文档库 最新最全的文档下载
当前位置:文档库 › 青岛市年降水量统计

青岛市年降水量统计

青岛市年降水量统计
青岛市年降水量统计

年平均降水量775.6毫米

775.6/12=64.63

每个月份不同啊,青岛7.8月份的降水量多,而冬季和春季的降水量就会很少。

春季

3月初至6月20日,计112天,占全年的30.7%。因海洋和入海的高压影响,回暖晚,降水少,风速大,累年季均温12.5℃。历年季均降水量155.4毫米,占年均降水量的20%,前半季仅有59.7毫米,可谓“十年九春旱”,后半季受入海高压影响,南向风频率较多,风速大,湿度小,气候干燥,有“春风裂石柱”之说。

夏季

6月21日至9月5日,计77天,占全年的21.5%。因受副热带高压的控制,表现为海洋性气候,气温较高但无酷暑炎热,累年季均温为24.5℃。8月份气温最高,日最高气温大于30℃的日数为20.1天,占全夏季的33.1%。7、8月份因冷暖空气相交,引起大量降水,历年季均降水444.8毫米,占全年的57%。6月末7月初进入汛期,9月上旬结束。

秋季

9月6日至12月5日,计91天,占全年的24.9%。气温逐低,降水日少,冷空气开始活跃,但暖湿空气还有一定影响,多雨之秋也间有发生,还可能受台风侵袭。9月下旬或10月上旬北来的冷空气逐渐加强,暖湿空气明显减弱。10月上、中旬起,天气渐爽,能见度佳,有“小艳阳”之称。累年季均温12.9℃,降水量149.3毫米,占全年降水量的22%。11月中旬起,冷空气日趋活跃,每旬气温以3℃之差迅速下降,北风渐多,冬季季风逐步明显增强。

冬季

12月6日至2月底,计85天,占全年的23.3%。多西北季风,气候干燥寒冷,1月份最冷。累年季均温为-0.8℃,低于-5℃的平均日数52.2天,占全季的61.4%;低于-10℃的平均日数为12.9天,占全季的15.2%;低于-15℃的平均日数为0.6天,占全季的0.7%。冬季昼夜温差小,历年季均降水量26.8毫米,最大积雪深度19厘米。

只能到这一步了,呵呵,希望对你有所帮助

水资源综合规划名词解释

根据水利部、水利水电规划设计总院的有关文献资料,,把重要的名词概念比较确切地汇集编印出来,供参照。

水资源

指通过水循环年复一年得以更新的地表水资源和地下水资源。

水资源承载能力

指在一定的流域或区域内,其自身的水资源能够持续支撑经济社会发展的能力(包括工业、农业、社会、人民生活等),并维系良好的生态系统的能力。这种承载能力不是无限的,同时,它还有一个前提,就是要在保持可持续发展,也就是保证生态用水和环境用水的前提下,再去谈经济发展用水。各地的经济发展要根据水资源状况去确定发展什么,发展多大规模,多快的发展速度。各地需下功夫研究经济用水和生态用水的比例。

水环境承载能力

指的是在一定的水域,其水体能够被继续使用并保持良好生态系统时,所能容纳污水及污染物的最大能力。在一些发达国家,要求城市和工业做到零排放,一方面节水,用水量零增长,另一方面对污水处理做到零排放。有的国家提出水体自净能力的概念,即水环境承载能力等于水体自净能力。

降水量

从空中降落的雨、雪、雹等以及由水气凝结的露、霜等的总数量。以mm计。是雪、雹等应化成水的深度。按时段统计有:以降水起止时计算的一次降水量,以一日、一月及一年计算的日降水量、月降水量及年降水量。由于降水的主要部分是雨或全部是雨,因此降水量又叫做降雨量。一股所说某地年降雨量若干毫米,是包括了所有各种形式的降水。

流域平均雨量

又叫面雨量。水文工作中常需推求整个流域面上的平均降雨量。最常用的方法是算术平均法和垂直平分法(又叫做泰森多边形法),也有用绘制等雨量线图来推求的。

蒸发

水或冰雪变成水汽的一种物理过程。在水文气象观测中,蒸发是指水分由地表的水面、土壤、植物体逸入空中的自然现象。蒸发的水量以水层深度毫米数计。它是气象、水文的重要因素,与农业生产的关系很密切。

蒸发能力

指充分供水条件下的陆面蒸发量,可近似用E601型蒸发器观测的水面蒸发量代替。

水面蒸发

指水面不断向大气蒸发水分的过程。其蒸发速度,可由蒸发器观测而得。以mm/d计。水面蒸发量是指某一时段内的总水面蒸发数。例如年水面蒸发量为980mm,6月的水面蒸发量为125mm。影响水面蒸发的主要因素有湿度、风速、气温及水体大小等。在同一气象条件下,蒸发器的水面蒸发值大于实际水体(如水库、湖泊等)的水面蒸发值,这是由于蒸发器本身及其四周的动力和热力条件与天然水体不同所致。因此,蒸发器的观测值乘一折减系数后才能作为实际水体的蒸发值。在水利工程上,如计算湖泊、水库蓄水量的水量损失及水稻需水量等都要使用水面蒸发资料。

干旱指数

指年蒸发能力与年降水量的比值,是反映气候干湿程度的指标。

土壤蒸发

指土壤中的水分通过毛细管作用到达土壤表面后的蒸发。影响土壤蒸发的因素有气象因素、土壤含水量、地下水埋藏深度、土壤结构、土壤色泽、下垫面的特性等。通过土壤蒸发量的测定,有助于了解土壤中水分的支出情况。

植物蒸发

又叫蒸腾。指土壤中的水分经由植物体蒸发到大气中去的现象。是物理作用与生理作用的综合过程。物理作用是指蒸发面的液体扩散过程,生理作用是指植物根系吸水、体内输水和叶

面气孔开放等过程。植物散发主要随植物种类、不同生长阶段而异,在充分供应需水量的情况下,与光照、气温、湿度、风速等有密切关系。应以大面积长时间观测为依据。

蒸散发

又叫蒸腾蒸发量。地面上植物的叶面散发(蒸腾)与植株间土壤蒸发量之和。也就是灌溉工程中的作物需水量。见“作物需水量”。

径流

由于降水而从流域内地面与地下汇集到河沟,并沿河槽下泄的水流的统称。可分地面径流、地下径流两种。径流引起江河、湖泊水情的变化,是水文循环和水量平衡的基本要素。表示径流大小的方式有流量、径流总量、径流深、径流模数等。

地面径流

指降水后除直接蒸发、植物截留、渗入地下、填充洼地外,其余经流域地面汇入河槽,并沿河下泄的水流。地面径流又由于降水形态的不同,可分为雨洪径流与融雪径流。前者是由降雨形成的,后者是由融雪产生的。它们的性质和形成过程是有所不同的。

当地径流

指由当地的降雨或融雪产生的径流。过境河流流入或引入的径流除外。它表征当地产生的可资利用的水量,在农田基本建设中应首先充分利用它。

客水

指从本地区以外的来水。例如由过境河流流入的或由外地引进的水,以及由区外高地因降雨产生的滚坡水。在当地水源缺乏时,客水是可资利用的水量,但在当地水量充沛时;客水入侵,有时造成洪涝灾害,须加以防范。

地下径流

降水到达地面,渗入土壤及岩层成为地下水,然后沿着地层空隙向压力小的方向流动,称为地下径流。地下径流是河流的一种水源。河流的枯季径流,主要由地下径流补给。

枯水径流

指非汛期的径流。它包括地面水及地下水补给。

年、月径流

分别指一年或一月内流经河道上指定断面的全部水量。通常用年平均流量、月平均流量表示。研究年、月径流在地区和时间上的变化,可以为灌溉、发电等用水部门提供兴利计算所必需的水文数据。

径流量

在水文上有时指流量,有时指径流总量。即单位时间内通过河槽某一断面的径流量。以m3/s计。将瞬时流量按时间平均,可求得某时段(如一日、一月、一年等)的平均流量,如日平均流量、月平均流量、年平均流量等。在某时段内通过的总水量叫做径流总量,如日径流总量、月径流总量、年径流总量等。以m3、万m3或亿m3计。

多年平均径流量

指多年径流量的算术平均值。以m3/s计。用以总括历年的径流资料,估计水资源,并可作为测量或评定历年径流变化、最大径流和最小径流的基数。多年平均径流量也可以多年平均径流深度表示,即以多年平均径流量转化为流域面积上多年平均降水深度,以毫米数计。水文手册上,常以各个流域的多年平均径流深度值注在各该流域的中心点上,绘出等值线,叫做多年平均径流深度等值线。

径流深

在某一时段内通过河流上指定断面的径流总量(W以m3计)除以该断面以上的流域面积(F,以km2计)所得的值。它相当于该时段内平均分布于该面积上的水深(R,以mm计),如下式:

R=W/1000F(mm)

径流系数

指同一地区同一时期内的径流深度与形成该时期径流的降水量之比。其值介于0与1之间。在干旱地区,径流系数较小,甚至近于0,在湿润地区则较大。有多年平均径流系数、年径流系数、次径流系数、洪峰径流系数等。

降雨径流

指由降雨所形成的径流。降雨形成径流,就其水体的运动性质,大致可以分为两大过程:即产流过程与汇流过程;如就其过程所发生的地点,可以分为在流域面上进行的过程与在河槽里进行的过程。即:

降雨径流产流过程(即

形成过程蓄渗过程)域面上

的过程

坡地汇流

汇流

过程…… 河槽汇流河槽里的过程

以上每一过程只是表征径流形成在这一过程中的主要特征。它们既有区别,又互相交错,前一过程是后一过程的必要条件和准备,后一过程是前一过程的继续与发展。

净雨

指降雨量中扣除植物截留、下渗、填洼与蒸发等各种损失后所剩下的那部分量。也叫做有效降雨。净雨量就等于地面径流,因此又叫做地面径流深度。在湿润地区,蓄满产流情况下;净雨就包括地面径流和地下径流两部分。

下垫面因素

降水落至地面后,在形成径流的过程中受到地面上流域自然地理特征(包括地形、植被、土壤、地质)和河系特征(河长、河网密度、水系形状等)的影响,这些影响因素统称下垫面因素。它也是制约河)川其它水文现象的重要因素。

产流

降雨量扣除损失量即为产流量。降雨损失包括植物截留、下渗、填洼与蒸发,其中以下渗为主。产流量是指降雨形成径流的那部分水量,以mm计。由于各流域所处的地理位置不同和各次降雨特性的差异,产流情况相当复杂。为了便于分析计算,把产流概化成两种形式:(1)蓄满产流:在南方湿润地区或北方多雨季节,流域蓄水量较大,地下水位较高,一次降雨后,流域蓄水很容易达到饱和,它不仅产生地表径流,而且下渗水量中不全是损失,其中一部分成为地下径流,所以产流包括地面径流和地下径流两部分;(2)超渗产流:在北方干旱地区或南方少雨季节,流域蓄水较少,地下水埋藏较深,一次降雨后流域蓄水达不到饱和,下渗水量全部属于损失,不形成地下径流,只有当降雨强度大于下渗强度时才产生超渗雨,形成地面径流。

汇流

在流域面积上,降雨产生地面水流汇向低处的现象。流域汇流包括坡地汇流和河槽汇流两个阶段。降雨充满地面坑洼后,便开始沿坡面流动叫做坡地汇(漫)流。它是由无数股彼此时合时分的细小水流所组成的,通常没有明显和固定的槽形,其漫流的路径往往不出数百米,汇流历时也较短。坡地上的雨水经过坡地汇流注入河槽,河槽水位上涨,水流沿槽下泄,沿程经河槽调河槽调蓄,至出口断面流出,叫做河槽汇流。通常河槽汇流路程远,历时长,达几小时到几十个小时,所以流域汇流以河槽(网)汇流为主。

河槽调蓄

河槽对水流所起的调蓄作用。当水流沿槽下泄,在运动过程中,部分水量容蓄在河槽中,待坡面汇流入槽的水量停止后,河槽中容蓄的水量又不断泄流出来,恰如水库对水量起到调节作用一样。这种调节作用一般还可从上游站和下游站的流量过程线的对比中看到。

地表水资源量

指河流、湖泊、冰川等地表水体中由当地降水形成的、可以逐年更新的动态水量,用天然河川径流量表示。

地下水

指赋存于饱水带岩土空隙中的重力水。

水资源量

指地下水体中参与水循环且可以逐年更新的动态水量。

水文地质参数

给水度、弹性释水系数、渗透系数、导水系数、压力传导系数、越流系数、降水入渗补给系数、潜水蒸发系数、河道渗漏补给系数、渠系渗漏补给系数、渠灌田间入渗补给系数及井灌回归补给系数等。

地表水体补给量

渗漏补给量、库塘渗漏补给量、渠系渗漏补给量、渠灌田间入渗补给量以及以地表水为回灌水源的人工回灌补给量之和

总排泄量

包括河川基流量、山前泉水溢出量、山前侧向流出量、浅层地下水实际开采净消耗量和潜水蒸发量

山前泉水溢出量

指发生在山丘区与平原区交界线附近、且未计入河川径流量的泉水溢出量。

山前侧向流出量

指山丘区地下水以地下潜流形式向平原区排泄的水量。

山丘区潜水蒸发量

指发生在未单独划分为山间平原区的小型山间河谷平原的浅层地下水,在毛细管作用下,通过包气带岩土向上运动造成的蒸发量(包括棵间蒸发量和被植物根系吸收造成的叶面蒸散发量两部分)。

山丘区浅层地下水蓄变量

指计算时段初地下水储存量与计算时段末地下水储存量的差值。

地下水水源地

指以工业、城市生活为供水对象的地下水集中开采区

地表水水质

指地表水体的物理、化学和生物学的特征和性质。

地下水污染

指由于人类活动使污染物进入地下水体中,造成地下水的物理、化学性质或生物性质发生变化,降低了其原有使用价值的现象。

一定区域内的水资源总量

指当地降水形成的地表和地下产水量,即地表径流量与降水入渗补给量之和。

地表水资源可利用量

指在可预见的时期内,统筹考虑生活、生产和生态环境用水,协调河道内与河道外用水的基础上,通过经济合理,技术可行的措施可供河道外一次性利用的最大水量(不包括回归水重复利用量)。

本贴得筑龙币:11 等级得币:11 版主奖励:0 贴主答谢:0 献花赠币:0] 得信誉分:0

未评定

[广告.定制]机场工程人员的网上家园,欢迎您的光临!

老刀

Ψ∨

位置: 陕西信誉: 322

专业: 其他发贴: 8252

[留言][电邮][主页][BLOG]

[引用回复] [搜索] [献花] 第2楼2005-11-11 11:21:00

地下水资源可开采量

指在可预见的时期内,通过经济合理、技术可行的措施,在不致引起生态环境恶化条件下允许从含水层中获取的最大水量。

水资源可利用总量

指在可预见的时期内,在统筹考虑生活、生产和生态环境用水的基础上,通过经济合理、技术可行的措施在当地水资源中可资一次性利用的最大水量。

工业总产值

指工业企业在一定时期内生产的以货币形式表现的总产出,反映工业生产的总规模和总水平。工业增加值

指工业企业在一定时期内以货币表现的工业生产活动的最终成果,等于总产出减去中间投入后的余额,反映了工业行业对国内生产总值的贡献。

耕地

指能够种植农作物、经常进行耕作的田地,包括熟地、当年新开荒地、连续撂荒未满三年的耕地和当年休闲地(轮歇地)。

水田

指筑有田埂(坎),可以经常蓄水、用来种植水稻或莲藕、席草等水生作物的耕地。因天旱暂时没有蓄水而改种旱地作物的,或实行水田和旱地作物轮作的,仍按水田统计。

农田有效灌溉面积

指具有一定的水源,地块比较平整,灌溉工程或设备已经配套,在一般年景下当年能够进行正常灌溉的耕地面积。

农田实灌面积

指当年实际灌水一次以上(包括一次)的耕地面积,在同一亩耕地上无论灌水几次,都按一亩统计。

灌溉

指人工补给农田水分。借助工程设施,从水源(河流、水库或井泉)取水通过渠道(管道)送水到田间。灌溉不仅能满足作物对水分的需要,还可达到培肥地方、调节地温、淋洗土壤盐分等不同目的,如培肥灌溉(淤灌、污水灌溉、肥水灌溉)、调温灌溉(降温、防冻)及冲洗灌溉(改良盐碱地)等。根据取水时水源的水位高出或低于田面的情况,有自流灌溉和提水灌溉;根据湿润土壤的方式,有地面灌溉、地下灌溉、喷灌和滴灌。灌溉必须适时适量,与农业技术措施密切配合,才能充分发挥水的作用,获得高产稳产。

灌溉面积

又叫净灌溉面积。一般指具有一定的水源和灌溉设施,可以适时进行灌溉的耕地面积。如果还包括灌区的沟渠系统和它的建筑物及田间道路等所占的面积,就叫做毛灌溉面积。

灌溉用水量

灌区作物所需的灌溉用水量。以万m3计。可分一个时段的及整个生育期的灌溉用水量。前者常按月、旬划分时段统计,可得灌溉用水过程,即按作物的灌溉制度;在各时段内作物的灌水定额乘以种植面积即得各时段的净灌溉用水量,其和就是整个生育期的净灌溉用水量。如计入灌溉系统的输水损失,即得毛灌溉用水量。有了各年的灌溉用水量,就可与各年来水配合进行调节计算,据此确定可灌面积和水库库容。

作物需水量

即作物田间需水量。作物从种到收的整个生育期消耗于蒸发的水量,包括棵间蒸发量、叶面蒸发量。以mm或m3/亩计。作物需水量的多少,因地区自然条件(气候、土壤、地下水位的高低)、农业措施、作物种类、品种及产量水平的不同而异。可通过实验资料确定。

叶面蒸发

又叫叶面蒸腾、植物散发。作物的叶面蒸发与作物品种、生育阶段、气候因素、土壤水分移动条件、养分状况等有关。叶面蒸发强度以mm/d计,整个生育期的叶面蒸发量以mm计,可通过实验测定。

棵间蒸发

作物植株间的土壤(旱田)或水面(水田)的水分损失。棵间蒸发随气候因素及植株覆盖的程度而变化。棵间蒸发强度以mm/d计,整个生育期的棵间蒸发量以mm计,可通过实验测定。

作物田间耗水量

作物从种到收的整个生育期消耗的水量。以mm或m3/亩计。对干旱田,作物田间耗水量即作物需水量;对于水稻田;为作物需水量与渗漏量之和。作物田间耗水量是规划、设计灌溉工程和计划用水的基本依据。

