文档库 最新最全的文档下载
当前位置:文档库 › 2018版高考数学一轮复习第八章立体几何8.8立体几何中的向量方法(二)__求空间角和距离理

2018版高考数学一轮复习第八章立体几何8.8立体几何中的向量方法(二)__求空间角和距离理

2018版高考数学一轮复习第八章立体几何8.8立体几何中的向量方法(二)__求空间角和距离理
2018版高考数学一轮复习第八章立体几何8.8立体几何中的向量方法(二)__求空间角和距离理

第八章 立体几何 8.8 立体几何中的向量方法(二)——求空间角和

距离 理

1.两条异面直线所成角的求法

设a ,b 分别是两异面直线l 1,l 2的方向向量,则

2.直线与平面所成角的求法

设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,a 与n 的夹角为β,则sin θ=|cos β|=|a ·n |

|a ||n |.

3.求二面角的大小

(1)如图①,AB ,CD 分别是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →

〉.

(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【知识拓展】

利用空间向量求距离(供选用) (1)两点间的距离

设点A (x 1,y 1,z 1),点B (x 2,y 2,z 2),则|AB |=|AB →|= x 1-x 2 2+ y 1-y 2 2+ z 1-z 2 2.

(2)点到平面的距离

如图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到平面α的距离为|BO →

|=|AB →

·n ||n |.

【思考辨析】

判断下列结论是否正确(请在括号中打“√”或“×”)

(1)两直线的方向向量所成的角就是两条直线所成的角.( × )

(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )

(4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π

2],二面角的范围

是[0,π].( √ )

(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a -β的大小是π-θ.( × )

1.(2017·烟台质检)已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A .45° B .135° C .45°或135° D .90°

答案 C

解析 cos 〈m ,n 〉=m ·n |m ||n |=11×2=2

2

即〈m ,n 〉=45°.

∴两平面所成的二面角为45°或180°-45°=135°.

2.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-1

2

,则

l 与α所成的角为( )

A .30°

B .60°

C .120°

D .150° 答案 A

解析 设l 与α所成角为θ,∵cos〈m ,n 〉=-1

2

∴sin θ=|cos 〈m ,n 〉|=1

2

,∵0°≤θ≤90°,∴θ=30°.故选A.

3.(2016·郑州模拟)如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )

A.55

B.53

C.56

D.

54

答案 A

解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→

=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→

〉=0+4-14+4+1×0+4+1

1

5=5

5

,故选A. 4.(教材改编)如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为________.

答案

π6

解析 以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→

所在直线为坐标轴(如图)建立空间直角坐标系,设D 为A 1B 1中点,

则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→

=(1,3,22), AD →

=(1,0,22).

∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos∠C 1AD =AC 1→·AD

|AC 1→||AD →|

= 1,3,22 × 1,0,22 12×9=32,

又∵∠C 1AD ∈?

?????0,π2,∴∠C 1AD =π6.

5.P 是二面角α-AB -β棱上的一点,分别在平面α、β上引射线PM 、PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为________. 答案 90°

解析 不妨设PM =a ,PN =b ,如图,

作ME ⊥AB 于E ,NF ⊥AB 于F , ∵∠EPM =∠FPN =45°, ∴PE =

22a ,PF =2

2

b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →

) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos 60°-a ×

22b cos 45°-22a ×b cos 45°+22a ×22

b =ab 2-ab 2-ab 2+ab

2=0,

∴EM →⊥FN →,

∴二面角α-AB -β的大小为90°.

题型一 求异面直线所成的角

例1 (2015·课标全国Ⅰ)如图,四边形ABCD 为菱形,∠ABC =120°,E ,F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,BE =2DF ,AE ⊥EC .

(1)证明:平面AEC ⊥平面AFC ;

(2)求直线AE 与直线CF 所成角的余弦值.

(1)证明 如图所示,连接BD ,设BD ∩AC =G ,连接EG ,FG ,EF .

在菱形ABCD 中,不妨设GB =1. 由∠ABC =120°,可得AG =GC = 3. 由BE ⊥平面ABCD ,AB =BC =2,可知AE =EC . 又AE ⊥EC ,所以EG =3,且EG ⊥AC . 在Rt△EBG 中,可得BE =2,故DF =22

. 在Rt△FDG 中,可得FG =

62

. 在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322

,从而EG 2+FG 2=EF 2,所以EG ⊥FG .

又AC ∩FG =G ,可得EG ⊥平面AFC .

因为EG ?平面AEC ,所以平面AEC ⊥平面AFC .

(2)解 如图,以G 为坐标原点,分别以GB →,GC →的方向为x 轴,y 轴正方向,|GB →

|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),

F ? ??

??

-1,0,

22,C (0,3,0), 所以AE →=(1,3,2),CF →=? ?

???-1,-3,22.

故cos 〈AE →,CF →

〉=AE →·CF →

|AE →||CF →|

=-33.

所以直线AE 与直线CF 所成角的余弦值为

33

. 思维升华 用向量法求异面直线所成角的一般步骤(1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量;(3)利用向量的夹角公式求出向量夹角的余弦值;

(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.

如图所示正方体ABCD -A ′B ′C ′D ′,已知点H 在A ′B ′C ′D ′的对角线

B ′D ′上,∠HDA =60°.求DH

与CC ′所成的角的大小.

解 如图所示,以D 为原点,DA

为单位长度,建立空间直角坐标系Dxyz ,

则DA →=(1,0,0),CC ′→

=(0,0,1). 设DH →

=(m ,m,1)(m >0), 由已知,〈DH →,DA →

〉=60°,

由DA →·DH →=|DA →|·|DH →|·cos〈DH →,DA →〉, 可得2m =2m 2

+1,解得m =22

, ∴DH →

=(22,22,1),

∵cos〈DH →,CC ′→

=22×0+2

2×0+1×11×2=22,

又∵〈DH →,CC ′→

〉∈[0°,180°], ∴〈DH →,CC ′→

〉=45°, 即DH 与CC ′所成的角为45°.

题型二 求直线与平面所成的角

例2 (2016·全国丙卷)如图,四棱锥PABCD 中,PA ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,

PA =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.

(1)证明MN ∥平面PAB ;

(2)求直线AN 与平面PMN 所成角的正弦值. (1)证明 由已知得AM =2

3

AD =2.

取BP 的中点T ,连接AT ,TN ,由N 为PC 中点知TN ∥BC ,TN =1

2BC =2.

又AD ∥BC ,故TN 綊AM ,四边形AMNT 为平行四边形,于是MN ∥AT . 因为AT ?平面PAB ,MN ?平面PAB ,所以MN ∥平面PAB .

(2)解 取BC 的中点E ,连接AE . 由AB =AC 得AE ⊥BC ,

从而AE ⊥AD ,AE = AB 2

-BE 2

AB 2-? ??

??BC 2

2= 5. 以A 为坐标原点,AE →

的方向为x 轴正方向,建立如图所示的空间直角坐标系Axyz . 由题意知,P (0,0,4),M (0,2,0),C (5,2,0),N ?

??

??52,1,2,PM →=(0,2,-4),PN →

=? ????52,1,-2,AN →=? ??

??

52,1,2. 设n =(x ,y ,z )为平面PMN 的法向量,则

???

??

n ·PM →=0,n ·PN →=0,

即????

?

2y -4z =0,5

2

x +y -2z =0,可取n =(0,2,1).

于是|cos 〈n ,AN →

〉|=|n ·AN →

||n ||A N →|

=8525.

