文档库 最新最全的文档下载
当前位置:文档库 › 河海大学硕士数值分析试卷08~09

河海大学硕士数值分析试卷08~09

河海大学硕士数值分析试卷08~09
河海大学硕士数值分析试卷08~09

1. 填空(10分,每空2分)

1) 为了减少运算次数,应将表达式113141817162

3

4

5

---++x x x x x 改写为 .为了减少舍入误差的影响,应将表达式

20002001-改写为 .

2) 用二分法求方程0152)(3=--=x x x f 在区间[1,3]内的根,进行一步后根所在区间为

,进行二步后根所在区间为 .

3) 在高斯顺序消去法中,)

1(-k kk a 称为第k 步主元.为使消去法得以顺利进行,必

须 .

2. 选择题(10分,每题2分)

(1)设有求方程1=x

xe 根的迭代公式k

x k e

x -+=1,取初值5.00=x ,则迭代公式

A. 发散

B. 敛散不定

C. 收敛

D. 不确定 (2)辛普森(Simpson)公式

)]()2

(4)([6)(b f b

a f a f a

b dx x f b

a

+++-≈

?

可由 A. 分段线性插值导出 B. 抛物插值导出 C. 线性插值导出 D. 分段抛物型插值导

(3)矩阵A 满足什么条件时,LR A =且分解唯一(L 是单位下三角阵,R 是上三角阵)

A. 无限制

B. 对称

C. 可逆

D. 严格对角占优 (4)为什么要把解常微分方程的欧拉(Euler)方法发展为改进的欧拉方法?

A. 提高精度

B. 便于计算

C. 提高精度和便于计算

D. 稳定性需要 (5) 当0)(=x f 有m 重根时,牛顿(Newton)迭代公式中的迭代函数应为 A. )()

()(x f x f x x '-

=? B. )()()(x f x f m x x '-=? C. )()()(x f m x f x x '-

=? D. )

()

()(x f x f mx x '-=?

4. (10分)选取求积公式中的常数a ,使

)]()0([)]()0([2

)(0

h f f a h f f h

dx x f h

'-'++≈?

的代数精度尽量高。试指出最高代数精度,并估计误差。

5.(10分)已知?

??

?

??=121a a A ,试写出解b Ax =的Jacobi 迭代法收敛的充要条件。

6.(10分)用勒让德多项式作最佳平方逼近,求函数3)(x x f =在[-1,1]上的二次最

佳平方逼近多项式.(1)(0=x P ,x x P

=)(1,)13(2

1

)(22-=x x P )

7.(10分)用幂法计算下述矩阵的按模最大特征值及对应的特征向量

????

??????=310130004A

8.(10分)给定数据

求形如bx

a y +=1

的拟合函数。

9.(10分)已知方程012

3=--x x 在=0x 1.5附近有根,试给出一个在0x 附近收敛的迭代格式.

10.(10分)设)(x f 充分可微, 1)试证明

)()(120

)(6)]()([21)(60)

5(40)3(2000h O x f h x f h h x f h x f h x f +----+=' 2)利用

)]()([21

)(00h x f h x f h

h N --+=

求)(0x f '近似值,并给出外推一次的公式。

《数值分析》试题(A )

一、填空题(每小题3分,共21分): 1、已知:?

??

?

??--=-=1327,)2,1(A X T ,则=1AX , =∞)(cond A .

2、牛顿—柯特斯(Newton —Cotes )数值求积公式

∑?

=-≈n

i i n i b

a

x f C a b dx x f 0

)()()()(

当n 为奇数时,至少具有 次代数精度;当n 为偶数时,至少具有 次代数精度.

3、若函数

?????≤<+-+-+-≤≤=31,)1()1()1(2

110,)(2

33x c x b x a x x x x S 为一个三次样条函数,则a = ,b = ,c = . 4、分别写出用下列迭代法求解方程0201022

3

=-++x x x 根的迭代公式: (1)牛顿法 ; (2)弦截法 .

5、近似数231.0*

=x 关于真值229.0=x 有 位有效数字.

6、已知矩阵?

??

?

??-=8231A ,取初始向量T v )1,1(0=,用规范化的幂法迭代2次,求得矩阵A 的主特征值为 ,相应的特征向量为 (保留小数点后4位小数). 7、在]1,0[上以

x 为权函数的0,1,2次正交多项式分别为

)(0x ?= ,

)(1x ?= ,)(2x ?= .