灌溉回归水

所有从灌溉土地上流经地面和地下排回原河流的水。包括渠道的退水(放空渠道)和水库塘坝的渗漏水。重复利用回归水,对于扩大灌溉面积,增加农业生产具有重要意义。由于灌溉水经过或穿过土壤的过程中,许多因素使回归水水质发生变化,因此必须进行水质分析。灌溉工程

为灌溉农田而兴修的水利工程的总称。有蓄水、引水、提水、输水、配水及泄水等项工程。蓄水工程指拦蓄河流来水或地面水的水库、塘坝。引水工程指从河流或湖泊引水的渠首工程如引水坝、进水闸等,或从区外引水而开挖的渠道及其上的建筑物。提水工程指从低处向高处送水的抽水站、水轮泵站。输水工程指渠首以下的干渠段以及渠道经越山丘、溪谷、河流、道路或地质松散地带的建筑物如隧洞、渡槽、倒虹吸、座槽、涵洞等。亦有将各级渠道笼统地称为输水渠而包括在内。配水工程指控制和分配水量的建筑物如节制闸、分水闸、斗门,一般并将干渠分水闸以下的各级渠道叫做配水渠而包括在内。泄水工程指保障渠系安全放空渠道用的泄水闸、泄水道。

输水损失

渠道在输水过程中,由于漏水、渗水和蒸发而沿途损失掉的那部分水量。漏水损失是指由于地质条件、生物作用或施工不良形成漏洞、裂隙,或由于工程失修、建筑物漏水等所损失的水量。如管理养护好,其值不大。渗水损失是沿渠床土壤渗透的水量,为渠道输水损失的主要部分,它与渠床上质、过水断面形态、通过流量的大小以及地下水深度等有关。如渗水损失过大,应采取防渗措施。

渠道水利用系数

一定时期内某一级渠道供给下级和下段渠道水量(或流量)的总和与进入该级渠道首端的总水量(或流量)的比值。通常以η渠道表示。它标志着某一级渠道的输水效能和工程质量。渠系水利用系数

灌区在一定时期内从未级固定渠道(一般为农渠)的渠尾,进入毛渠的水量总和与渠首同期进水总量的比值。通常η渠系表示。它反映各级固定渠道的输水损失情况,是衡量渠道系统的输水效能、工程质量和管理水平的指标。采用防止渠道渗漏和加强管理的措施,可有效地提高渠系水利用系数。渠系水利用系数也可用下式间接推算:

η渠系=η渠干×η渠支×η渠斗×η渠农

式中η干、η支……分别表示干、支……渠的渠道水利用系数。

… 渠的渠道水利用系数。

田间水利用系数

田间有效利用的水量(指计划湿润层内实际灌入的水量,也即净灌溉水量)与进入毛渠的水量的比值。通常以η田表示。它是衡量田间工程质量和灌水技术水平的指标。

灌溉水利用系数

一定时期内灌区实际灌溉面积上有效利用的水量(不包括深层渗漏和田间流失)与渠首进水总量的比值。通常以η水表示。它反映全灌区各级渠道输水损失和田间用水状况。它是衡量灌溉水利用程度、工程质量和管理水平的指标。灌溉水利用系数,也可用下式表示:

η水=η系×η渠田

灌溉效率

全年或灌溉季节内平均一个流量(1米3/秒)可灌的亩数,或指一次灌水期内,平均一个流量每昼夜可灌亩数。用机电灌溉时,其灌溉效率为每马力或千瓦所灌的面积。

污水灌溉

利用城市生活污水和工业废水灌溉农田。好处是既节约肥料,提高产量,又改善城市环境卫生。利用污水灌溉,首先要进行水质分析,确定用以灌溉的可能性及其改善措施。生活污水,经过一般处理如沉淀淀(悬浮物、渣滓)、拦截(油脂、漂浮物)、稀释(掺清水),即可灌田。工业废水,应先回收其中有用物质;对有害成分要进行化学处理,然后才能利用。其工程设施有:污水引水口(或污水泵站)、调节池、沉淀池、污水消化池、渠道系统(污水、清水两个系统)等。污水灌溉需有一套合理的灌溉制度和管理措施,例如,水稻、小麦孕穗后不宜用污水灌溉,蔬菜、果类在收获前一定期限内避免与污水接触,注意防止地下水受污染,消灭孑孓。

喷灌

以喷洒方式灌溉农田的方法。由动力机带动水泵从水源(水塘、井、渠)取水并加压,通过管道输送到田间,再通过喷头向空中散成细小水滴,均匀洒布在灌溉土地上。也可利用高处水源的自然落差,进行喷洒。与地面灌溉相比,喷灌的优点是省水,节省土地、劳力,可避免土壤的冲刷和深层渗漏,不受地形限制,适应所有农作物,还可防霜冻、降且喷灌的进一步发展可结合施化肥、农药同时进行。其缺点是因受风力影响;喷洒不匀,设备投资也较高。喷洒技术要求是:喷灌强度低,水滴大小适度,喷洒均匀。规划喷灌系统时,必须根据地形、水源、作物、农业气象、土壤等因素,结合动力、器材、设备等条件,综合分析,确定最合适的喷灌系统式喷灌机组,以充分发挥喷灌的最大效益。

雾灌

又叫细滴喷灌。是喷灌的进一步发展。就是使喷灌的水滴直径小至0.1-0.5mm,使水滴能够留在作物叶面上不致滚落而慢慢地蒸发掉,使叶面凉爽,提高地面空气湿度;减少作物的叶面蒸腾量。

滴灌

一种新的灌水方法。通过安装在有压输水管路上的许多滴头,使灌溉水缓缓地滴出;定时定量地渗入作物根系所在的土壤,以维持最适宜的土壤水分状况。优点是可避免地面流失和深层渗漏,是一项省水(仅为喷灌用水的2/3,为地面灌溉的1/4)增产的技术措施,而且易于实现灌水工作自动化,还可结合施肥,充分发挥肥效,另外可适应复杂地形,节省平地工作量,控制杂草生长。缺点是需用较多管材和水质处理、流量调节等设备,造价较高,影响机械作业。适用于干旱缺水地区,特别是干旱缺水的山丘区、高扬程灌区、贫水深井灌区、严重渗漏的沙土区及城市郊区菜园、果园等。

供水工程

指为社会国民经济各部门提供用水的所有水利工程。按类型分为蓄水工程、引水工程、提水工程和地下水工程,以及污水处理工程、微咸水利利用工程和海水淡化工程等。

设计供水能力

供水能力是指水利工程系统在一组特定条件下,具有一定供水保证率的最大供水量,与来水条件、工程条件、需水特性和运用调度方式有关。

现状供水能力

根据来水条件,供水工程系统在考虑工程状态变化和供水对象的需水要求以及相应的调度运用规划情况下所得到的与设计供水能力具有相同保证率的供水量称之为现状供水能力。

供水工程效率

现状供水能力与设计供水能力之比称为供水工程效率。

耗水率

耗水率是指在输用水过程中,通过蒸腾蒸发、土壤吸收、产品带走、居民和牧畜饮用等形式消耗掉,而不能回归到地表水体或地下含水层的水量。耗水率为耗水量与用水量之比,是反映一个国家或地区用水水平的重要特征指标。耗水率可根据灌溉试验、灌区水量平衡、工厂水量平衡测试、废污水排放量监测和典型调查等有关资料估算。

供水量

供水量是指在不同来水条件下,工程设计根据需水要求可提供的水量。

可供水量

可供水量分为单项工程可供水量与区域可供水量。一般来说,区域内相互联系的工程之间,具有一定的补偿和调节作用,区域可供水量不是区域内各单项工程可供水量单相加之和。区域可供水量是由新增工程与原有工程所组成的供水系统,根据规划水平年的需水要求,经过调节计算后得出。

区域可供水量

区域可供水量是由若干个单项工程、计算单元的可供水量组成。区域可供水量,一般通过建立区域可供水量预测模型进行。在每个计算区域内,将存在相互联系的各类水利工程组成一个供水系统,按一定的原则和运行方式联合调算。联合调算要注意避免重复计算供水量。对于区域内其他不存在相互联系的工程则按单项工程方法计算。可供水量计算主要采用典型年法,来水系列资料比较完整的区域,也有采用长系列调算法进行可供水量计算。

蓄水工程

指水库和塘坝(不包括专为引水、提水工程修建的调节水库),按大、中、小型水库和塘坝分别统计。

引水工程

指从河道、湖泊等地表水体自流引水的工程(不包括从蓄水、提水工程中引水的工程),按大、中、小型规模分别统计。

提水工程

指利用扬水泵站从河道、湖泊等地表水体提水的工程(不包括从蓄水、引水工程中提水的工程),按大、中、小型规模分别统计。

调水工程

指水资源一级区或独立流域之间的跨流域调水工程,蓄、引、提工程中均不包括调水工程的配套工程。

地下水源工程

指利用地下水的水井工程,按浅层地下水和深层承压水分别统计。

地下水利用

研究地下水资源的开发和利用,使之更好地为国民经济各部门(如城市给水、工矿企业用水、农业用水等)服务。农业上的地下水利用,就是合理开发与有效地利用地下水进行灌溉或排