设AN 与平面PMN 所成的角为θ,则sin θ=85

25,

∴直线AN 与平面PMN 所成角的正弦值为85

25.

思维升华 利用向量法求线面角的方法

(1)分别求出斜线和它在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);

(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.

在平面四边形ABCD 中,AB =BD =CD =1,AB ⊥BD ,CD ⊥BD .将△ABD 沿BD 折起,

使得平面ABD ⊥平面BCD ,如图所示.

(1)求证:AB ⊥CD ;

(2)若M 为AD 中点,求直线AD 与平面MBC 所成角的正弦值.

(1)证明 ∵平面ABD ⊥平面BCD ,平面ABD ∩平面BCD =BD ,AB ?平面ABD ,AB ⊥BD , ∴AB ⊥平面BCD .

又CD ?平面BCD ,∴AB ⊥CD .

(2)解 过点B 在平面BCD 内作BE ⊥BD ,如图.

由(1)知AB ⊥平面BCD ,BE ?平面BCD ,BD ?平面BCD . ∴AB ⊥BE ,AB ⊥BD .

以B 为坐标原点,分别以BE →,BD →,BA →

的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.

依题意,得B (0,0,0),C (1,1,0),D (0,1,0),A (0,0,1),M (0,12,1

2),

则BC →=(1,1,0),BM →=(0,12,12),AD →

=(0,1,-1).

设平面MBC 的法向量n =(x 0,y 0,z 0), 则???

??

n ·BC →=0,

n ·BM →=0,

即????

?

x 0+y 0=0,12

y 0+1

2z 0=0,

取z 0=1,得平面MBC 的一个法向量n =(1,-1,1). 设直线AD 与平面MBC 所成角为θ,

则sin θ=|cos 〈n ,AD →

〉|=|n ·AD →

||n ||AD →|=63,

即直线AD 与平面MBC 所成角的正弦值为6

3

. 题型三 求二面角

例3 (2016·山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,FB 是圆台的一条母线.

(1)已知G ,H 分别为EC ,FB 的中点,求证:GH ∥平面ABC ; (2)已知EF =FB =1

2AC =23,AB =BC ,求二面角FBCA 的余弦值.

(1)证明 设FC 的中点为I ,连接GI ,HI ,

在△CEF 中,因为点G 是CE 的中点,所以GI ∥EF . 又EF ∥OB ,所以GI ∥OB .

在△CFB 中,因为H 是FB 的中点,所以HI ∥BC ,又HI ∩GI =I , 所以平面GHI ∥平面ABC .

因为GH ?平面GHI ,所以GH ∥平面ABC .

(2)解 连接OO ′,则OO ′⊥平面ABC .又AB =BC ,且AC 是圆O 的直径,所以BO ⊥AC . 以O 为坐标原点,建立如图所示的空间直角坐标系Oxyz .

由题意得B (0,23,0),

C (-23,0,0).过点F 作FM 垂直OB 于点M ,

所以FM =FB 2

-BM 2

=3,可得F (0,3,3). 故BC →=(-23,-23,0),BF →

=(0,-3,3). 设m =(x ,y ,z )是平面BCF 的一个法向量. 由???

??

m ·BC →=0,

m ·BF →=0,

可得??

?

-23x -23y =0,

-3y +3z =0.

可得平面BCF 的一个法向量m =?

??

??-1,1,

33, 因为平面ABC 的一个法向量n =(0,0,1),

所以cos 〈m ,n 〉=m ·n |m ||n |=7

7

.

所以二面角FBCA 的余弦值为

77

. 思维升华 利用向量法计算二面角大小的常用方法

(1)找法向量法:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小.

(2)找与棱垂直的方向向量法:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.

(2016·天津)如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥

平面ABCD ,点G 为AB 的中点,AB =BE =2.

(1)求证:EG ∥平面ADF ;

(2)求二面角O —EF —C 的正弦值;

(3)设H 为线段AF 上的点,且AH =2

3HF ,求直线BH 和平面CEF 所成角的正弦值.

(1)证明 依题意,OF ⊥平面ABCD ,

如图,以O 为原点,分别以AD →,BA →,OF →

的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系,依题意可得

O (0,0,0),A (-1,1,0),B (-1,-1,0),C (1,-1,0), D (1,1,0),E (-1,-1,2),F (0,0,2),G (-1,0,0).

依题意,AD →=(2,0,0),AF →

=(1,-1,2). 设n 1=(x 1,y 1,z 1)为平面ADF 的法向量, 则???

??

n 1·AD →=0,

n 1·AF →=0,

即?

??

??

2x 1=0,

x 1-y 1+2z 1=0,

不妨取z 1=1,可得n 1=(0,2,1), 又EG →=(0,1,-2),可得EG →

·n 1=0, 又因为直线EG ?平面ADF ,所以EG ∥平面ADF .

(2)解 易证OA →=(-1,1,0)为平面OEF 的一个法向量,依题意,EF →=(1,1,0),CF →

=(-1,1,2).

设n 2=(x 2,y 2,z 2)为平面CEF 的法向量, 则???

??

n 2·EF →=0,

n 2·CF →=0,

即?????

x 2+y 2=0,

-x 2+y 2+2z 2=0,

不妨取 x 2=1,可得n 2=(1,-1,1). 因此有cos 〈OA →

,n 2〉=OA →

·n 2|OA →|·|n 2|

=-63,

于是sin 〈OA →

,n 2〉=33.

所以二面角O —EF —C 的正弦值为

33

. (3)解 由AH =23HF ,得AH =2

5AF .

因为AF →

=(1,-1,2), 所以AH →=25AF →=? ????2

5

,-25,45,

进而有H ? ????-35,35,45,从而BH →=? ????25,85,45.

因此cos 〈BH →

,n 2〉=BH →

·n 2|BH →||n 2|=-721.

所以直线BH 和平面CEF 所成角的正弦值为721

. 题型四 求空间距离(供选用)

例4 如图,△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD ,

AB =23,求点A 到平面MBC 的距离.

解 如图,取CD 的中点O ,连接OB ,OM ,因为△BCD 与△MCD 均为正三角形,所以OB ⊥CD ,

OM ⊥CD ,又平面MCD ⊥平面BCD ,所以MO ⊥平面BCD .

以O 为坐标原点,直线OC ,BO ,OM 分别为x 轴,y 轴,z 轴,建立空间直角坐标系Oxyz .

因为△BCD 与△MCD 都是边长为2的正三角形, 所以OB =OM =3,

则O (0,0,0),C (1,0,0),M (0,0,3),B (0,-3,0),A (0,-3,23), 所以BC →=(1,3,0),BM →

=(0,3,3). 设平面MBC 的法向量为n =(x ,y ,z ), 由???

??

n ⊥BC →,

n ⊥BM

→得???

??

n ·BC →=0,

n ·BM →=0,

即??

?

x +3y =0,3y +3z =0,

取x =3,可得平面MBC 的一个法向量为n =(3,-1,1). 又BA →

=(0,0,23),

所以所求距离为d =|BA →

·n ||n |=215

5.

思维升华 求点面距一般有以下三种方法:

(1)作点到面的垂线,点到垂足的距离即为点到平面的距离; (2)等体积法;

(3)向量法.其中向量法在易建立空间直角坐标系的规则图形中较简便.

(2016·四川成都外国语学校月考)如图所示,在四棱锥P -ABCD 中,侧面PAD ⊥

底面ABCD ,侧棱PA =PD =2,PA ⊥PD ,底面ABCD 为直角梯形,其中BC ∥AD ,AB ⊥AD ,AB =BC =1,O 为AD 中点.