二、(本题10分)已知

3

21)(5

.001x f x -

(1)求)(x f 的二次Newton 插值多项式;

(2)求)25.0(f 的近似值(取小数点后五位),并写出余项.

三、(本题10分)确定下列公式

?

++≈h

h f A h

f A f A h dx x f 0

210)]()3

()0([)(

中的参数0A ,1A ,2A ,使其代数精度尽量高,并指出所得公式的代数精度.

四、(本题7分)求函数x x f arctan )(=在]1,0[上关于},1{span x =Φ带权1)(=x ρ的最佳平方逼近多项式.

五、(本题10分)已知方程组b Ax =,其中???????

?

?=30

1034211010

0201A ,??????? ??=4321x x x x x ,????

?

?

?

??=71735b , (1)求矩阵A 的Doolittle 分解,即分解成LU A =的形式,其中L 为单位下三角矩

阵,U 为上三角矩阵;

(2)利用上述分解求解方程组b Ax =. 六

(本

8

)数

}{k x 定义为:5

0=x ,

,2,1,0,1282

11612

41=-+-=

+k x x x x k k k k , 证明:}{k x 三阶收敛到4*

=x .

七、(本题8分)已知函数值表:

用最小二乘法求拟合这组数据的二次多项式2210x a x a a y ++=.

八、(本题10分)给定方程组???

?

? ??=????? ??????? ??--11121111

1112321x x x , (1)分别写出雅可比迭代格式和高斯-塞德尔迭代格式;

(2)证明高斯-塞德尔迭代法收敛.

九、(本题8分)用龙贝格求积公式求积分?

+=

10

1

x dx

I 的近似值(要求二分三次,保留小数点后4位小数) .

十、(本题8分)证明:求解常微分方程初值问题的数值解公式

)3(2

11-+'-'+

=n n

n n y y h

y y 的局部误差为)()(3

11h O y x y n n =-++.

河海大学2008-2009学年硕士生 《数值分析》试题(A )

任课教师

姓名_________专业________学号 得分

一、选择题(每小题3分,共15分)

1.设准确值=x 300

2

,以=*x 006666.0作为x 的近似值,其有效数

字为( )。

A. 3位;

B. 4位;

C. 5位;

D. 6位 2.积分公式)3

1(

)3

1()(11

f f dx x f +-

≈?

-的代数精度为( )。

A.1阶;

B.2阶;

C.3阶;

D. 4阶 3.对于任意初始向量)0(x ,一阶定常迭代f Bx x k k +=+)()1(收敛的 充分必要条件是( ) 。

A. 1||||

B. 1||||≤B ;

C. 1)(

D. 1)(≤B ρ 4.下列关于条件数的性质错误是( )。

A.)(cond )(cond 1-=A A ;

B.1)(cond ≥A ;

C.)0()(cond )(cond ≠?=k A k kA ;

D.)0()(cond )(cond ≠=k A kA 5.设初等反射阵T ww I H 2-= )1(=w w T ,则下列错误的是( )。 A. H 是对称矩阵; B. H 是正交矩阵; C. 任给向量x ,有22||||||||x Hx =; D. H 的行列式等于1

二、填空题(每小题3分,共15分)

1.非线性方程求根的Newton 迭代法在单根附近的收敛阶数 为____ ___,在重根附近的收敛阶数为_____ __。

2.用幂法(规范化)求矩阵A 的主特征值及对应的特征向量的迭代格式是

________________________________________

3.设线性方程组b Ax =,当A 满足____________________时,

常用Cholesky 分解法,当A 满足__________________________

__________________时,常用追赶法。 4.已知Chebyshev 多项式x x x T 34)(33-=,则12)(23+++=x x x x f 的最佳2次逼近多项式为____________ ______。

5.设),2,1,0()},({ =k x k ?是区间[0,1]上带权x x =)(ρ的最高次项系数 为1的正交多项式族,其中1)(0=x ?,则=)(1x ?_______。 三、(本题10分) 设4)(x x f =,取节点为1-,0,1,2。 (1)试用拉格朗日基函数写出)(x f 的三次插值多项式; (2)试用余项公式写出)(x f 的三次插值多项式。

四、(本题10分) 试用Doolittle 三角分解法求解方程组

????