灌结合改良土壤以及农牧业给水。必须根据地区的水文地质条件、水文气象条件和用水条件,进行全面规划。在对地下水资源进行评价和摸清可开采量的基础上,制订开发计划与工程措施。在地下水利用规划中要遵循以下原则:(1)充分利用地面水,合理开发地下水,做到地下水和地面水统筹安排;(2)应根据各含水层的补水能力,确定各层水井数目和开采量,做到分层取水,浅、中、深结合,合理布局;(3)必须与旱涝碱咸的治理结合,统一规划,做到既保障灌溉,又降低地下水位、防碱防渍;既开采了地下水,又腾空了地下库容;使汛期能存蓄降雨和地面径流,并为治涝治碱创造条件。在利用地下水的过程中,还须加强管理,避免盲目开采而引起不良后果。

浅层地下水

指与当地降水、地表水体有直接补排关系的潜水和与潜水有紧密水力联系的弱承压水。

其他水源工程

包括集雨工程、污水处理再利用和海水利用等供水工程。

集雨工程

指用人工收集储存屋顶、?/ca>

回答者:529206896

说出我国降水的分布特征

《气候》教学设计(第2课时) 一、教学目标 1.通过阅读我国年降水量分布图,说出我国降水的分布特征;阅读干湿地区分布图,说出我国干湿地区的分布,知道它们的划分依据,提高学生读图、分析、综合、比较的能力,掌握分析气候特征的方法。 2.了解我国降水特点对生产和生活的影响,渗透“学习对生活有用的地理”的理念;知道我国季风的概念、特点、原因和影响范围,了解季风对我国降水时空分配和东部锋面雨带推移的影响,能从利、弊两个方面初步评价季风对人们生产、生活的影响。 二、教学重点、难点 (一)教学重点 我国降水的分布特点及差异。 (二)教学难点 1.干湿地区与人们生产和生活的关系。 2.季风气候的成因及其影响。 三、教学策略 根据课标要求,在学生已有知识基础上,引导学生阅读并分析地图。以启发式教学为主,以问题推动学生的学习,理论联系实际,逐步形成区域地理学习的策略与方法。 四、教学准备 1.教师准备:制作多媒体课件。 2.学生准备:根据教材的导学问题自学课文、绘制中国轮廓地图备用。 五、教学过程 讲授新课──读“中国年降水量分布图”,描述我国降水特征 教师:前面我们学习了我国的气温特征和气温对我们生活的影响,下面的图片展示了哪个自然因素对我们生活的影响?(展示不同区域的建筑形式) 学生回答预设:降水。 教师:(展示建筑所在位置,学生竞猜)刚才的图片反映的情况,我们结合我国年均降水量

的分布来看一下。请同学们读中国年降水量分布图,回答以下4个问题。 1.指出降水最多和最少的地区。 2.年降水量超过1 600毫米的地区大多在。 3.800毫米等降水量线通过___岭、__河附近至_____高原东南边缘。它与我国1月份的___℃等温线大体是一致的。 4.400毫米等降水量线大致通过岭、张家口市、____ 市、_____ 市至喜马拉雅山脉东缘。 5.年降水量200毫米以下的地区大多在。 6.我国降水的地区分布规律是什么?为什么? 【设计意图:问题链式的任务,让学生独立读图。】 教师:观察到现象后,我们需要思考原因,为什么我国降水从东南沿海向西北内陆递减?学生回答预设:西北内陆离海较远,东南靠近水汽源头。 教师:同学们的意思是含有丰富水蒸气的云从东南沿海向西北内陆运动,所以使得降水出现这种变化趋势,是什么推动了云的运动呢? 学生回答预设:风。 教师:由于我国地处世界最大大陆──亚欧大陆,面临世界最大大洋──太平洋,西南临近印度洋,海陆性质差异明显,因此,每年夏季我国盛行由海洋吹向陆地的夏季风──从太平洋吹来的东南季风和从印度洋吹来的西南季风。来自大洋的风,温暖湿润,带来丰沛降水。在夏季风从东南进入西北内陆的过程中,随着距离的增加和不断受到山脉的阻挡,影响越来越小,所以我国降水由东南沿海向西北内陆递减。(展示广州、武汉、北京、哈尔滨年降水量柱状图) 请大家思考两个问题: 1.四城市降水的季节分配均匀吗?降水集中在哪个季节? 2.四城市的雨季长短有何差异? 学生回答预设 1.不均匀,集中在夏季。

次降雨侵蚀量的计算

次降雨侵蚀量的计算 黎四龙蔡强国吴淑安 (北京大学城市与环境学系) (中国科学院地理研究所) 摘要用最大30分钟雨强(I 30)、径流量(Q)或者坡度(S)建立侵蚀量(Q s )的单因子或多因子方程。用内蒙古自治区伊克昭盟五分地沟、 五不进沟及河北省张家口市的坡度小区观测资料进行计算,比较其效果。结果表明:Q s =kQ m S n 和Q s =kQ m (坡度一定时)用来计算次降雨侵 蚀量较好;用I 30 代替以上方程中Q的结果不理想。 关键词雨强径流量侵蚀量坡度 * 国家自然科学基金委员会支持需上苦金项目(48971053) 影响侵蚀量的因素很多,如降雨情况、地形(坡度、坡长、坡形)、地面状况(植被、土壤性质)等。在建立侵蚀量的方程时,常用的变量是降雨强度、坡度、坡长、植被覆盖度、径流量等。有用单因素的[1,2],有用双因子的以至多因素的[3,4]。多引进变量一般能提高预测精度,但资料的收集也更为困难。以内蒙古伊克昭盟五分地沟、五不进沟及河北张家口坡度小区的观测资料为基础,本文旨在选择一种较好的计算次降雨侵蚀量的方法。 1 试验区基本情况 张家口试验小区位于张家口市郊沈家屯镇马家沟流域郭家梁试验场西南坡耕地上,东经114°50′,北纬40°47′,海拔822m,土壤为黄土。张家口属温带大陆性季风气候,多年平均降雨量400mm,其中80%~90%集中在7~9月份。试验场内共设7个试验小区,由坡度9°的耕地通过简单的填挖方,改为坡度试验小区,坡度分别为0°、5°、10°、15°、20°、25°、30°。小区面积均为10m2。小区边界用混凝土板围成,下部有集水池。小区常年休耕,耕层土质为粉质沙壤土,各小区的土壤粒度组成以及有机质含量见表1。 表1 张家口试验小区土壤性质分析 Soil properties of runoff plots at Zhangjiakou gully

中国各省年降水量排行

中国各省年降水量排行 本表给出我国各个省区市的2010年人口数量、面积、平均年降水量以及由此计算出来的各个省区市的每年每人具有的降水资源量。全国为4385立方米/人.年。而我国每年获得的降水资源量是6万亿吨(60291) 说明:年降水总量=(年降水量)×(面积) 降水总量/人口=人均年降水资源量 省区市人口面积年降水量总降水量人均降水 万万平方公里毫米亿m3/年m 3/人.年 黑龙江3831 45.4 500 2270 5925.346 吉林2746 18.74 550 1030.7 3753.46 辽宁4376 14.69 800 1175.2 2685.558 北京1961 1.6 500 80 407.9551 天津1294 1.2 600 72 556.4142 重庆2884 8.2 1439 1179.98 4091.47 上海2302 0.6 1124 67.44 292.9626 河北7185 18.47 600 1108.2 1542.38 山西3571 15.6 520 811.2 2271.633 陕西3732 27.6 600 1656 4437.299 甘肃2557 45.5 300 1365 5338.287 宁夏630 6.6 200 132 2095.238 新疆2181 166 154 2556.4 11721.23 西藏300 122 400 4880 162666.7 内蒙2470 118 220 2596 10510.12 青海562 72.23 380 2744.74 48838.79 山东9579 15.8 710 1121.8 1171.103 河南10975 16.8 700 1176 1071.526 江苏7866 10.2 1000 1020 1296.72 浙江5442 10.2 1400 1428 2624.035 安徽5950 13.9 1200 1668 2803.361 湖南6568 21.2 1500 3180 4841.657 湖北5723 18.36 1200 2203.2 3849.729 江西4456 16.69 1600 2670.4 5992.819 广西4602 23.67 1600 3787.2 8229.465

最完整的基于ArcGIS的中国降水量分布图制作

《GIS应用技术》课程 课间实验报告 基于ArcGIS的中国 2011年降水量分布图制作 姓名:学号 班级: 指导教师: 测量与空间信息处理实验 基于ArcGIS的中国 2011年降水量分布图制作 一、实验目的及所用软件版本 1、实验目的 (1)了解和熟悉ArcGIS的基本操作和工作原理 (2)了解和熟悉ArcGIS底图制作、空间降水插值、地图整饰直到最后成图的整个过程的基本操作 2、实验软件所用版本 实验软件 二、实验内容及问题背景 1、实验内容 本次实验主要内容包括以下部分:

(1)底图的制作。这一部分介绍衬托专题图的底图的制作,这一部分的结果还可以作为其它专题图的底图; (2)中国年降水量插值。这一部分介绍用ArcGIS的空间插值方法将气象站点的降水量数据插值得到全国范围内的降水分布; (3)地图整饰。这一部分介绍添加地图要素和美化及最后出图; 当前绝大多数的GIS软件都能够提供对数据处理的功能,本实验以为例完成以上工作。 2、实验内容所涉及的问题背景 在今年的Esri中国用户大会上,我听了几场关于ArcGIS用于制图方面的讲座,也在体验区与Esri中国的技术老师有一些交流。一直觉得ArcGIS在空间数据管理和分析方面很强大,而在制图方面却表现得不怎么样。我看到在国内很多人制图用的是CorelDraw、AI(可能不仅仅是国内,国外的专业制图也是),诚然这些软件作为专门的图形软件,在很多方面有不可比拟的优势,但是对于地理信息制图来说,图形不能和地理信息相关联却是这些软件最大的软肋。而ArcGIS越来越注重在制图方面的发展与应用,每年举办的制图大赛就是推广之一。 三、实验原理与数学模型 本实验主要从实际要求出发,经过对以中国年降水量分布图的制作为例详细地介绍了数据的获取、预处理、空间降水插值直到最后成图的整个过程。共分为三个部分: 第一部分:底图的制作。这一部分介绍衬托专题图的底图的制作,这一部分的结果还可以作为其它专题图的底图;

降水计算公式

一、潜水计算公式 1、公式1 Q k H S S R r r =-+-1366200.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m)。 2、公式2 Q k H S S b r =--1366220.()lg()lg() 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 为基坑中心距岸边的距离(m); r 0为基坑半径(m)。 3、公式3 Q k H S S b r b b b =--????????1366222012.()lg 'cos ()'ππ 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); b 1为基坑中心距A 河岸边的距离(m);

b 2为基坑中心距B 河岸边的距离(m); b ' =b 1+b 2; r 0为基坑半径(m)。 4、公式4 Q k H S S R r r b r =-+-+1366220200.()lg()lg ('') 式中: Q 为基坑涌水量(m 3/d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); S 为水位降深(m); R 为引用影响半径(m); r 0为基坑半径(m); b '' 为基坑中心至隔水边界的距离。 5、公式5 Q k h h R r r h l l h r =-++--+--136610222 000.lg lg(.) h H h -=+2 式中: Q 为基坑涌水量(m 3 /d); k 为渗透系数(m/d); H 为潜水含水层厚度(m); R 为引用影响半径(m); r 0为基坑半径(m); l 为过滤器有效工作长度(m); h 为基坑动水位至含水层底板深度(m); h - 为潜水层厚与动水位以下的含水层厚度的平均值(m)。

降雨量是如何计算的

降雨量是如何计算的 从天空降落到地面上的雨水,未经蒸发、渗透、流失而在水面上积聚的水层深度,我们称为降雨量(以毫米为单位),它可以直观地表示降雨的多少。 目前,测定降雨量常用的仪器包括雨量筒和量杯。雨量筒的直径一般为20厘米,内装一个漏斗和一个瓶子。量杯的直径为4厘米,它与雨量筒是配套使用的。测量时,将雨量筒中的雨水倒在量杯中,根据杯上的刻度就可知道当天的降雨量了。 中国气象局规定24小时内的降雨量称之为日降雨量,凡是日雨量在10毫米以下称为小雨,10.0-24.9毫米为中雨,25.0-49.9毫米为大雨,暴雨为50.0-99.9毫米,大暴雨为100.0-250.0毫米,超过250.0毫米的称为特大暴雨。由于我国幅员辽阔,少数地区根据本省具体情况另有规定。例如,多雨的广东,日雨量80毫米以上称暴雨;少雨的陕西延安地区,日雨量达到30毫米以上就称为暴雨。 如果你手边没有雨量筒,那也不用担心,利用一些常见的器皿,你完全可以自制一个,效果也相当不错。取一个口径为20厘米的一次性塑料或纸制碗(可选用大小合适的方便面纸碗),在其底部凿一比玉米粒稍大的小洞,然后将碗放在一个无盖的罐子上。罐内有一玻璃瓶,瓶口与碗底的小洞相接。简易雨量筒就做好了。简易雨量筒做好后,便可将它放在离地70厘米高处(筒口距地面的距离)承接雨水。雨腕,用秤称出瓶中的水重,30克水即相当于1毫米的降雨量。雨量器的种类 测量降水量的基本仪器有雨量器和雨量计两种。 1.雨量器:是用于测量一段时间内累积降水量的 仪器。常见的雨量器外壳是金属圆筒,分上下两节, 上节是一个口径为20厘米的盛水漏斗,为防止雨水 溅失,保持容器口面积和形状,筒口用坚硬铜质做成 内直外斜的刀刃状;下节筒内放一个储水瓶用来收集 雨水。测量时,将雨水倒入特制的雨量杯内读出降水 量毫米数。降雪季节将储水瓶取出,换上不带漏斗的 筒口,雪花可直接收集在雨量筒内,待雪融化后再读 数,也可将雪称出重量后根据筒口面积换算成毫米 数。 2.雨量计 ①翻斗式雨量计:是可连续记录降水量随时间变 化和测量累积降水量的有线遥测仪器。分感应器和记 录器两部分,其间用电缆连接。感应器用翻斗测量, 它是用中间隔板间开的两个完全对称的三角形容器, 中隔板可绕水平轴转动,从而使两侧容器轮流接水, 当一侧容器装满一定量雨水时(0.1或0.2毫米), 由于重心外移而翻转,将水倒出,随着降雨持续,将 使翻斗左右翻转,接触开关将翻斗翻转次数变成电信 号,送到记录器,在累积计数器和自记钟上读出降水 资料。 ②虹吸式雨量计:虹吸式雨量计是可连续记录降

轻型井点降水法工程量的计算及如何套定额

轻型井点降水法工程量的计算及如何套定额 文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

轻型井点降水法工程量的计算及如何套定额 轻型井点降水法施工的计算步骤是什么降水法施工的适用条件与范围是什么 一、轻型井点降水法施工的计算步骤为:确定井点系统的布置方式(平面布置和高程布置);计算涌水量;计算井点数量和井距;校核水位降低数值;选择水泵规格等。二、井点降水是高地下水位地区基础工程施工的重要措施之一。它能克服流砂、稳定基坑边坡、降低承压水位防止坑底隆起和加速土的固结,使位于天然地下水位以下的基础工程能在较干燥的施工环境中进行施工。基本上在任何场地都可以抽水,除一些保水性很好的土壤。降水方法和设备可根据土层的渗透系数、要求降水的深度和工程特点,经过技术经济和节能比较后确定。 井点降水施工的条件是什麽,井点降水结算需结算哪些内容,这些内容怎样计算工程量,排水泵计算台班吗 井点降水施工的条件是什麽,井点降水结算需结算哪些内容,这些内容怎样计算工程量,排水泵计算台班吗 1、地下水位高于基底标高 2、井点安拆。运输,使用天数 3、使用天数内不计算,非使用天数内可计停班 一、井点降水施工的条件是什麽

回答:1:当需开挖的基坑设计基坑底标高位于地下位以下时。 2:定额规定“井点降水中的轻型井点、喷射井点、大口径井点的采用由施工组织设计确定。一般情况下,降水深度6m以内采用轻型井点,6m以上30m以内采用相应的喷射井点,特殊情况下可选用大口径井点。井点使用时间按施工组织设计确定。喷射井点子目包括两根观察孔制作,喷射井管包括了内管和外管。井点材料使用摊销量中已包括井点拆除时的材料损耗量”。 二、井点降水结算需结算哪些内容 回答:主要内容有井点安装、拆除、使用等项目。另外可能每个地区的定额子目设置不同,主要还是按当地定额设置的子目。使用公路工程预算定额(JTG/T B06-02-2007)套用定额1-2-8,定额中的费用已经包括(挖排水沟及管槽,井管装配及地面试管,铺总管,装水泵,水箱,冲孔沉管理,灌砂封口,连接试帛,拔井管,拆管,清洗,整理,堆放), 三、这些内容怎样计算工程量,排水泵计算台班吗 回答:轻型井点50根为一套。井点工程量按"套天"为单位计算,累计根数不足一套者按一套计算,一天按24小时计算。井管的安装、拆除工程量按根计算。

流域平均降雨量计算

流域平均降雨量计算 由雨量站观测到的降雨量,只代表该雨量站所在处或较小范围的降雨情况,而实际工作中往往需要推求全流域或某一区域的平均降雨量,常用的计算方法有以下几种。 1.算术平均法 当流域内地形起伏变化不大,雨量站分布比较均匀时,可根据各站同一时段内的降雨量用算术平均法推求。其计算式为: ∑==+ ++=n i i n x n n x x x x 1211Λ (2-10) 2.泰森多边形法(垂直平分法) 首先在流域地形图上将各雨量站(可包括流域外的邻近站)用直线连接成若干个三角形,且尽可能连成锐角三角形,然后作三角形各条边的垂直平分线,如图2-9,这些垂直平分线组成若干个不规则的多边形,如图中实线所示。每个多边形内必然会有一个雨量站,它们的降雨量以i x 表示,如量得流域范围内各多边形的 面积为i f ,则流域平均降雨量可按下式计算: ∑∑====++++++=n i n i i i i i n n n x A x f F f f f x f x f x f x 112122111ΛΛ (2-11) 此法能考虑雨量站或降雨量分布不均匀的情况,工作量也不大,故在生产实践中应用比较广泛。 3.等雨量线法

在较大流域或区域内,如地形起伏较大,对降水影响显著,且有足够的雨量站,则宜用等雨量线法推求流域平均雨量。如图2-10所示,先量算相邻两雨量线间的面积i f ,再根据各雨量线的数值i x ,就可以按下式计算: i n i i i f x x F x )2(111 ∑=++= (2-12) 此法比较精确,但对资料条件要求较高,且工作量大,因此应用上受到一定的限制。主要用于典型大暴雨的分析。