(1)求直线PB 与平面POC 所成角的余弦值; (2)求B 点到平面PCD 的距离;

(3)线段PD 上是否存在一点Q ,使得二面角Q -AC -D 的余弦值为63?若存在,求出PQ

QD

的值;若不存在,请说明理由.

解 (1)在△PAD 中,PA =PD ,O 为AD 中点, ∴PO ⊥AD .

又∵侧面PAD ⊥底面ABCD ,平面PAD ∩平面ABCD =AD ,PO ?平面PAD , ∴PO ⊥平面ABCD .

在△PAD 中,PA ⊥PD ,PA =PD =2,∴AD =2. 在直角梯形ABCD 中,O 为AD 的中点,AB ⊥AD , ∴OC ⊥AD .

以O 为坐标原点,OC 为x 轴,OD 为y 轴,OP 为z 轴建立空间直角坐标系,如图所示,

则P (0,0,1),A (0,-1,0),B (1,-1,0),C (1,0,0),D (0,1,0), ∴PB →

=(1,-1,-1). 易证OA ⊥平面POC ,

∴OA →

=(0,-1,0)为平面POC 的法向量, cos 〈PB →,OA →

〉=PB →·OA →|PB →||OA →|=33,

∴PB 与平面POC 所成角的余弦值为6

3

. (2)∵PB →

=(1,-1,-1),

设平面PCD 的法向量为u =(x ,y ,z ), 则???

??

u ·CP →=-x +z =0,

u ·PD →=y -z =0.

取z =1,得u =(1,1,1).

则B 点到平面PCD 的距离d =|PB →

·u ||u |=3

3.

(3)假设存在,且设PQ →=λPD →

(0≤λ≤1).

∵PD →=(0,1,-1),∴OQ →-OP →=PQ →

=(0,λ,-λ), ∴OQ →

=(0,λ,1-λ), ∴Q (0,λ,1-λ).

设平面CAQ 的法向量为m =(x ,y ,z ), 则???

??

m ·AC →=x +y =0,

m ·AQ →= λ+1 y + 1-λ z =0.

取z =1+λ,得m =(1-λ,λ-1,λ+1). 平面CAD 的一个法向量为n =(0,0,1), ∵二面角Q -AC -D 的余弦值为

6

3

, ∴|cos〈m ,n 〉|=|m ·n ||m ||n |=6

3.

整理化简,得3λ2

-10λ+3=0. 解得λ=1

3

或λ=3(舍去),

∴存在,且PQ QD =1

2

.

6.利用空间向量求解空间角

典例 (12分)如图,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,AD ⊥AB ,AB ∥DC ,AD =DC =AP =2,AB =1,点E 为棱PC 的中点.

(1)证明:BE ⊥DC ;

(2)求直线BE 与平面PBD 所成角的正弦值;

(3)若F 为棱PC 上一点,满足BF ⊥AC ,求二面角F -AB -P 的余弦值. 规范解答

(1)证明 依题意,以点A 为原点建立空间直角坐标系如图,可得B (1,0,0),C (2,2,0),

D (0,2,0),P (0,0,2).[1分]

由E 为棱PC 的中点,得E (1,1,1). BE →

=(0,1,1),DC →

=(2,0,0),

故BE →·DC →

=0,所以BE ⊥DC .[3分] (2)解 BD →

=(-1,2,0),

PB →

=(1,0,-2).

设n =(x ,y ,z )为平面PBD 的一个法向量, 则???

??

n ·BD →=0,

n ·PB →=0,

即?????

-x +2y =0,

x -2z =0.

不妨令y =1,[5分]

可得n =(2,1,1).

于是有cos 〈n ,BE →

〉=n ·BE →|n ||BE →|=26×2=33,

所以,直线BE 与平面PBD 所成角的正弦值为

3

3

.[7分] (3)解 BC →=(1,2,0),CP →=(-2,-2,2),AC →=(2,2,0),AB →

=(1,0,0). 由点F 在棱PC 上,设CF →=λCP →

,0≤λ≤1,

故BF →=BC →+CF →=BC →+λCP →

=(1-2λ,2-2λ,2λ). 由BF ⊥AC ,得BF →·AC →

=0,

因此,2(1-2λ)+2(2-2λ)=0,解得λ=3

4,

即BF →

=(-12,12,32

).[9分]

设n 1=(x ,y ,z )为平面FAB 的一个法向量, 则???

??

n 1·AB →=0,

n 1·BF →=0,

即????

?

x =0,-12x +12y +3

2

z =0.

不妨令z =1,可得n 1=(0,-3,1).

取平面ABP 的法向量n 2=(0,1,0), 则cos 〈n 1,n 2〉=

n 1·n 2|n 1||n 2|=-310×1

=-310

10.

易知,二面角F -AB -P 是锐角, 所以其余弦值为310

10

.[12分]

利用向量求空间角的步骤: 第一步:建立空间直角坐标系; 第二步:确定点的坐标;

第三步:求向量(直线的方向向量、平面的法向量)坐标; 第四步:计算向量的夹角(或函数值); 第五步:将向量夹角转化为所求的空间角;

第六步:反思回顾.查看关键点、易错点和答题规范.

1.若直线l 的方向向量与平面α的法向量的夹角等于120°,则直线l 与平面α所成的角等于( ) A .120° B .60° C .30° D .60°或30°

答案 C

解析 设直线l 与平面α所成的角为β,直线l 与平面α的法向量的夹角为γ. 则sin β=|cos γ|=|cos 120°|=1

2.

又∵β∈[0°,90°],∴β=30°,故选C.

2.(2016·广州模拟)二面角的棱上有A ,B 两点,直线AC ,BD 分别在这个二面角的两个半平面内,且都垂直于AB .已知AB =4,AC =6,BD =8,CD =217,则该二面角的大小为( ) A .150° B .45° C .60° D .120° 答案 C

解析 如图所示,二面角的大小就是〈AC →,BD →〉.

∵CD →=CA →+AB →+BD →,

∴CD →2=CA →2+AB →2+BD →2+2(CA →·AB →+CA →·BD →+AB →·BD →)=CA →2+AB →2+BD →2+2CA →·BD →. ∴CA →·BD →=12[(217)2-62-42-82

]=-24.

因此AC →·BD →

=24,

cos 〈AC →,BD →

〉=AC →·BD →

|AC →||BD →|=12,

∴〈AC →,BD →

〉=60°,故二面角为60°.

3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( )

A.12

B.23

C.33

D.22 答案 B

解析 以A 为原点建立如图所示的空间直角坐标系Axyz ,设棱长为1,

则A 1(0,0,1),E (1,0,1

2),D (0,1,0),

∴A 1D →=(0,1,-1),A 1E →

=(1,0,-12).

设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有???

??

A 1D →·n 1=0,A 1E →·n 1=0,

即?????

y -z =0,1-1

2

z =0,∴?

??

??

y =2,

z =2.∴n 1=(1,2,2).

∵平面ABCD 的一个法向量为n 2=(0,0,1),

∴cos〈n 1,n 2〉=23×1=2

3,

即所成的锐二面角的余弦值为2

3

.

4.(2016·长春模拟)在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱

AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为( )

A.15

B.255

C.55

D.25 答案 C

解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,

由AB =AC =1,PA =2,

得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D (12,0,0),E (12,12,0),F (0,1

2,1).

∴PA →=(0,0,-2),DE →=(0,12,0),DF →

=(-12,12,1).