? ??-=????? ??????? ??032484272321321x x x

五、(本题10分) 确定下列公式

?

-++-≈2

2

)1()0()1()(Cf Bf Af dx x f

中的参数A ,B ,C ,使其代数精度尽量高,并指出所得公式的 代数精度。

六、(本题12分) 设方程组???

?

? ??=????? ??????? ??-----121122*********x x x ,分别写出

雅可比迭代格式和高斯-塞德尔迭代格式,并讨论它们的收敛性。

七、(本题10分) 利用Legendre 多项式,求x x f =)(在区间[0,1]上的一次最佳平方逼近多项式。

八、(本题8分) 设A 是对称正定矩阵,B 是对称矩阵,若BAB A -也正定,证明迭代格式

f Bx x k k +=+)()1(

对任意初始向量)0(x 收敛。

九、 (本题10分) 试证明由

[]),(),(2

1

111+++++

=n n n n n n y x f y x f h y y 所定义的隐式单步格式是二阶的。

东南大学数值分析上机题答案

数值分析上机题 第一章 17.(上机题)舍入误差与有效数 设∑=-= N j N j S 2 2 11 ,其精确值为)111-23(21+-N N 。 (1)编制按从大到小的顺序1 -1 ···1-311-21222N S N +++=,计算N S 的通用 程序; (2)编制按从小到大的顺序1 21 ···1)1(111 222-++--+ -=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数(编制程序时用单精度); (4)通过本上机题,你明白了什么? 解: 程序: (1)从大到小的顺序计算1 -1 ···1-311-21222N S N +++= : function sn1=fromlarge(n) %从大到小计算sn1 format long ; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end (2)从小到大计算1 21 ···1)1(111 2 22 -++--+-= N N S N function sn2=fromsmall(n) %从小到大计算sn2 format long ; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end (3) 总的编程程序为: function p203()

clear all format long; n=input('please enter a number as the n:') sn=1/2*(3/2-1/n-1/(n+1));%精确值为sn fprintf('精确值为%f\n',sn); sn1=fromlarge(n); fprintf('从大到小计算的值为%f\n',sn1); sn2=fromsmall(n); fprintf('从小到大计算的值为%f\n',sn2); function sn1=fromlarge(n) %从大到小计算sn1 format long; sn1=single(0); for m=2:1:n sn1=sn1+1/(m^2-1); end end function sn2=fromsmall(n) %从小到大计算sn2 format long; sn2=single(0); for m=n:-1:2 sn2=sn2+1/(m^2-1); end end end 运行结果:

数值分析试题及答案汇总

数值分析试题 一、 填空题(2 0×2′) 1. ?? ????-=? ?????-=32,1223X A 设x =是精确值x *=的近似值,则x 有 2 位 有效数字。 2. 若f (x )=x 7-x 3+1,则f [20,21,22,23,24,25,26,27]= 1 , f [20,21,22,23,24,25,26,27,28]= 0 。 3. 设,‖A ‖∞=___5 ____,‖X ‖∞=__ 3_____, ‖AX ‖∞≤_15_ __。 4. 非线性方程f (x )=0的迭代函数x =?(x )在有解区间满足 |?’(x )| <1 ,则使用该迭代 函数的迭代解法一定是局部收敛的。 5. 区间[a ,b ]上的三次样条插值函数S (x )在[a ,b ]上具有直到 2 阶的连续导数。 6. 当插值节点为等距分布时,若所求节点靠近首节点,应该选用等距节点下牛顿差商 公式的 前插公式 ,若所求节点靠近尾节点,应该选用等距节点下牛顿差商公式的 后插公式 ;如果要估计结果的舍入误差,应该选用插值公式中的 拉格朗日插值公式 。 7. 拉格朗日插值公式中f (x i )的系数a i (x )的特点是:=∑=n i i x a 0)( 1 ;所以当 系数a i (x )满足 a i (x )>1 ,计算时不会放大f (x i )的误差。 8. 要使 20的近似值的相对误差小于%,至少要取 4 位有效数字。 9. 对任意初始向量X (0)及任意向量g ,线性方程组的迭代公式x (k +1)=Bx (k )+g (k =0,1,…)收 敛于方程组的精确解x *的充分必要条件是 ?(B)<1 。 10. 由下列数据所确定的插值多项式的次数最高是 5 。 11. 牛顿下山法的下山条件为 |f(xn+1)|<|f(xn)| 。 12. 线性方程组的松弛迭代法是通过逐渐减少残差r i (i =0,1,…,n )来实现的,其中的残差 r i = (b i -a i1x 1-a i2x 2-…-a in x n )/a ii ,(i =0,1,…,n )。 13. 在非线性方程f (x )=0使用各种切线法迭代求解时,若在迭代区间存在唯一解,且f (x )

