允许的变动量,称为形状误差。零件表面的实际位置对其理想位置所允许的变动量,称为位置误差。形状和位置公差简称形位公差。 二、形位公差符号 标注符号 直线度(-)——是限制实际直线对理想直线直与不直的一项指标。 平面度——符号为一平行四边形,是限制实际平面对理想平面变动量的一项指标。它是针对平面发生不平而提出的要求。 圆度(○)——是限制实际圆对理想圆变动量的一项指标。它是对具有圆柱面(包括圆锥面、球面)的零件,在一正截面(与轴线垂直的面)内的圆形轮廓要求。圆柱度(/○/)——是限制实际圆柱面对理想圆柱面变动量的一项指标。它控制了圆柱体横截面和轴截面内的各项形状误差,如圆度、素线直线度、轴线直线度等。圆柱度是圆柱体各项形状误差的综合指标。 线轮廓度(⌒)——是限制实际曲线对理想曲线变动量的一项指标。它是对非圆曲线的形状精度要求。 面轮廓度——符号是用一短线将线轮廓度的符号下面封闭,是限制实际曲面对理想曲面变动量的一项指标。它是对曲面的形状精度要求。

定向公差——关联实际要素对基准在方向上允许的变动全量。 定向公差包括平行度、垂直度、倾斜度。 平行度(‖)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离0°的要求,即要求被测要素对基准等距。 垂直度(⊥)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离90°的要求,即要求被测要素对基准成90°。 倾斜度(∠)——用来控制零件上被测要素(平面或直线)相对于基准要素(平面或直线)的方向偏离某一给定角度(0°~90°)的程度,即要求被测要素对基准成一定角度(除90°外)。 定位公差——关联实际要素对基准在位置上允许的变动全量。 定位公差包括同轴度、对称度和位置度。 同轴度(◎)——用来控制理论上应该同轴的被测轴线与基准轴线的不同轴程度。对称度——符号是中间一横长的三条横线,一般用来控制理论上要求共面的被测要素(中心平面、中心线或轴线)与基准要素(中心平面、中心线或轴线)的不重合程度。 位置度——符号是带互相垂直的两直线的圆,用来控制被测实际要素相对于其理想位置的变动量,其理想位置由基准和理论正确尺寸确定。 跳动公差——关联实际要素绕基准轴线回转一周或连续回转时所允许的最大跳动量。 跳动公差包括圆跳动和全跳动。 圆跳动——符号为一带箭头的斜线,圆跳动是被测实际要素绕基准轴线作无轴向移动、回转一周中,由位置固定的指示器在给定方向上测得的最大与最小读数之差。 全跳动——符号为两带箭头的斜线,全跳动是被测实际要素绕基准轴线作无轴向移动的连续回转,同时指示器沿理想素线连续移动,由指示器在给定方向上测得的最大与最小读数之差

机械设计中尺寸几何公差标注类知识

一、关于尺寸 (1)功能尺寸系指对于机件的工作性能、装配精度及互换性起重要作用的尺寸。功能尺寸对于零件的装配位置或配合关系有决定性的作用,因而常具有较高的精度。这些尺寸是尺寸链中重要的一环,常为了满足设计要求而直接注出。例如,有装配要求的配合尺寸,有连接关系的定位尺寸、中心距等。 (2)非功能尺寸系指不影响机件的装配关系和配合性能的一般结构尺寸。这些尺寸一般精度都不高。例如,无装配关系的外形轮廓尺寸、不重要的工艺结构(如倒角、倒圆、退刀槽、凹槽、凸台、沉孔)的尺寸等。 (3)公称尺寸是某一要素或零件尺寸的名义值。例如,平垫圈的公称尺寸是与之相配的螺栓的公称直径,而实际上该垫圈的孔径要大于这个公称尺寸。 (4)基本尺寸是设计时给定的、用以确定结构大小或位置的尺寸。基本尺寸又是确定尺寸公差的基数,它与公称尺寸的性质是不同的。 (5)参考尺寸是指在图样中不起指导生产和检验作用的尺寸。它仅仅是为了便于看图方便而给出的参考性尺寸。参考尺寸只有基本尺寸而不带公差,为了区别于其他未注公差的尺寸,标注时应加圆括号表示。 (6)重复尺寸是指某一要素的同一尺寸在图样中重复注出,或对机件的结构尺寸注成封闭的尺寸链,因其中一环由图样中的其他尺寸和存在的几何关系可以推算出来,此时又不加圆括号者,这都称为重复尺寸。机件每一要素的尺寸一般都只能标注一次,不应重复出现,以避免尺寸之间产生不一致或相互矛盾的错误。 二、正确地选择尺寸基准 要合理标注尺寸,必须恰当地选择尺寸基准,即尺寸基准的选择应符合零件的设计要求并便于加工和测量。零件的底面、端面、对称面、主要的轴线、中心线等都可作为基准。