设平面DEF 的法向量为n =(x ,y ,z ), 则由???

??

n ·DE →=0,

n ·DF →=0,

得???

?

?

y =0,-x +y +2z =0.

取z =1,则n =(2,0,1),

设直线PA 与平面DEF 所成的角为θ, 则sin θ=|PA →

·n ||PA →||n |

=5

5,

∴直线PA 与平面DEF 所成角的正弦值为

5

5

.故选C. 5.已知正四棱柱ABCD -A 1B 1C 1D 1中,AB =2,CC 1=22,E 为CC 1的中点,则直线AC 1到平面

BDE 的距离为( )

A .2 B. 3 C. 2 D .1 答案 D

解析 以D 为原点,DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系(如图),

则D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),C 1(0,2,22),E (0,2,2),易知AC 1∥平面BDE .

设n =(x ,y ,z )是平面BDE 的法向量, 则???

??

n ·DB →=2x +2y =0,

n ·DE →=2y +2z =0.

取y =1,则n =(-1,1,-2)为平面BDE 的一个法向量, 又DA →

=(2,0,0),

∴点A 到平面BDE 的距离是

d =|n ·DA →||n |=|-1×2+0+0| -1 2+12+ -2 2=1. 故直线AC 1到平面BDE 的距离为1.

6.如图所示,三棱柱ABC -A 1B 1C 1的侧棱长为3,底面边长A 1C 1=B 1C 1=1,且∠A 1C 1B 1=90°,

D 点在棱AA 1上且AD =2DA 1,P 点在棱C 1C 上,则PD →·PB 1→

的最小值为( )

A.52 B .-14

C.14 D .-52

答案 B

解析 建立如图所示的空间直角坐标系,则D (1,0,2),B 1(0,1,3),

近五年高考数学(理科)立体几何题目汇总

高考真题集锦(立体几何部分) 1.(2016.理1)如图是由圆柱和圆锥组合而成的几何体的三视图,则该几何体的表面积是( ) A 20π B24π C28π D.32π 2. βα,是两个平面,m,n 是两条直线,有下列四个命题: (1)如果m ⊥n,m ⊥α,n ∥β,那么βα⊥; (2)如果m ⊥α,n ∥α,那么m ⊥n. (3)如果αβα?m ,∥那么m ∥β。 (4)如果m ∥n,βα∥,那么m 与α所成的角和n 与β所成的角相等。 其中正确的命题有___________ 3.(2016年理1)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是π328,则它的表面积是 A 17π B.18π C.20π D.28π 4.平面α过正方体1111D C B A ABCD -的顶点A ,α//平面11D CB ,?α平面ABCD =m , ?α平面11A ABB =n,则m,n 所成角的正弦值为( ) A.23 B.22 C.33 D.3 1 5.(2016年理1)如图,在以A,B,C,D,E,F 为顶点的五面体中,面ABEF 为正方形,AF=2FD ,∠AFD=90°,且二面角D-AF-E 与二面角C-BE-F 都是60° .(12分) (Ⅰ)证明:平面ABEF ⊥平面EFDC ; (Ⅱ)求二面角E-BC-A 的余弦值.

6. (2015年理1)圆柱被一个平面截取一部分后与半球(半径为r )组成一个几何体,该几何体三视图的正视图和俯视图如图所示,若该几何体的表面积是16+20π,则r=( ) A.1 B.2 C.7 D.8 7.如图,四边形ABCD 为菱形,∠ABC=120°,E,F 是平面ABCD 同一侧的亮点,BE ⊥平面ABCD,DF ⊥平面ABCD,BE=2DF,AE ⊥EC. (1) 证明:平面AEC ⊥平面AFC; (2) 求直线AE 与直线CF 所成角的余弦值。 8.一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截取部分体积和剩余 部分体积的比值为() 9.如图,长方体1111D C B A ABCD -中,AB = 16,BC = 10,AA1 = 8,点E ,F 分别在1111C D B A , 上,411==F D E A ,过点E,F 的平面α与此长方体的面相交,交线围成一个正方形。 (1)在图中画出这个正方形(不必说明画法和理由); (2)求直线AF 与平面α所成的角的正弦值 10.如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB=5,AC=6,点E,F 分别在AD,CD 上,AE=CF=45 ,EF 交BD 于点H.将△DEF 沿EF 折到△DEF 的位置,OD ’=10 (1)证明:D ’H ⊥平面ABCD (2)求二面角B-D ’A-C 的正弦值

6.2 立体几何中的向量方法(A卷提升篇)【解析版】

专题6.2 立体几何中的向量方法(A 卷基础篇)(浙江专用) 参考答案与试题解析 第Ⅰ卷(选择题) 一.选择题(共10小题,满分50分,每小题5分) 1.(2020·全国高二课时练习)已知(1,0,0)A ,(0,1,0)B ,(0,0,1)C ,则下列向量是平面ABC 法向量的是( ) A .(1,1,1)- B .(1,1,1)- C .? ? ? ??? D .?? ? ??? 【答案】C 【解析】 (1,1,0),(1,0,1)AB AC =-=-, 设(,,)n x y z =为平面ABC 的法向量, 则00n AB n AC ??=??=? ,化简得00x y x z -+=??-+=?, ∴x y z ==,故选C. 2.(2020·全国高二课时练习)空间直角坐标中A(1,2,3),B(-1,0,5),C(3,0,4),D(4,1,3),则直线AB 与CD 的位置关系是( ) A .平行 B .垂直 C .相交但不垂直 D .无法确定 【答案】A 【解析】 ∵空间直角坐标系中, A (1,2,3), B (﹣1,0,5), C (3,0,4), D (4,1,3), ∴AB =(﹣2,﹣2,2),CD =(1,1,﹣1), ∴AB =﹣2CD , ∴直线AB 与CD 平行. 故选A .

3.(2020·全国高二课时练习)已知平面α的法向量为(2,2,1)n =--,点(,3,0)A x 在平面α内,则点(2,1,4)P -到平面α的距离为 103,则x =( ) A .-1 B .-11 C .-1或-11 D .-21 【答案】C 【解析】 (2,2,4)PA x =+-,而103n d n PA ?= =, 103=,解得1x =-或-11. 故选:C 4.(2020·全国高二课时练习)已知向量,m n 分别是直线l 和平面α的方向向量和法向量,若 1cos ,2 m n =-,则l 与α所成的角为( ) A .030 B .060 C .0120 D .0150 【答案】A 【解析】 设线面角为θ,则1sin cos ,,302 m n θθ=??==. 5.(2020·全国高二课时练习)设直线l 与平面α相交,且l 的方向向量为a ,α的法向量为n ,若2,3a n π= ,则l 与α所成的角为( ) A .23π B .3π C .6π D .56 π 【答案】C 【解析】 结合题意,作出图形如下:

-2018江苏高考数学立体几何真题汇编

A B C D E F 2008-2018江苏高考数学立体几何真题汇编 (2008年第16题) 在四面体ABCD 中, CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点, 求证:(1)直线EF ∥平面ACD (2)平面EFC ⊥平面BCD 证明:(1) ??? E , F 分别为AB ,BD 的中点?EF ∥AD 且AD ?平面ACD ,EF ?平面ACD ?直线EF ∥平面ACD (2)? ?????CB =CD F 是BD 的中点 ? CF ⊥BD ? ?? AD ⊥BD EF ∥AD ? EF ⊥BD ?直线BD ⊥平面EFC 又BD ?平面BCD , 所以平面EFC ⊥平面BCD