岩石力学-硕士研究生课程报告-中南大学

硕士研究生课程报告 题目顺层高边坡稳定性影响因素 及工程灾害防治 姓名曾义 专业班级岩土13级 任课教师阳军生张学民 中南大学土木工程学院

引言 近年来,随着铁路公路建设步伐加快,铁路公路等级不断提高,边坡防护建设工程中所遇到的岩土边坡安全稳定性问题也相应增多,并成为岩土工程中比较常见的技术难题。由于工程建设的需要,往往在一定程度上破坏或扰动原来较为稳定的岩土体而形成新的人工边坡,因而普遍存在着边坡稳定的问题需要解决。国家实施西部大开发战略以来,西部山区高等级公路得到迅速发展。在山区修建高等级公路不可避免会遇到大量的深挖高填路基,就目前建设的高速公路情况看:一般情况下,100km长的山区高等级公路,挖填方路基段落长度占路线总长度的60%以上。已建高速公路最高的填方已达到50多米,最高的挖方边坡高度已超过100m。尽管山区高等级公路的建设越来越倡导环境保护,尽量避免深挖高填,但路基作为公路的主要结构,其边坡稳定问题不可避免。在山区复杂多变的地质条件下建设高等级公路,其边坡稳定性问题必将受到人们的普遍关注,高边坡岩土安全状况直接关系到公路交通运输安全。 虽然计算理论方法、地质探测技术、现代监测技术、边坡加固技术及施工技术不断的在进步,但顺层边坡稳定性问题和高边坡稳定性问题,时至今日依然是国内外学者研究的热点问题,并逐步涌现出许多的新的研究方向。 1、顺倾高边坡稳定性研究现状 随着人类工程活动的发展,对边坡问题的研究也在不断深入,归纳前人对边坡问题的研究大致可分为以下几个阶段: 人们对边坡稳定性的关注和研究最早是从滑坡现象开始的(张倬元等,2001)。19世纪末和20世纪初期,伴随着欧美资本主义国家的工业化而兴起的大规模土木工程建设(如修筑铁路、公路,露天采矿,天然建材开采等),出现了较多的人工边坡,诱发了大量滑坡和崩塌,造成了很大的损失。这时,人们才开始重视边坡失稳给人类造成的危害,并开始借用一般材料分析中的工程力学理论对滑坡进行半经验、半理论的研究。 20世纪50年代,我国学者引进苏联工程地质的体系,继承和发展了“地质历史分析”法,并将其应用于滑坡的分析和研究中,对边坡稳定性研究起到了推动作用(张倬元等,1994)。该阶段学者们着重边坡地质条件的描述和边坡类型的划分,采用工程地质类比法评价边坡稳定性。 20世纪60年代,世界上几起灾难性的边坡失稳事件的发生(如意大利的瓦依昂滑坡造成近3000人死亡和巨大的经济损失)(张倬元等,1994),使人们逐渐认识到了结构面对边坡稳定性的控制作用以及边坡失稳的时效特征,初步形

数值分析学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()()(0)33 f x dx A f A f A f -≈- ++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+=产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

东南大学数值分析上机作业汇总

东南大学数值分析上机作业 汇总 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

数值分析上机报告 院系: 学号: 姓名:

目录 作业1、舍入误差与有效数 (1) 1、函数文件cxdd.m (1) 2、函数文件cddx.m (1) 3、两种方法有效位数对比 (1) 4、心得 (2) 作业2、Newton迭代法 (2) 1、通用程序函数文件 (3) 2、局部收敛性 (4) (1)最大δ值文件 (4) (2)验证局部收敛性 (4) 3、心得 (6) 作业3、列主元素Gauss消去法 (7) 1、列主元Gauss消去法的通用程序 (7) 2、解题中线性方程组 (7) 3、心得 (9) 作业4、三次样条插值函数 (10) 1、第一型三次样条插值函数通用程序: (10) 2、数据输入及计算结果 (12)