流域平均降雨量计算

2.3.3 流域平均降雨量计算 由雨量站观测到的降雨量,只代表该雨量站所在处或较小范围的降雨情况,而实际工作中往往需要推求全流域或某一区域的平均降雨量,常用的计算方法有以下几种。 1.算术平均法 当流域内地形起伏变化不大,雨量站分布比较均匀时,可根据各站同一时段内的降雨量用算术平均法推求。其计算式为: ∑==+++=n i i n x n n x x x x 1211 (2-10) 2.泰森多边形法(垂直平分法) 首先在流域地形图上将各雨量站(可包括流域外的邻近站)用直线连接成若干个三角形,且尽可能连成锐角三角形,然后作三角形各条边的垂直平分线,如图2-9,这些垂直平分线组成若干个不规则的多边形,如图中实线所示。每个多边形内必然会有一个雨量站,它们的降雨量以i x 表示,如量得流域范围内各多边 形的面积为i f ,则流域平均降雨量可按下式计算: ∑∑====++++++=n i n i i i i i n n n x A x f F f f f x f x f x f x 112122111 (2-11) 此法能考虑雨量站或降雨量分布不均匀的情况,工作量也不大,故在生产实践中应用比较广泛。 3.等雨量线法

在较大流域或区域内,如地形起伏较大,对降水影响显著,且有足够的雨量站,则宜用等雨量线法推求流域平均雨量。如图2-10所示,先量算相邻两雨量线间的面积i f ,再根据各雨量线的数值i x ,就可以按下式计算: i n i i i f x x F x )2(111 ∑=++= (2-12) 此法比较精确,但对资料条件要求较高,且工作量大,因此应用上受到一定的限制。主要用于典型大暴雨的分析。

中国年降水量空间分布

一、單選題: 1.中國年降水量空間分布,大致呈東南向西北遞減,這是受下列那一因素的影響?(A)緯度的高 低(B)地勢的高低(C)山脈的走向(D)距海遠近及夏季風向。 2.山脈迎風面和背風面雨量差異很大,由此推論有關雨量分布的敘述何者錯誤?(A)大興安嶺東 坡雨量較西坡多(B)太行山西坡雨量較東坡少(C)秦嶺北麓雨水較南麓多(D)喜馬拉雅山南麓雨水較北麓多。 3.有關中國氣候的敘述,下列說明何者正確?(A)七月0℃等溫線大致與秦嶺淮河一致(B)750 ㎜等雨量線是季風氣候和乾燥氣候的分界(C)南船北馬以500㎜等雨量線為界(D)溫帶草原氣候和沙漠氣候以250㎜等雨量線為分類依據。 4.海陸【比熱的差異】是中國形成季風因素之一,下列有關比熱的差異的敘述,何者正確?(A) 海洋比熱較陸地大(B)海洋吸熱散熱都較陸地快(C)陸地吸熱散熱都較海洋慢(D)陸地比熱較海洋大。 5.近年來台灣受到沙塵暴侵襲,空氣品質不佳,下列有關沙塵暴的敘述,何者錯誤?(A)發生在 中國西北地區(B)常見於夏季(C)人禍因素是過度使用(D)盛行於冬季季風吹送時 6.人口金字塔可以幫助我們了解一地區的人口結構。請問:從人口金字塔可觀察推算到什麼? (甲)出生、死亡率(乙)識字率(丙)扶養比(丁)男女性別比(A)甲乙丙(B)甲丙丁(C)甲乙丁 (D)乙丙丁。 7.下列有關臺灣和大陸人口的分布共同點,何者正確?(甲) 人口分布集中在開發較早的地區(乙) 人口集中在地形平坦的地區(丙)人口均集中在西半部(丁)人口分布均受氣候﹑政策影響?(A) 甲乙 (B)乙丙(C)乙丁(D)丙丁。 8.中國人口種總數約13億佔世界人口的1/5強,為世界人口最多的國家。請問;下列何者「不是」 中國人口眾多所造成的問題?(A)糧食資源不足(B)人口素質低落(C)男女性別失調(D)失業率高 9.中國有【黃梅無雨半年荒】之說,顯然黃梅季節適時的雨水有利農業生產。下列有關梅雨的敘述 何者正確?(甲)在每年5、6月發生(乙)陸上氣團逐漸消退,海上氣團逐漸增強,產生滯留鋒(丙)華中梅雨比華南早約一個月(丁)入梅、出梅時間各地不同,結束的早晚與水旱災有極大關係。(A)甲乙丙(B)甲乙丁(C)乙丙丁(D)甲丙丁。 10.右圖為中國歷年都市化程度趨勢圖。由圖可知1980年代以後都市化 程度顯著加速,這種現象與下列何者有關?(A)政治民主化 (B)教育普及(C)經濟改革開放(D)人口快速增加。 11.中國的沙漠氣候區有【朝穿皮襖午穿紗,抱著火爐吃西瓜】的俗諺, 導致這種現象的主因是下列哪一種氣候特徵造成? (A)年溫差大(B)降水量少(C)多強風(D)日溫差大 12.以工業發展條件而言,眾多的人口為中國提供哪些優勢?(甲)原料(乙)市場(丙)動力(丁)勞工 (A)甲丙(B)甲丁(C)乙丙(D)乙丁。

基坑降水计算

基坑降水计算 1.降水影响半径 确定影响半径的方法很多,在矿坑涌水量计算中常用库萨金和吉哈尔特经验公式作近似计算。当设计的矿山进行了大降深群孔抽水试验或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔网资料为基础的图解法进行推求。 1.1、经验公式法 计算影响半径的主要经验公式见表1。 表1 计算影响半径的经验公式

1.2、图解法 当设计矿山做了大降深群孔抽水或坑道放水试验时,为了推求较为准确的影响半径,可利用观测孔实测资料,用图解法确定影响半径。 (一)自然数直角座标图解法 在直角座标上,将抽水孔与分布在同一直线上的各观测孔的同一时刻所测得的水位连结起来,尚曲线趋势延长,与抽水前的静止水位线相交,该交点至抽水孔的距离即为影响半径(见图1)。观测孔较多时,用图解法确定的影响半径较为准确。(二)半对数座标图解法 在横座标用对数表示观测孔至抽水孔的距离,纵座标用自然数表示抽水主孔及观测孔水位降深的直角座标系中,将抽水主孔的稳定水位降深及同时刻的观测孔水位降低标绘在相应位置,连结这两点并延长与横座标的交点即为影响半径(见图2)。当有两个或两个以上观测孔时,以观测孔稳定水位降深绘图更准些。

1.3、影响半径经验数值 根据岩层性质、颗粒粒径及单位涌水量与影响半径的关系来确定影响半径,见表2与表3。 表2 松散岩土影响半径(R)经验数值 表3 单位涌水量与影响半径关系

2 计算模型及公式 2.1.潜水完整井计算模型 ()??? ? ?+-=01log 2366.1r R S S H k Q ……………………… …………………公式1 式中:Q 基坑涌水量(m 3/d ); k :渗透系数(m/d ); H :潜水含水层厚度(m ): S :基坑水位降深(m ); R :降水影响半径(m ); r 0:基坑等效半径(m )。 2.2.承压水完整井计算模型 ? ??? ? ?+=01lg 73.2r R MS k Q 式中:Q :K R :r 0:基坑(m ); M :承压含水层厚度(m ) 2.3.承压水非完整井计算模型 ??? ? ? ?+-+???? ??+=002.01lg 1lg 73.2r M l l M r R MS k Q ……………………………公式式中:Q :基坑涌水量(m 3/d ); K :渗透系数(m/d ); R :降水影响半径(m ); r 0:基坑等效半径(m ); M :承压含水层厚度(m ); S :基坑水位降深(m ); l :基坑降水井过滤器工作部分长度(m )