B C? (2009年第16题) 如图,在直三棱柱ABC—A1B1C1中,E,F分别是A1B,A1C的中点,点D在B1C1上,A1D⊥B1C . 求证:(1)EF∥平面ABC (2)平面A1FD⊥平面BB1C1C 证明:(1)由E,F分别是A1B,A1C的中点知EF∥BC, 因为EF?平面ABC,BC?平面ABC,所以EF∥平面ABC (2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1, 又A1D?平面A1B1C1,故CC1⊥A1D, 又因为A1D⊥B1C,CC1∩B1C=C,CC1、B1C?平面BB1C1C 故A1D⊥平面BB1C1C,又A1D?平面A1FD, 故平面A1FD⊥平面BB1C1C

P A B C D D P A B C F E (2010年第16题) 如图,在四棱锥P —ABCD 中,PD ⊥平面ABCD ,PD =DC =BC =1,AB =2,AB ∥DC , ∠BCD =90°. (1)求证:PC ⊥BC ; (2)求点A 到平面PBC 的距离. 证明:(1)因为PD ⊥平面ABCD , BC ?平面ABCD ,所以PD ⊥BC . 由∠BCD =90°,得CD ⊥BC , 又PD ∩DC =D ,PD 、DC ?平面PCD , 所以BC ⊥平面PCD . 因为PC ?平面PCD ,故PC ⊥BC . 解:(2)(方法一)分别取AB 、PC 的中点E 、F ,连DE 、DF ,则: 易证DE ∥CB ,DE ∥平面PBC ,点D 、E 到平面PBC 的距离相等. 又点A 到平面PBC 的距离等于E 到平面PBC 的距离的2倍. 由(1)知:BC ⊥平面PCD ,所以平面PBC ⊥平面PCD 于PC , 因为PD =DC ,PF =FC ,所以DF ⊥PC ,所以DF ⊥平面PBC 于F . 易知DF = 2 2 ,故点A 到平面PBC 的距离等于2. (方法二)等体积法:连接AC .设点A 到平面PBC 的距离为h . 因为AB ∥DC ,∠BCD =90°,所以∠ABC =90°. 从而AB =2,BC =1,得△ABC 的面积S △ABC =1. 由PD ⊥平面ABCD 及PD =1,得三棱锥P —ABC 的体积V =13S △ABC ×PD = 1 3 . 因为PD ⊥平面ABCD ,DC ?平面ABCD ,所以PD ⊥DC . 又PD =DC =1,所以PC =PD 2+DC 2=2. 由PC ⊥BC ,BC =1,得△PBC 的面积S △PBC = 2 2 . 由V A ——PBC =V P ——ABC ,13S △PBC ×h =V = 1 3 ,得h =2, 故点A 到平面PBC 的距离等于2.

高考数学专题复习立体几何(理科)练习题

A B C D P 《立体几何》专题 练习题 1.如图正方体1111D C B A ABCD -中,E 、F 分别为D 1C 1和B 1C 1的中点, P 、Q 分别为A 1C 1与EF 、AC 与BD 的交点, (1)求证:D 、B 、F 、E 四点共面; (2)若A 1C 与面DBFE 交于点R ,求证:P 、Q 、R 三点共线 2.已知直线a 、b 异面,平面α过a 且平行于b ,平面β过b 且平行于a ,求证:α∥β. 3. 如图所示的多面体是由底面为ABCD 的长方体被截面AEFG 4=AB 1=BC 3=BE ,4=CF ,若如图所示建立空间直角坐标系. ①求EF 和点G 的坐标; ②求异面直线EF 与AD 所成的角; ③求点C 到截面AEFG 的距离. 4. 如图,三棱锥P —ABC 中, PC ⊥平面ABC ,PC=AC=2,AB=BC ,D 是PB 上一点,且CD 平面PAB . (I) 求证:AB ⊥平面PCB ; (II) 求异面直线AP 与BC 所成角的大小; (III )求二面角C-PA-B 的余弦值. 5. 如图,直二面角D —AB —E 中,四边形ABCD 是边长为2的正方形,AE=EB ,F 为CE 上的点,且BF ⊥平面ACE. (1)求证AE ⊥平面BCE ; (2)求二面角B —AC —E 的余弦值. 6. 已知正三棱柱111ABC A B C -的底面边长为2,点M 在侧棱1BB 上. P Q F E D 1C 1B 1A 1D C B A F E C B y Z x G D A

(Ⅰ)若P 为AC 的中点,M 为BB 1的中点,求证BP//平面AMC 1; (Ⅱ)若AM 与平面11AA CC 所成角为30ο,试求BM 的长. 7. 如图,在底面是矩形的四棱锥P —ABCD 中,PA ⊥底面ABCD ,PA =AB =1,BC =2. (1)求证:平面PDC ⊥平面PAD ; (2)若E 是PD 的中点,求异面直线AE 与PC 所成角的余弦值; 8. 已知:在正三棱柱ABC —A 1B 1C 1中,AB = a ,AA 1 = 2a . D 是侧棱BB 1的中点.求证: (Ⅰ)求证:平面ADC 1⊥平面ACC 1A 1; (Ⅱ)求平面ADC 1与平面ABC 所成二面角的余弦值. 9. 已知直四棱柱1111ABCD A B C D -的底面是菱形,且60DAB ∠=,1AD AA =F 为 棱1BB 的中点,M 为线段1AC 的中点. (Ⅰ)求证:直线MF //平面ABCD ; (Ⅱ)求证:直线MF ⊥平面11ACC A ; (Ⅲ)求平面1AFC 与平面ABCD 所成二面角的大小 10. 棱长是1的正方体,P 、Q 分别是棱AB 、CC 1上的内分点,满足 21==QC CQ PB AP . P A B C D E

2020高考数学专题复习----立体几何专题

空间图形的计算与证明 一、近几年高考试卷部分立几试题 1、(全国 8)正六棱柱 ABCDEF -A 1B 1C 1D 1E 1F 1 底面边长为 1, 侧棱长为 2 ,则这个棱柱的侧面对角线 E 1D 与 BC 1 所成的角是 ( ) A 、90° B 、60° C 、45° D 、30° [评注]主要考查正六棱柱的性质,以及异面直线所成角的求法。 2、(全国 18)如图,正方形ABCD 、ABEF 的边长都是 1,而且 平面 ABCD 、ABEF 互相垂直,点 M 在 AC 上移动,点 N 在 BF C 上移动,若 CM=NB=a(0

的底面是边长为a的正方形,PB⊥面ABCD。 (1)若面PAD与面ABCD所成的二面角为60°, 求这个四棱锥的体积; (2)证明无论四棱锥的高怎样变化,面PAD与面 PCD所成的二面角恒大于90°。 [评注]考查线面关系和二面角概念,以及空间想象力和逻辑推理能力。 4、(02全国文22)(一)给出两块面积相同的正三角形纸片,要求用其中一块剪拼成一个正三棱锥模型,使它们的全面积都与原三角形面积相等,请设计一种剪拼法,分别用虚线标示在图(1)(2)中,并作简要说明。 (3) (1)(2) (二)试比较你剪拼的正三棱锥与正三棱柱的体积的大小。(三)如果给出的是一块任意三角形的纸片,如图(3)要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形面积相等,请设计一种剪拼方法,用虚线标出在图3中,并作简要说明。