图7-7 轴承座的尺寸基准 1.设计基准和工艺基准 根据机器的结构和设计要求,用以确定零件在机器中位置的一些面、线、点,称为设计基准。根据零件加工制造、测量和检验等工艺要求所选定的一些面、线、点,称为工艺基准。 图7-7所示为轴承座。轴承孔的高度是影响轴承座工作性能的功能尺寸,图中尺寸40±0.02以底面为基准,以保证轴承孔到底面的高度。其他高度方向的尺寸,如10、12、58均以底面为基准。 在标注底板上两孔的定位尺寸时,长度方向应以底板的对称面为基准,以保证底板上两孔的对称关系,如俯视图中尺寸65。其他长度方向的尺寸,如主视图中φ10、45、35,俯视图中90、8均以对称面为基准。

机械制图形位公差的标注常识

形位公差的标注 (1)代号中的指引线前头与被测要素的连接方法当被测要素为线或表面时,指引线的箭头应指在该要素的轮廓线或其延长线上,并应明显地与尺寸线错开,见下图a。 当被测要素为轴线或中心平面时,指引线的箭头应与该要素的尺寸线对齐,见右图b; 当被测要素为各要素的公共轴线、公共中心平面时,指引线的前头可以直接指在轴线或中心线上,见右图c。 (2)对于位置公差还需要用基准符号及连线表明被测要素的基准要素,此时基准符号与 基准要素连接的方法: 当基准要素为素线及表面时,基准符号应靠近该要素的轮廓线或其引出线标注,并应明显地与尺寸线错开,见下图a。 当基准要素为轴线或中心平面时,基准符号应与该尺寸线对齐,见上图b。 当基准要素为各要素的公共轴线、公共中心平面时,基准符号可以直接靠近公共轴线或中心线标注,见上图c。 (3)当基准符号不便直接与框格相连时,则采用基准代号(点击此处查看画法)标注,其标注方法与采用基准符号时基本相同,只是此时公差框格应为三格或多格,以填写基准代号的字母,见下图。

(4)当位置公差的两要素,被测要素和基准要素允许互换时,即为任选基准时,就不再画基准符号,两边都用箭头表示,见下图。 (5)当同一个被测要素有多项形位公差要求,其标注方法又是一致时,可以将这些框格画在一起,共用一根指引线箭头,见下图。 (6)若多个被测要素有相同的形位公差(单项或多项)要求时,可以在从框格引出的指引线上绘制多个箭头并分别与各被测要素相连,见下图。

(7)如需给出被测要素任一长度(或范围)的公差值时,其标注方法见图a。如不仅给出被测要素汪一长度(或范围)的公差值,还需给出被测要素全长(或整个要素)内的公差值,其标注方法见下图b。 形状和位置公差 形状和位置公差的基本概念 零件经加工后,不仅会存在尺寸的误差,而且会产生几何形状及相互位置的误差。如下图所示的圆柱体,即使在尺寸合格时,也有可能出现一端大、另一端小或中间细两端粗等情况,其截面也有可能不圆,这属于形状方面的误差; 再如下图所示的阶梯轴、加工后可能出现各轴段不同轴线的情况,这属于位置方面的误差。

形位公差分类标注的国家标准

形位公差的分类、项目、符号 国家标准规定的形状公差的特征项目分为形状公差和位置公差两大类,共14 个,它们的名称和符号如下表所示。

形位公差的定义 直线度- 所有点都在一条直线上的情况,公差由两条平行线形成的区域来指定 平面度- 表面上所有的点都在一个平面上,公差由两个平行平面形成的区域来表示。 圆度- 表面上所有点都在圆周上。公差由两个同心圆限制的区域来指定。 圆柱度- 旋转表面上的所有点都与公共轴等距。圆柱公差制定了两个同心圆柱所形成的公差区域,此旋转表面必须在此区域中。 轮廓度- 控制不规则的表面、线条、弧形或普通位面的定义公差方式。轮廓可适用于单个线条元件或者零件的整个表面。轮廓公差指定了沿着实际轮廓的唯一边界。 倾斜度- 表面与轴处于指定角度的情况(与数据平面或轴的角度不是90度)。公差区域是由两个平行平面定义的,这两个平行平面与数据平面或轴成指定的基本角度。 垂直度- 表面或轴与数据平面或轴成直角的情况。垂直公差指定了下列情况之一:由垂直于数据平面或轴的两个平面定义的区域,或者由垂直与数据轴的两个平行平面所 定义的区域。 平行度- 表面与轴上所有点与数据平面或轴等距的情况。平行度公差指定了下列情况之一:

平行于数据平面或轴的两个平面或线定义的区域,或者其轴平行于数据轴的圆柱 公差区域。 同轴度- 旋转表面的所有交叉可组合元素的轴,是数据特征的公共轴。同心度公差指定了其轴与数据轴一致的圆柱公差区域。 位置度- 位置度公差定义了允许其中中心轴或者中心平面偏离真正(理论上正确)位置的区域。基本尺寸建立了从数据特征和相互关联的特征之间的真正位置。位置误差是, 特征与其正确位置间,总的可允许的位置偏移量。对于孔和外部直径这样的圆柱 特征来说,位置度公差通常是特征轴必须在其中的公差区域的直径。对于不是圆 的特征(如槽和短小的突出物)来说,位置度公差是特征的中心平面必须在其中的公 差区域的总宽度。 圆跳动- 提供对表面圆形元素的控制。当零件旋转360度时,该公差是独立应用在任何圆形的计量位置上,应用于在数据轴周围所构造的圆跳动公差,控制了圆度和同轴 度的累计变化。当应用于垂直于数据轴所构造的表面时,它控制平面表面的圆形 特征元素。 跳动- 提供所有表面元素的复合控制。当零件旋转360度时,此公差同时应用于圆形和长轴形特征。当应用于在数据轴周围构造表面时,全跳动控制了圆度、圆柱度、直线度、同轴度、角度、锥度和轮廓的累计变异。当应用于垂直于数据轴构造的表面时,它控制垂直度和直线度的累计变异。

尺寸公差与相关要求ISO

GB/T 4249-1996:尺寸公差 本标准适用于技术制图和有关文件中的尺寸、尺寸公差和形位公差,以确定零件要素的大小、形状和位置特征。 1. 独立原则 图样上给定的每一个尺寸和形状、位置要求均是独立的,应分别满足要求。如果对尺寸和形状、尺寸与位置之间的相互关系有特定要求应在图样上规定。 独立原则是尺寸公差和形位公差相互关系遵循的基本原则。 2. 尺寸公差 2.1 线性尺寸公差 线性尺寸公差仅控制要素的局部实际尺寸(两点法测量),不控制要素本身的形状误差(如圆柱要素的圆度和轴线直线度误差或平行平面要素的平面度误差)。 形状误差应由单独标注的形状公差、未注形状公差或包容要求控制(见图1)。 标注说明: 实际轴的局部实际尺寸必须位于149.96至150之间;线性尺寸公差(0.04)不控制要素本身的形状误差。如图1b)所示。 2.2 角度公差 角度公差仅控制被测要素之间的角度变动量,不控制被测要素的形状误差,且理想要素的位置应符合最小条件。 角度公差只控制线或素线的总方向,不控制其形状误差。 总方向是指接触线的方向,接触线是与实际线相接触的最大距离为最小的理想直线(见图2)。实际线的形状误差应由单独标注的形状公差或未注形状公差控制。 示例: 标记说明: A、B两被测实际要素分别按最小条件确定其理想要素,该两理想要素间的夹角应在给定的两极限角度之间,角度公差不控制实际要素的形状误差(见图3)。

3 形状和位置公差 不论要素的局部实际尺寸如何,被测要素的均庆位于给定的形位公差带内,并且其形位误差允许达到最大值(见图4)。 示例: 标注说明: 轴的局部实际尺寸应在最大极限尺寸与最小极限尺寸之间,轴的形状误差应在给定的相应形状公差之内。不论轴的局部实际尺寸如何,其形状误差(素线直线度误差和圆度误差包括横截面奇数棱圆误差)允许达到给定的最大值(见图5)。 GB/T 4249-1996:相关要求--尺寸公差与形位公差相互有关的公差要求 1 图样上给定的尺寸公差和形位公差相互有关的公差要求,系指包容要求、最大实体要求(包括可逆要求应用于最大实体要求)和最小实体要求(包括可逆要求应用于最小实体要求)。 1.1 包容要求 包容要求适用于单一要素如圆柱表面或两平行表面。 包容要求表示实际要素应遵守其最大实体边界,其局部实际尺寸不得超出最小实体尺寸。 采用包容要求的单一要素应在其尺寸极限偏差或公差带代号之后加注符号“”(见图6)。 示例: 标注说明:

尺寸链中形位公差的判别与解算

尺寸链中形位公差的判别与解算 杜官将,薛小强 摘要:从零件形位公差要素所采用的公差原则入手,讨论了在尺寸链计算中,是否应该考虑形位公差的影响以及形位公差组成环性质的判别方法,并通过实例加以说明。 关键词:公差原则,形位公差;尺寸链 中囤分类号:TG801 文献标识码:A 0引言 在机械加工或装配的过程中,尺寸链是求解工序尺寸或装配精度的重要手段。在查找尺寸链组成环时,除了零件上的长度尺寸外,还经常涉及到零件上的形位公差。尺寸精度、形位精度是保证机械零件功能要求的基础,二者既相互联系,又相互制约,公差原则是处理尺寸公差与形位公差关系的重要原则。以往在计算尺寸链时,通常把与线性尺寸环相连接的零件要素作为具有理想形状和理想位置来处理,或把形位公差包含在尺寸公差之内处理。随着检测技术以及人们对产品质量要求的不断提高,我们认识到在工程中若回避或忽略形位误差的影响,可能会造成零件的报废或产品不合格,给生产带来不应有的经济损失。 文献[1,2]等对形位公差在尺寸链中的处理作了有益的探索,但主要针对同轴度、对称度等少数形位公差,缺乏较全面的分析。本文从零件形位公差要素所采用的公差原则入手,理清形位公差与尺寸公差之间的关系,从而确定形位公差是否应该计入尺寸链,以及尺寸链中形位公差环性质的判别方法,从而为涉及形位公差的尺寸链的求解提供思路。 1 形位公差作为尺寸链组成环的条件 由于零件功能要求的不同,所采用的公差原则也不同[3]。公差原则分为独立原则和相关原则,相关原则又可分为包容原则和最大实体原则。根据零件尺寸及形位公差所采用的公差原则.在建立尺寸链的过程中,对形位公差的处理方法也有所不同。 1.1 对于按包容要求设计的零件要素 包容要求是被测实际要素处处不得超越最大实体边界的一种要求,它只适用于单一尺寸要素(圆柱面、两平行平面)的尺寸公差与形位公差之间的关系。采用包容要求的尺寸要素,应在其尺寸极限偏差或公差代号后加注符号“E”。包容要求的实质就是用零件的尺寸公差控制其形位公差,因此,形位公差不会对封闭环产生影响,在尺寸链的建立过程中,只需计入零件的尺寸及公差,而相应的形位公差不应计入尺寸链。 1.2对于按独立原则设计的零件要素 独立原则是指图样上给定的各个尺寸和形状、位置要求都是独立的,应该分别满足各

形位公差通用解释

产品计量专业术语表 / WebCode 8718 专业术语表 A Angularity 倾斜度 Angular sector roundness 区域圆度 B Base roughness depth 基本粗糙度深度 C Core roughness 中心粗糙度 Coaxiality 同轴度 Concentricity 同心度 Conicity 锥度 Cutoff 截至波长 Cylindricity 圆柱度 F Flatness 平面度 G General notes on form and location tolerances 形位公差通用解释M Material ratio 材料支撑率 Mean roughness 平均粗糙度 P Parallelism 平行度 Peak count 轮廓峰数量 Peak height 轮廓峰高度 Perpendicularity 垂直度 Profile any line 线轮廓度 Profile any surface 面轮廓度 Position 位置度 Profil depth 轮廓深度 Profil filter 轮廓滤波 R Roughness profile 粗糙度轮廓 Roughness depth 粗糙度深度 Roundness 圆度 Radial run-out 径向跳动 S Skewness 偏斜度 Symmetry 对称度 Straightness 直线度 T Traversing length 扫描长度 Total run-out 全跳动 W Waviness height 波纹度高度

形位公差的通用解释 某个特性(表面、轴、点和中平面等)的形位公差是定义为一个区域,这个特性的所有点都包含在这个区域内。依照该特性的给定公差和它的维数特征,其公差区域是下面中的一个: 圆内区域 两同心圆之间的区域 两平行直线间的区域 两等距线之间的区域 两平行平面间的区域 两等距面间的区域 圆柱内区域 两同轴圆柱之间的区域 平行六面体你的区域 对于位置公差,必须定义一个基准用于决定公差区域的准确位置。基准是一个理论上确切的几何特性(象轴、平面、直线等),基准可以基于一个或者几个基准特性。 除非有更加严格的限制,公差特性可以是公差区域内的任意的形状、位置和方向等。公差的数值 t 用于线性测量时以相同的单位给出。如果没有特殊的说明,公差作用于被标注公差特性的整个范围。 平面度 ISO 1101 (1985-03) 形位公差的通用解释 定义 公差被限制在间隔为t 的两个平行平面区域之间 实例

相关文档
相关文档 最新文档