我国的降水分布及原因

影响我国降水主要因素有哪些 我国气候特点是季风气候显著,大陆性气候范围广,雨热同期,气候类型复杂多样。 时间分布:季节分配不均匀,夏季多冬季少,年纪变化大。各地区降水主要集中在夏季(6--8月),在东部季风区,随着夏季风向北扩张,愈往北或愈深入内陆,雨量愈加集中。北方夏季降水量占全年的65--75%,而南方不到50%。呼和浩特夏季降水占全年的67.5%,赤峰占72.5%,而南宁和贵阳分别占48.8%和46.6%。青藏高原大部分地区夏季降水量占全年的70%以上,最大降水量在雅鲁藏布江西部河谷占80%以上。全国仅有少数地区,如伊犁河谷阿尔春地区四季降水均匀,各占全年的20--30%左右 空间分布:由东南沿海向西北内陆递减。区大于1600毫米的降水量带,有广西、云南、海南、西藏的一部分和湘西、鄂西地区,其中广西、云南、海南的一些山地以及西藏东南喜马拉雅山东南坡,年降水量可达2000毫米以上。喜马拉雅山南翼迎风坡的巴昔卡年降水量约4500毫米,是我国大陆上最大的降水中心,在全国仅次于台湾岛火烧寮(年降水量6557.8毫米)。五指山迎风坡的琼中年降水量达2447 毫米,位于印度洋西南季风迎风财坡面上的云南西盟达2812.9毫米,均为我国著名的多雨中心。达到800──1600毫米的降水量带,有广西、贵州、四川西部的大部分地区,达到400──800毫米的降水量带,分布在大兴安岭山地、内蒙古高原东南边缘和青藏高原东南边缘地区;达到200─400毫米的降水量带,分布在内蒙古高原和青藏高原东部,以及西北内陆地区的天山、阿尔泰山迎风坡低山地带。新疆、内蒙古西部、宁夏、青海、西藏北部和甘肃河西走廊的民族地区等西北广大内陆干旱地区,年降水量为100 毫米左右。准噶尔盆地为100--200毫米,塔里木盆地、柴达木盆地在50毫米以下。吐鲁番盆地西侧的托克逊年降水量5.9毫米,天山东端靠近中蒙边境的淖毛湖为12.5毫米,均是我国雨量最少的地方。 降水量的年际变化大是季风气候的一个特点,每年季风退时间的迟早和雨带在某一地区停留时间的长短都使得每年的降水量出现差异。一般说,降水量多的地区,降水的年际变化较小;反之,变化就大。我国降水变化最小的地区在云南南部,全国降水变化最大的是西北干旱地区。 影响我国降水量分布的主要因素有:大气环流、海陆位置、纬度位置、地形、下垫面、人类活动等。其中地形、下垫面、人类活动因素影响的主要是局地降水分布,而、大气环流、纬度位置、海陆位置是影响我国降水分布的最主要因素。 1.纬度位置决定着气压带、风带的分布,进而影响降水分布。我国雨带的推移和副热带高气压的季节移动趋势是一致的,即我国的降水很大程度上受到副高的控制。五月份,北上的暖湿气流与南下的冷空气在南岭一带相遇,雨带在此徘徊,华南雨季开始;六月份,雨带随锋面推移到长江流域,并在长江中下游地区大约摆动一个月左,阴雨连绵,此时正值梅子黄熟时节,称为长江中下游地区的梅雨季节;七、八月份,雨带随锋面推进到华北、东北等地,我国北方降水量显著增加;九月份,北方冷空气势力增大,雨带随锋面迅速撤回到长江以南,加上有台风雨配合,此时华南雨水仍较多。有的年份,副热带高气压势力较强,北进速度快,则会出现南旱北涝的情况,有的年份,副热带高气压势力弱,长期在低纬度徘徊,则会出现南涝北旱的局面。 2.大气环流(季风)对降水的影响.我国的降水分布,东南沿海>1000mm,秦淮一线800mm,西北非季风区<400mm,南疆中部<50mm,因而可以得出中国年降水量空间分布规律:自东南

上海市松江区1980~2014年降水量分析(松江水务)

上海市松江区1980~2014年降水量分析 黄平 (上海市松江区水文站,上海 201600) 摘要:利用上海市松江区1980~2014年4个国家基本测站的降水量资料,采用数理统计方法推求不同频率(重现期)的降水量特征值,并对降水量的年内变化与年际变化进行分析。采用Mann-Kendall非参数秩次相关检验法对降水量序列进行趋势分析,通过距平变化曲线分析时段特征,对降水量变化过程进行变异点的识别与检验,2011年降水量过程发生显著突变。采用功率谱对年降水量系列进行周期性分析,松江区年降水量变化存在21年的周期。降水量是地表水、地下水的补给来源,研究和分析降水量变化特征,对制定水资源开发利用方案、合理配置水资源具有重要意义。 关键词:松江;降水量;统计分析;变化趋势;周期性变化 水资源在社会经济发展中越来越重要,降水量是地表水,地下水补给的来源,降水量的变化直接影响水资源量。分析和研究降水量的变化特征和变化规律,对提高降水利用率,充分挖掘现有水资源具有重要意义。本文通过对上海市松江区降水过程变化规律进行统计分析,包括降水量时空分布、变化趋势、变化周期等。掌握这些变化特性,为今后制定和修订水资源开发利用规划方案提供科学依据。 1 松江区地理与气候概况 1.1 地理位置 松江区位于上海市西南部,地处太湖流域碟形洼地底部,境内地势平坦,东、南部略高,西、北部低洼,为长江三角洲平原。区境南北长约24千米,东西宽约25千米,总面积605.64平方千米。东与闵行区、奉贤区为邻,南、西南与金山区交界,西、北与青浦区接壤。东北距上海市中心约40公里。1.2气候 松江气候属北亚热带季风区,受冷暖空气交替影响。气候温暖湿润,四季分明,年平均气温15.4℃,最高气温38.2℃,最低气温零下10.5℃,无霜期230天。6~7月有梅雨,平均20天左右。夏秋常有台风过境,平均每年1.5次。局部地区有时有龙卷风、冰雹为害,秋冬多雾,易涝少旱。 2 降水量特征值统计分析 根据全国《地表水资源数量评价细则》要求,采用矩法计算降水量特征值统计参数,再进行适线调整确定,频率曲线采用皮尔逊Ⅲ型曲线。利用松江区1980 ~2014 年4个基本测站的同步期系列降水量资料,采用矩法计算,其均值为算术平均值,在同步系列适线时,均值未进行调整。变差系数Cv 采用第一次适线计算值,当点据拟合不好时,对Cv 值进行适当调整。在适线中,对系列中出现的特大特小值未作处理。偏差系数Cs 的取值由Cs/ Cv 值来反映。Cs/ Cv 的选用值以最佳适线值为准,取0.5 的倍数。其中泗泾、佘山、小昆山的年最大一小时降水量资料不全(1990 ~2014 年),全区平均为四个测站的算术平均值。松江区降水量特征值统计见表1。

流域平均降雨量计算

由雨量站观测到的降雨量,只代表该雨量站所在处或较小范围的降雨情况,而实际工作中往往需要推求全流域或某一区域的平均降雨量,常用的计算方法有以下几种。 1.算术平均法 当流域内地形起伏变化不大,雨量站分布比较均匀时,可根据各站同一时段内的降雨量用算术平均法推求。其计算式为: ∑==+++=n i i n x n n x x x x 1211Λ (2-10) 2.泰森多边形法(垂直平分法) 首先在流域地形图上将各雨量站(可包括流域外的邻近站)用直线连接成若干个三角形,且尽可能连成锐角三角形,然后作三角形各条边的垂直平分线,如图2-9,这些垂直平分线组成若干个不规则的多边形,如图中实线所示。每个多边形内必然会有一个雨量站,它们的降雨量以i x 表示,如量得流域范围内各多边 形的面积为i f ,则流域平均降雨量可按下式计算: ∑∑====++++++=n i n i i i i i n n n x A x f F f f f x f x f x f x 112122111ΛΛ (2-11) 此法能考虑雨量站或降雨量分布不均匀的情况,工作量也不大,故在生产实践中应用比较广泛。 3.等雨量线法 在较大流域或区域内,如地形起伏较大,对降水影响显著,且有足够的雨量站,则宜用等雨量线法推求流域平均雨量。如图2-10所示,先量算相邻两雨量线间的面积i f ,再根据各雨量线的

数值i x ,就可以按下式计算: i n i i i f x x F x )2(111 ∑=++= (2-12) 此法比较精确,但对资料条件要求较高,且工作量大,因此应用上受到一定的限制。主要用于典型大暴雨的分析。

数学建模题 年降雨量计算

组号183 B题、中国水坝对区域降水的影响1.摘要: 本文通过建立数学模型研究了中国水坝对区域降水影响问题。对于气象空间站分布不均匀,使得中国大陆平均降雨量不能直接计算,并且很难得到某地区非常准确的降雨量数字,我们采用根据距离加权来计算某一点的降雨量,根据距离它最近的m个点来计算该点的降雨量。在建立模型求解中,我们着重解决了以下问题:1、用matlab编程处理所给xls信息;2、借助c++实现我们做的模型,并进行稳定性测试。3、将算法移植到matlab上,解出精确度为1度的地图上的点的降雨量信息。4、借助matlab将中国地图大致范围求出。5、分析某地区的降雨量变化 声明:由于原始数据坐标问题,导致画出图像与真实情形相差太大,故借助matlab将错误数据更正。 2.问题重述 根据附件中的材料,研究中国水坝对区域降水的影响。 建立相应的数学模型,并解决的如下问题: 1.估计1951年——2008年中国大陆的年平均降水量; 2.估计1951年——2008年某一地区的年降水量,即给出某一地区 的经度和纬度,用所建模型计算出该地区的年降水量。按照你的 方法,估计水坝地区的降水量(1951年——2008年)。 3.研究中国水坝对区域降水的影响。(注:影响可能是多方面的。 可能会增加某地区的降水,也可能会减少另一地区的降水,还 可能会对某一地区的降水无影响。请大家从多个层面考虑这个问 题。)

3.基本假设 a)假设经过修改的数据真实可靠。 b)假设大坝是平均分布在全国各地的。 c)假设大坝没有因年代久远或水量过大而影响蓄水量,并且一直完好如初。 4.符号说明: m为距离任意点(x,y)最近的点的个数 未知点(x,y)的降雨量 为已知点的年平均降雨量 为第i个已知点第j年的降雨量 为m个最近点中第i个点与任意点(x,y)的距离 为第i个计算出来的点的降雨量, n为计算过的点的个数。 5.术语说明: 已知点预测:在验证求未知的是否准确的时候,假设一个离已知点很近的点为未知点,求出它的降雨量,与刚取的已知点比较,看差距大小。 下文提到的c++程序只有一个,就是附录3中给的 6.模型的建立与求解 6.1模型的建立: 由题目中附件3可以看出,气象站在全国并不是平均分布的,所以不能用加起来求平均值的方法,我们利用距离位权法建立了数学模型,以求出任意一点的平均降雨量。