立体几何中的向量方法

立体几何中的向量方法(二)——求空间角和距离 1. 空间向量与空间角的关系 (1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|. (2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小 1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉. 2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉. 2. 点面距的求法 如图,设AB 为平面α的一条斜线段,n 为平面α的法向量,则B 到 平面α的距离d =|AB → ·n | |n | . 1. 判断下面结论是否正确(请在括号中打“√”或“×”)

(1)两直线的方向向量所成的角就是两条直线所成的角. ( × ) (2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角. ( × ) (3)两个平面的法向量所成的角是这两个平面所成的角. ( × ) (4)两异面直线夹角的范围是(0,π2],直线与平面所成角的范围是[0,π 2],二面角的 范围是[0,π]. ( √ ) (5)直线l 的方向向量与平面α的法向量夹角为120°,则l 和α所成角为30°. ( √ ) (6)若二面角α-a -β的两个半平面α、β的法向量n 1,n 2所成角为θ,则二面角α- a -β的大小是π-θ. ( × ) 2. 已知二面角α-l -β的大小是π 3 ,m ,n 是异面直线,且m ⊥α,n ⊥β,则m ,n 所成 的角为 ( ) A.2π3 B.π 3 C.π 2 D. π6 答案 B 解析 ∵m ⊥α,n ⊥β, ∴异面直线m ,n 所成的角的补角与二面角α-l -β互补. 又∵异面直线所成角的范围为(0,π 2], ∴m ,n 所成的角为π 3 . 3. 在空间直角坐标系Oxyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招

2018年高考数学压轴 题突破140之立体几何五种动态问题和解题 绝招 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招中高考数学名师张芙华2018-01-29 06:14:27 2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招 一.方法综述 立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性。一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等。此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点。究其原因,是因为学生缺乏相关学科素养和解决问题的策略造成的。 动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口。求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围。对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题。具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证。 二.解题策略 类型一立体几何中动态问题中的角度问题

【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值。当点M在P处时,EM与AF 所成角为直角,此时余弦值为0(最小),当M点向左移动时,EM与AF所成角逐渐变小时,点M到达点Q时,角最小,余弦值最大。 类型二立体几何中动态问题中的距离问题

全国高考理科数学:立体几何

2013年国理科数学试题分类汇编7立体几何 一、选择题 1 .(2013年新课标1(理))如图有一个水平放置的透明无盖的正方体容器容器8cm 将一个 球放在容器口再向容器内注水当球面恰好接触水面时测得水深为6cm 如果不计容器的 厚度则球的体积为 ) A 2 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))设,m n 是两条不同的 直线,αβ是两个不同的平面下列命题正确的是( )[] A .若αβ⊥m α?n β?则m n ⊥ B .若//αβm α?n β?则//m n C .若m n ⊥m α?n β?则αβ⊥ D .若m α⊥//m n //n β则αβ⊥ 3 .(2013年上海市春季数学试卷(含答案))若两个球的表面积之比为1:4则这两个球的体积 之比为( ) A .1:2 B .1:4 C .1:8 D .1:16 4 .(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))已知正四棱柱 1111ABCD A B C D -12AA AB =则CD 与平面1BDC 所成角的正弦值等于( ) A 5 .(2013年新课标1(理))某几何体的三视图如图所示则该几何体的体积为

( ) A .168π+ B .88π+ C .1616π+ D .816π+ 6 .(2013年湖北卷(理))一个几何体的三视图如图所示该几何体从上到下由四个简单几何 体组成其体积分别记为1V 2V 3V 4V 上面两个简单几何体均为旋转体下面两个简单几何体均为多面体则有( ) A .1243V V V V <<< B .1324V V V V <<< C .2134V V V V <<< D .2314V V V V <<< 7 .(2013年湖南卷(理))已知棱长为1的正方体的俯视图是一个面积为1的正方形则该正 方体的正视图的面积不可能...等于( ) A .1 B 8 .(2013年普通等学校招生统一试广东省数学(理)卷(纯WORD 版))某四棱台的三视图如 图所示则该四棱台的体积是

2021高考数学立体几何专题

专题09立体几何与空间向量选择填空题历年考题细目表 题型年份考点试题位置 单选题2019 表面积与体积2019年新课标1理科12 单选题2018 几何体的结构特征2018年新课标1理科07 单选题2018 表面积与体积2018年新课标1理科12 单选题2017 三视图与直观图2017年新课标1理科07 单选题2016 三视图与直观图2016年新课标1理科06 单选题2016 空间向量在立体几何中的应 用2016年新课标1理科11 单选题2015 表面积与体积2015年新课标1理科06 单选题2015 三视图与直观图2015年新课标1理科11 单选题2014 三视图与直观图2014年新课标1理科12 单选题2013 表面积与体积2013年新课标1理科06 单选题2013 三视图与直观图2013年新课标1理科08 单选题2012 三视图与直观图2012年新课标1理科07 单选题2012 表面积与体积2012年新课标1理科11 单选题2011 三视图与直观图2011年新课标1理科06 单选题2010 表面积与体积2010年新课标1理科10 填空题2017 表面积与体积2017年新课标1理科16 填空题2011 表面积与体积2011年新课标1理科15 填空题2010 三视图与直观图2010年新课标1理科14 历年高考真题汇编 1.【2019年新课标1理科12】已知三棱锥P﹣ABC的四个顶点在球O的球面上,P A=PB=PC,△ABC是边长为2的正三角形,E,F分别是P A,AB的中点,∠CEF=90°,则球O的体积为() A.8πB.4πC.2πD.π 2.【2018年新课标1理科07】某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为()

历年全国理科数学高考试题立体几何部分精选(含答案)

1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD的顶点都在半径为4的球O的球面上,且6,23 ==,则棱锥 AB BC -的体积为。 O ABCD 3.如图,四棱锥P—ABCD中,底面ABCD为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD,求二面角A-PB-C的余弦值。

2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 (1,3,0),(0,3,1),(1,0,0)AB PB BC =-=-=- 设平面PAB 的法向量为n=(x ,y ,z ),则0, 0,{ n AB n PB ?=?= 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0, m 0, { PB BC ?=?= 可取m=(0,-1,3-) 27 cos ,727 m n = =- 故二面角A-PB-C 的余弦值为 27 7 -

1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 33 C 2 3 D 63 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?的最小值为 (A) 42-+ (B)32-+ (C) 422-+ (D)322-+ 3. 已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为 (A) 23 (B)43 (C) 23 (D) 83 4. 如图,四棱锥S-ABCD 中,SD ⊥底面ABCD ,AB ⊥⊥(Ⅰ)证明:SE=2EB ; (Ⅱ)求二面角A-DE-C 的大小 .