作业1、舍入误差与有效数 设∑ =-=N j N j S 2 2 11 ,其精确值为?? ? ??---1112321N N . (1)编制按从小到大的顺序1 1 131121222-? ??+-+-=N S N ,计算N S 的通用程序; (2)编制按从大到小的顺序()1 21 11111222-???+--+-=N N S N ,计算N S 的通用程序; (3)按两种顺序分别计算642101010,,S S S ,并指出有效位数; (4)通过本上机你明白了什么? 程序: 1、函数文件cxdd.m function S=cxdd(N) S=0; i=2.0; while (i<=N) S=S+1.0/(i*i-1); i=i+1; end script 运行结果(省略>>): S=cxdd(80) S= 0.737577 2、函数文件cddx.m function S=cddx (N) S=0; for i=N:-1:2 S=S+1/(i*i-1); end script 运行结果(省略>>): S=cddx(80) S= 0.737577 3、两种方法有效位数对比

数值分析试卷及答案

二 1 求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式时才能保证A一定有LU分解。 3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,, 4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2)

(3)由事后误差估计式,右端为 而左端 这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7 讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵 ,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 , 故高斯-赛德尔法收敛的充要条件是。 9 设求解方程组的雅可比迭代格式为,其中,求证:若,则相应的高斯-赛德尔法收敛。证明由于是雅可比法的迭代矩阵,故 又,故, 即,故故系数矩阵A按行严格对角占优,从而高斯-赛德尔法收敛。 10设A为对称正定矩阵,考虑迭代格式 求证:(1)对任意初始向量,收敛; (2)收敛到的解。 证明(1)所给格式可化为 这里存在是因为,由A对称正定,,故也对称正定。 设迭代矩阵的特征值为,为相应的特征向量,则与做内积,有 因正定,故,从而,格式收敛。

中南大学工程训练报告15

自动化工程训练 —基于MATLAB的电力电子系统仿真 学院:信息科学与工程学院 仿真内容:三相桥式整流电路 班级姓名:自动化0801 肖娉 学号:0909080320 指导老师:桂武鸣老师 日期:2011.08.29--2011.09.09

电力电子技术综合了电子电路、电机拖动、计算机控制等多学科知识,是一门实践性和应用性很强的课程。由于电力电子器件自身的开关非线性,给电力电子电路的分析带来了一定的复杂性和困难,一般常用波形分析的方法来研究。仿真技术为电力电子电路的分析提供了崭新的方法。 本次工程训练的目的是初步掌握在MA TLAB/Simulink环境下电力电子系统的仿真。通过为期两周的学习,掌握一些MA TLAB的基础、Simulink环境和模型库、电力电子器件模型、变压器和电动机模型等。 MATLAB是一种科学计算软件,它是一种以矩阵为基础的交互式程序计算语言。SIMULINK是基于框图的仿真平台,它挂接在MATLAB环境上,以MATLAB的强大计算功能为基础,以直观的模块框图进行仿真和计算。 本文主要以MATLAB/SIMULINK仿真软件为基础,完成了对三相桥式整流电路带电阻、阻感、反电动势、直流电机负载的建模与仿真,并且给出了仿真结果波形,同时根据仿真结果进行了分析。证实了该方法的简便直观、高效快捷和真实准确性。

前言 第一章MATLAB/Simulink仿真的目的与意义 (1) 第二章MATLAB/Simulink的基础知识 (2) 2.1 MATLAB基础 (2) 2.1.1 MATLAB语言的功能 (2) 2.2.2 MATLAB集成环境 (3) 2.2 Simulink仿真基础 (5) 2.2.1 Simulink的模块库介绍 (6) 2.2.2 SimPowerSystems的介绍 (6) 2.2.3 Simulink部分模型介绍 (7) 2.2.4 Simulink仿真运行 (8) 第三章三相桥式可控整流电路的仿真 (10) 3.1 三相桥式整流电路 (10) 3.1 电阻、阻感和反电动势负载 (11) 3.2 直流电机负载 (16) 3.2.1 整流状态 (16) 3.2.2 有源逆变状态 (18) 第四章心得体会 (21) 参考文献 (23)