井点降水工程量怎么计算

井点降水工程量怎么计算? 井点降水工程量的计算依据是你的降水施工组织设计。在施工组织设计中,应明确井点降水的方式、井点管的布置位置及数量、井点管深度、使用天数等。若井管间距施工组织设计没有规定时,可按轻型井点管距,喷射井点管距2-3m确定。 1、制作工程量。 电渗井点阳极制作工程量以“根”计算。 其他井点管,已在安装和使用综合基价中以摊销量或一次使用量计入,不另计算制作费用。 2、安装工程量。 安装工程量,除水泥管井井点按井深以“延长米”计算外,其余均按“根”计算工程量。 3、拆除工程量。 轻型井点、喷射井点、大口径井、电渗井点阳极、水平井点等的拆除工程量,均以“根”计算。 水泥管井井点管费用已在安装综合基价中计入,不考虑拆除。 4、使用工程量。 使用工程量,按套数乘以使用天数,以“套×天”计算。 (1)井点套的确定:轻型井点,以50根为一套;喷射井点及电渗井点阳

极,以30根为一套;大口径井点,以45根为一套;水平井点,以10根为一套;水泥管井井点,以每一管井(即一个“井点”)为一套。总根数不足一套时,可按一套计算。 (2)井点管使用天数的确定:使用天以每24h为一天。使用天数应按施工组织设计规定的使用天数计算。 依据施工组织设计、办理好经济签证、按计算规则计算工程量。 如何区别轻型井点与深井井点首先判断是否采用轻型井点依据两个参数,一是土的渗透系数是否在d,二是降低水位深度是否在3-6米之间或根据井点级数确定;一般采用离心泵与潜水泵。 深井井点具有排水量大,降水深(15~50m)、不受土质限制等特点,适用于地下水丰富,基坑深(>10m),基坑占地面积大的工程地下降水;流砂地区和重复挖方地区使用这种方法,效果更佳。一般采用电动机在上面的深井泵及深井潜水泵。

南京市统计局关于认真做好2016年统计年报和2017年定期统计报表工作的通知

南京市统计局关于认真做好2016年统计年报和2017年定期 统计报表工作的通知 【法规类别】行业统计 【发文字号】宁统办字[2016]137号 【发布部门】南京市统计局 【发布日期】2016.11.21 【实施日期】2016.11.21 【时效性】现行有效 【效力级别】XP10 南京市统计局关于认真做好2016年统计年报和2017年定期统计报表工作的通知 (宁统办字〔2016〕137号) 各区统计局、市局各处室: 为认真贯彻执行《中华人民共和国统计法》和《江苏省统计条例》,扎实落实好国家、省、市统计局统计年定报工作要求,真实、准确、完整、及时地完成统计年定报工作任务,经研究决定,对做好2016年统计年报和2017年定期统计报表工作提出如下意见。 一、加强组织领导,全面落实年定报工作职责 为真实、准确、完整、及时地反映一年来全市经济和社会发展的成果,确保统计调查制度贯彻实施,各区统计局要切实加强对统计年定报工作的领导,组织协调好统计年定

报工作和其他日常工作的关系,统筹兼顾,把集中精力组织实施好统计年定报工作,作为目前统计部门的重点工作来抓。 (一)各区统计局要成立年定报工作领导小组。统筹调配好内部的人力和物力等各项资源,协调解决好年定报工作中的重点、难点问题,统筹做好纳入“一套表”范围的年定报统计任务与未纳入“一套表”范围的其他年定报统计任务。加强对数据质量的监督、检查、评估,确保年定报工作任务高质量地完成。 (二)切实落实年定报工作责任制。各区统计局、市局各处室要按照“统一部署、分工负责、归口管理、通力协作”的原则,细化并落实“一套表”及年定报工作责任制,按表种、按项目分解到人,明确到位,通过不定期地检查和责任追究机制,确保工作责任制的贯彻落实。 二、要进一步贯彻落实《市政府关于进一步加强统计工作的意见》

计算平均降雨量

计算平均降雨量 问题描述:编写程序,从输入对话框中输入12个月中每个月的降雨量,计算月平均降雨量及月降雨量和平均降雨量的偏差,并将结果输出。 #include void main() { float rainfall[12]; float differece[12] ; float averageRainfall; float sum=0; int i; for(i=0;i<12;i++) { printf("请输入%d月的降雨量值\n" ,i+1); scanf("%f",&rainfall[i]); } for(i=0;i<12;i++) { sum+=rainfall[i]; } averageRainfall= sum/12; for(i=0;i<12;i++) { differece[i] = rainfall[i] - averageRainfall; } printf("月降雨量:\n"); for(i=0;i<12;i++) printf("%.2f\n",rainfall[i]); printf("月降雨量与月平均降雨量的偏差:\n"); for(i=0;i<12;i++){ printf("%.2f\n",differece[i]); } printf("月平均降雨量: %.2f\n\n",averageRainfall); printf("月\t月降雨量\t月降雨量与月平均降雨量的偏差\n"); for( i=0;i<12;i++){ printf("%d\t%.2f\t\t%.2f\n",i+1,rainfall[i],differece[i]); }

中国区域之中国降水(含答案)

课题:中国的降水 一、学习教学目标 1.能够说出我国降水的时空分布特点、类型和分布 2.能够说出我国东部地区雨带移动规律 3.知道干湿地区划分、分布 4. 能结合区域,解释降水的成因 二、教学课时:2课时 三、学习过程 【知识清单】1.降水的定义——一般把降落到地面的雨、雪、冰雹等统称为降水。 2.降水的形成条件 充足的水汽、空气上升冷却促使水汽凝结、足够的凝结核(尘埃杂质)。 (一)学习新知识 考点1 我国年降水量的时空分布特点 探究1:在中国年降水量图中用彩色笔描出1600毫米、800毫米、400毫米、200毫米等年降水量线,观察我国降水空间分布的特点。 (1)中国降水的空间分布特点:自东南沿海向西北内陆递减,东多西少,南多北少。

:探究2:读上图观察我国降水的时间分布特点: ①读上图东部季风区,四地降水较多的月份,广州为4 至 9月,武汉为5至8月,北京为 7 、 8 月,哈尔滨为 7-8 月。 ②四地降水量的季节变化共同点:夏季多,冬春少,季节变化大,明显的差异是北方季节变化大,南方季节变化小。 中国降水的时间分布特点: 季节变化:①降水季节分配不均,降水集中在夏秋季。②南方雨季长,北方雨季短。 年际变化:各地降水年际变化大。南方较小,北方较大 考点2 我国年降水量分布的原因 ①季风区和非季风区大致以大兴安岭 、_阴__山、_贺兰_山、_巴颜喀拉_山、_冈底斯_山为界。 ② 影响我国的夏季风,既有来自太平洋的东南季风,也有来自印度洋的西南季风,我国西北内陆地区受不到夏季风影响的主要原因是深居内陆,远离海洋以及高原和山脉的阻挡。 ③我国的降水主要是冬季风带来的还是夏 季风带来的? 原因一:导致中国降水自东南沿海向西北内陆递减的是夏季风影响的强弱。 探究4:

2019年全国各地降水量

2019年,我国气温偏高,降水偏多。台风、暴雨洪涝、干旱、强对流、低温冷冻害和雪灾、沙尘暴等气象灾害均偏轻。与近10年平均值相比,农作物受灾面积、死亡失踪人口以及直接经济损失均明显偏少。 2019年,全国平均气温较常年偏高0.79℃,为1951年以来第5暖年;四季气温均偏高,春秋明显偏暖。全国平均降水量645.5毫米,比常年偏多2.5%;冬春夏降水偏多,秋季偏少。六大区域中东北、西北、华南年降水量偏多,华北和长江中下游偏少,西南略偏少;七大流域中松花江、黄河、辽河、珠江流域降水量偏多,淮河和海河流域偏少,长江流域接近常年。 2019年,华南前汛期开始早、结束晚,为1961年以来最长前汛期,雨量为1961年以来次多;西南雨季开始和结束均偏晚,雨量偏少;入梅晚、出梅早,梅雨量偏少;华北雨季开始晚,结束与常年一致,雨量偏少;东北雨季开始早、结束晚,雨量偏多;华西秋雨开始早、结束晚,雨量偏多。 2019年,台风生成多,登陆强度总体偏弱,但“利奇马”灾损重;暴雨过程多,但暴雨洪涝灾害总体偏轻;高温日数多,区域性特征明显;区域性和阶段性干旱明显,但灾害损失偏轻;强对流天气过程偏少,损失偏轻;低温冷冻害和雪灾显著偏轻;春季北方沙尘天气少,影响偏轻。 2019年,全国有225站日降水达到极端事件标准,主要分布在山东、内蒙古、浙江、黑龙江等地,其中,山东临朐(386.7毫米)、青州(353.9毫米)等54站突破历史极值。全国有49站连续降水量突破历史极值,主要出现在山东、黑龙江、湖南、吉林等地。

面对天气气候的变化多端,多提高一点防灾减灾意识,多储备一些应对极端天气的科学知识,才能从容不迫的迎接每一天。

相关文档
相关文档 最新文档