立体几何中的向量方法总结

立体几何中的向量方法基础篇一(几何证明) 一.求直线方向向量 1.已知()()4,2,2,2,1,1B A -且),,6(y x a =为直线AB 的方向向量,求y x ,。 二.平面的法向量 2.在空间中,已知()()()0,1,1,1,1,0,1,0,1C B A ,求平面ABC 的一个法向量。 3.如图,在四棱锥ABCD P -中,底面ABCD 为正方形, 2,==⊥DC PD ABCD PD 平面,E 为PC 中点 (1)分别写出平面PDC ABCD PAD ,,的一个法向量; (2)求平面EDB 的一个法向量; (3)求平面ADE 的一个法向量。 三.向量法证明空间平行与垂直 1.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,M AF AB ,1,2== 为EF 的中点,求 证:BDE AM 平面//

2. 如图,正方体''''D C B A ABCD -中,F E ,分别为CD BB ,'的中点,求证:ADE F D 平面⊥'。 3. 如图,在四棱锥ABCD E -中,BCE CD BCE AB 平面平面⊥⊥, 0120,22=∠====BCE CD CE BC AB ,求证:平面ABE ADE 平面⊥。 巩固练习: 1. 如图,在正方体''''D C B A ABCD -中,P 是'DD 的中点,O 是底面ABCD 的中心, (1)求证:O B '为平面PAC 的一个法向量;(2)求平面CD B A ''的一个法向量。

2. 如图,在直棱柱'''C B A ABC -中,4',5,4,3====AA AB BC AC (1)求证:'BC AC ⊥ (2)在AB 上是否存在点D ,使得'//'CDB AC 平面,若存在,确定D 点位置,若不存在,说明理由。 3. 如图,已知长方体''''D C B A ABCD -中,2==BC AB ,E AA ,4'=为'CC 的上的点,C B BE '⊥, 求证:BED C A 平面⊥' 4. 在三棱柱'''C B A ABC -中,1',2,,'===⊥⊥AA BC AB BC AB ABC AA 平面,E 为'BB 的中点,求证:C C AA AEC '''平面平面⊥

2018年高考数学立体几何试题汇编

2018年全国一卷(文科):9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .217 B .25 C .3 D .2 18.如图,在平行四边形ABCM 中,3AB AC ==,90ACM =?∠,以AC 为折痕将△ACM 折起,使点M 到达点 D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ; (2)Q 为线段AD 上一点,P 为线段BC 上一点,且2 3 BP DQ DA == ,求三棱锥Q ABP -的体积. 全国1卷理科 理科第7小题同文科第9小题 18. 如图,四边形ABCD 为正方形,,E F 分别为,AD BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点 P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值. 全国2卷理科: 9.在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为

A .1 B . 5 C . 5 D . 2 20.如图,在三棱锥P ABC -中,22AB BC ==,4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M PA C --为30?,求PC 与平面PAM 所成角的正弦值. 全国3卷理科 3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是 19.(12分) 如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点. (1)证明:平面AMD ⊥平面BMC ; (2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值. 2018年江苏理科:

2019届高考理科数学专题 高考中的立体几何问题

2019届高考理科数学专题 高考中的立体几何问题 一、选择题(每小题5分,共30分) 1.一个多面体的三视图如图4-1所示,则此多面体的表面积是() 图4-1 A.22 B.24- C.22+ D.20+ 2.如图4-2,网格纸上小正方形的边长为1,粗线画的是某组合体的三视图,则该组合体的体积 是() 图4-2 A.+π B.+π C.4+π D.+π 3.已知正方体ABCD-A1B1C1D1的所有顶点均在球O的表面上,E,F,G分别为AB,AD,AA1的中点,若平面EFG截球O所得圆的半径为,则该正方体的棱长为() A. B. C.3 D.2 4. [数学文化题]如图4-3为中国传统智力玩具鲁班锁,它起源于中国古代建筑中首创的榫卯结构,这种三维的拼插器具内部的凹凸部分啮合,外观看是严丝合缝的十字立方体,其上下、左右、前后完全对称,六根完全相同的正四棱柱分成三组,经90°榫卯起来.现有一鲁班锁的正四棱柱 的底面正方形的边长为2,欲将其放入球形容器内(容器壁的厚度忽略不计),若球形容器的表 面积的最小值为56π,则正四棱柱的高为()

A. B.2 C.6 D.2 5. [数学文化题]中国古代计时器的发明时间不晚于战国时代(公元前476年~前222年),其中沙漏就是古代利用机械原理设计的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道流到下部容器.如图4-4所示,某沙漏由上、下两个圆锥形容器组成,圆锥形容器的底面圆的直径和高均为8 cm,细沙全部在上部时,其高度为圆锥形容器高度的(细管长度忽略不计).若细沙全部漏入下部后,恰好堆成一个盖住沙漏底部的圆锥形沙堆,则此圆锥形沙堆的高为() 图4-4 A.2 cm B.cm C.cm D.cm 6.如图4-5,在正三棱柱ABC-A1B1C1中,AA1=AB,E,F分别为BC,BB1的中点,M,N分别为 AA1,A1C1的中点,则直线MN与EF所成角的余弦值为() 图4-5 A. B. C. D. 二、填空题(每小题5分,共10分) 7.若侧面积为8π的圆柱有一外接球O,则当球O的体积取得最小值时,圆柱的表面积 为. 8.如图4-6,在棱长为1的正方体ABCD-A1B1C1D1中,作以A为顶点,分别以AB,AD,AA1为轴,底面圆半径为r(0

高职高考数学课程初步立体几何

第四编 立体几何初步 第九章 立体几何初步 第一节 简单几何体的表面积和体积 1. 圆柱、圆锥、圆台的侧面展开图及侧面积的计算公式如下: 2. 球、柱、锥、台的表面积及体积计算公式: 名 称 表面积S 体积V 棱 柱 底侧S S 2+ h S 底 棱 锥 底侧S S + h S 底3 1 棱 台 下底上底侧S S S ++ h S S S S )(3 1 下底上底下底上底?++ 球 24R π 33 4 R π 圆 柱 )(2r l r +π h r 2π 圆 锥 )(r l r +π h r 23 1π 圆 台 )()(222121r r l r r +++ππ )(3 1 222121r r r r h ++π 第二节 三视图 1. 柱、锥、台、球的结构特征 (1)棱柱:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体. (2)棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体. (3)棱台:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分. (4)圆柱:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体. l r r π2r l r π2l ' r r ' 2r πr π2rl s π2=侧rl S π=侧()l r r S '+=π侧

(5)圆锥:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体. (6)圆台:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分. (7)球体:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体. 2. 空间几何体的三视图和直观图: (1)三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下) (2)画三视图的原则:长对正,高齐平,宽相等. (3)直观图:斜二侧画法. ①在已知图形中取相互垂直的x 轴和y 轴,两轴相交于点O ,画直观图时,把它们画成对应的'x 轴和'y 轴,两轴相交于点'O ,且使)135(45??='''∠或y O x ,它们确定的平面表示水平面. ②原来与x 轴平行的线段仍然与x 平行且长度不变; ③原来与y 轴平行的线段仍然与y 平行,长度为原来的一半. 第三节 空间几何体的平行问题 1. 线线平行的判断: ①平行于同一条直线的两条直线互相平行。 ②平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。 ③如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线 和交线平行。 l b a l b l a // //?b a // α b a α α ?b b a //?α //a ? b a a =?βαβα // b a //

历年全国理科数学高考试题立体几何部分含答案

(一) 1.在一个几何体的三视图中,正视图和俯视图如 右图所示,则相应的俯视图可以为 2.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥 O ABCD -的体积为 。 3.如图,四棱锥P —ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD. (Ⅰ)证明:PA⊥BD; (Ⅱ)若PD=AD ,求二面角A-PB-C 的余弦值。 (一) 1.D 2.83 3. 解:(Ⅰ)因为60,2DAB AB AD ∠=?=, 由余弦定理得3BD AD = 从而BD 2+AD 2= AB 2,故BD ⊥AD 又PD ⊥底面ABCD ,可得BD ⊥PD 所以BD ⊥平面PAD. 故 PA ⊥BD (Ⅱ)如图,以D 为坐标原点,AD 的长为单位长,射线DA 为x 轴的正半轴建立空间直

角坐标系D-xyz ,则 ()1,0,0A ,()03,0B ,,() 1,3,0C -,()0,0,1P 。 设平面PAB 的法向量为n=(x ,y ,z ),则0,0,{ n AB n PB ?=?=u u u r u u u r 即 3030 x y y z -+=-= 因此可取n=(3,1,3) 设平面PBC 的法向量为m ,则 m 0,m 0,{ PB BC ?=?=u u u r u u u r 可取m=(0,-1,3-) 27 cos ,27 m n = =- 故二面角A-PB-C 的余弦值为 27 7 - (二) 1. 正方体ABCD-1111A B C D 中,B 1B 与平面AC 1D 所成角的余弦值为 A 23 B 3 C 2 3 D 6 2. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为俩切点,那么PA PB ?u u u v u u u v 的最 小值为

高考数学各题型解法:立体几何篇

2019年高考数学各题型解法:立体几何篇高考立体几何试题一般共有4道(选择、填空题3道,解答题1道),共计总分27分左右,考查的知识点在20个以内。选择填空题考核立几中的计算型问题,而解答题着重考查立几中的逻辑推理型问题,当然,二者均应以正确的空间想象为前提。随着新的课程改革的进一步实施,立体几何考题正朝着“多一点思考,少一点计算”的发展。从历年的考题变化看,以简单几何体为载体的线面位置关系的论证,角与距离的探求是常考常新的热门话题。 知识整合 1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2.判定两个平面平行的方法: (1)根据定义--证明两平面没有公共点; (2)判定定理--证明一个平面内的两条相交直线都平行于另

一个平面; (3)证明两平面同垂直于一条直线。 3.两个平面平行的主要性质: ⑴由定义知:“两平行平面没有公共点”。 ⑵由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面。 ⑶两个平面平行的性质定理:”如果两个平行平面同时和第三个平面相交,那 么它们的交线平行“。 ⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 ⑸夹在两个平行平面间的平行线段相等。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。 宋以后,京师所设小学馆和武学堂中的教师称谓皆称之为“教谕”。至元明清之县学一律循之不变。明朝入选翰林院的进士之师称“教习”。到清末,学堂兴起,各科教师仍沿用“教习”一称。其实“教谕”在明清时还有学官一意,即主管县一级的

立体几何中的向量方法—证明平行和垂直

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.理解空间向量的概念;掌握空间向量的加法、减法和数乘; 2.了解空间向量的基本定理; 3.掌握空间向量的数量积的定义及其性质;理解空间向量的夹角的概念;掌握空间向量的数量积 的概念、性质和运算律;了解空间向量的数量积的几何意义;能用向量的数量积判断向量的共线与 垂直。 【教学重点】理解空间向量的概念;掌握空间向量的运算方法 【教学难点】理解空间向量的概念;掌握空间向量的运算方法 在四棱锥 设直线,则 v

的正方体 I 2. 如图,在棱长为a (1) 试证:A1、G、C三点共线; (2) 试证:A1C⊥平面 3.【改编自高考题】如图所示,四棱柱 的正方形,侧棱A (1)证明:AC⊥A1B; (2)是否在棱A1A上存在一点P,使得C1【学后反思】 本节课我学会了 掌握了那些? 还有哪些疑问? 2017届高二数学导学案编写邓兴明审核邓兴明审批

1、依据学习目标。课前认真预习,完成自主学习内容; 2、课上思考,积极讨论,大胆展示,充分发挥小组合作优势,解决疑难问题; 3、当堂完成课堂检测题目; 4、★的多少代表题目的难以程度。★越多说明试题越难。不同层次学生选择相应题目完成 【学习目标】1.掌握各种空间角的定义,弄清它们各自的取值范围.2.掌握异面直线所成的角,二面角的平面角,直线与平面所成的角的联系和区别.3.体会求空间角中的转化思想、数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 【教学重点】灵活地运用各种方法求空间角 【教学难点】灵活地运用各种方法求空间角 —l—β的两个面α,β的法向量,则向量 的大小就是二面角的平面角的大小(如图②③). 【课堂合作探究】 利用向量法求异面直线所成的角 B1C1,∠ACB=90°,CA=CB=CC1,D 的正方体ABCD—A1B1C1D1中,求异面直线

2018高考数学立体几何含答案(最新整理)

5 ??n ? ? 2018 高考数学立体几何答案 1.(本小题 14 分)如图,在三棱柱 ABC ? A 1B 1C 1 中, CC 1 ⊥ 平面 ABC ,D ,E ,F ,G 分别为 AA 1 ,AC , A 1C 1 , BB 1 的中点,AB=BC = ,AC = AA 1 =2. (Ⅰ)求证:AC ⊥平面 BEF ; (Ⅱ)求二面角 B?CD ?C 1 的余弦值; (Ⅲ)证明:直线 FG 与平面 BCD 相交. 【解析】(1)在三棱柱 ABC - A 1B 1C 1 中, Q CC 1 ⊥ 平面 ABC , ∴ 四边形 A 1 ACC 1 为矩形.又 E , F 分别为 AC , A 1C 1 的中点, ∴ AC ⊥ EF , Q AB = BC ,∴ AC ⊥ BE , ∴ AC ⊥ 平面 BEF . (2)由(1)知 AC ⊥ EF , AC ⊥ BE , EF ∥CC 1 . 又CC 1 ⊥ 平面 ABC ,∴ EF ⊥ 平面 ABC . Q BE ? 平面 ABC ,∴ EF ⊥ BE . 如图建立空间直角坐称系 E - xyz . 由题意得 B (0, 2, 0) , C (-1, 0, 0) , D (1, 0,1) , F (0, 0, 2) , G (0, 2,1) , ∴CD =(2, 0,1) , CB =(1, 2, 0) ,设平面 BCD 的法向量为 n = (a , b , c ) , u u u r CD = 0 ∴? uur n ? ,∴?2a + c = 0 , a + 2b = 0 ? ? CB = 0 ? 令 a = 2 ,则b = -1 , c = -4 ,∴ 平面 BCD 的法向量 n = (2, - 1,, - 4) ,

2007年高考理科数学“立体几何”题

2007年高考“立体几何”题 1.(全国Ⅰ) 如图,正四棱柱1111ABCD A B C D -中,12AA AB =, 则异面直线1A B 与1AD 所成角的余弦值为( ) A . 15 B . 25 C . 3 5 D . 45 解:如图,连接BC 1,A 1C 1,∠A 1BC 1是异面直线1A B 与1AD 所成的角,设AB=a ,AA 1=2a ,∴ A 1B=C 1B=5a , A 1C 1=2a ,∠A 1BC 1的余弦值为4 5 ,选D 。 一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上.已知 正三棱柱的底面边长为2,则该三角形的斜边长为 . 解:一个等腰直角三角形DEF 的三个顶点分别在 正三棱柱的三条侧棱上,∠EDF=90°,已知 正三棱柱的底面边长为AB=2,则该三角形 的斜边EF 上的中线DG=3. ∴ 斜边EF 的长为23。 四棱锥S ABCD -中,底面ABCD 为平行四边形, 侧面SBC ⊥底面ABCD .已知45ABC =∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. 解法一: (Ⅰ)作SO BC ⊥,垂足为O ,连结AO ,由侧面SBC ⊥底面ABCD , 得SO ⊥底面ABCD . 因为SA SB =,所以AO BO =, 又45ABC =∠,故AOB △为等腰直角三角形,AO BO ⊥, 由三垂线定理,得SA BC ⊥. (Ⅱ)由(Ⅰ)知SA BC ⊥,依题设AD BC ∥, 1 A A B 1B 1A 1D 1C C D C 1A C F A D B C A S

相关文档
相关文档 最新文档