数值分析期末考试复习题及其答案.doc

数值分析期末考试复习题及其答案 1. 已知325413.0,325413* 2* 1==X X 都有6位有效数字,求绝对误差限。(4分) 解: 由已知可知,n=6 5.01021 ,0,6,10325413.0016*1=?= =-=?=ε绝对误差限n k k X 2分 620* 21021,6,0,10325413.0-?=-=-=?=ε绝对误差限n k k X 2分 2. 已知?????=001A 220 - ???? ?440求21,,A A A ∞ (6分) 解: {},88,4,1max 1==A 1分 {},66,6,1max ==∞A 1分 () A A A T max 2λ= 1分 ?????=001A A T 420 ?? ?? ? -420?????001 220 - ?????440=?????001 080 ???? ?3200 2分 {}3232,8,1max )(max ==A A T λ 1分 24322==A 3. 设3 2 )()(a x x f -= (6分) ① 写出f(x)=0解的Newton 迭代格式 ② 当a 为何值时,)(1k k x x ?=+ (k=0,1……)产生的序列{}k x 收敛于2 解: ①Newton 迭代格式为: x a x x x a x a x x a x x x f x f x x k k k k k k k k k k 665)(665)(6)()(')(2 2 32 1 += +=---=-=+? 3分

②时迭代收敛即当222,112 10)2(',665)('2<<-<-=-=a a x a x ?? 3分 4. 给定线性方程组Ax=b ,其中:? ??=1 3A ??? 22,??????-=13b 用迭代公式)()()()1(k k k Ax b x x -+=+α(k=0,1……)求解Ax=b ,问取什么实数α,可使迭代收 敛 (8分) 解: 所给迭代公式的迭代矩阵为?? ? --? ??--=-=ααααα21231A I B 2分 其特征方程为 0) 21(2)31(=----= -αλα ααλλB I 2分 即,解得αλαλ41,121-=-= 2分 要使其满足题意,须使1)(

东南大学 数值分析 考试要求

第一章绪论 误差的基本概念:了解误差的来源,理解绝对误差、相对误差和有效数的概念,熟练掌握数据误差对函数值影响的估计式。 机器数系:了解数的浮点表示法和机器数系的运算规则。 数值稳定性:理解算法数值稳定性的概念,掌握分析简单算例数值稳定性的方法,了解病态问题的定义,学习使用秦九韶算法。 第二章非线性方程解法 简单迭代法:熟练掌握迭代格式、几何表示以及收敛定理的内容,理解迭代格式收敛的定义、局部收敛的定义和局部收敛定理的内容。 牛顿迭代法:熟练掌握Newton迭代格式及其应用,掌握局部收敛性的证明和大范围收敛定理的内容,了解Newton法的变形和重根的处理方法。 第三章线性方程组数值解法 (1)Guass消去法:会应用高斯消去法和列主元Guass消去法求解线性方程组,掌握求解三对角方程组的追赶法。 (2)方程组的性态及条件数:理解向量范数和矩阵范数的定义、性质,会计算三种常用范数,掌握谱半径与2- 范数的关系,会计算条件数,掌握实用误差分析法。 (3)迭代法:熟练掌握Jacobi迭代法、Guass-Seidel迭代法及SOR方法,能够判断迭代格式的收敛性。 (4)幂法:掌握求矩阵按模最大和按模最小特征值的幂法。 第四章插值与逼近 (1)Lagrange插值:熟练掌握插值条件、Lagrange插值多项式的表达形式和插值余项。(2)Newton插值:理解差商的定义、性质,会应用差商表计算差商,熟练掌握Newton插值多项式的表达形式,了解Newton型插值余项的表达式。 (3)Hermite插值:掌握Newton型Hermite插值多项式的求法。 (4)高次插值的缺点和分段低次插值:了解高次插值的缺点和Runge现象,掌握分段线性插值的表达形式及误差分析过程。 (5)三次样条插值:理解三次样条插值的求解思路,会计算第一、二类边界条件下的三次样条插值函数,了解收敛定理的内容。 (6)最佳一致逼近:掌握赋范线性空间的定义和连续函数的范数,理解最佳一致逼近多项式的概念和特征定理,掌握最佳一致逼近多项式的求法。 (7)最佳平方逼近:理解内积空间的概念,掌握求离散数据的最佳平方逼近的方法,会求超定方程组的最小二乘解,掌握连续函数的最佳平方逼近的求法。

数值分析试卷及答案

二 1求A的LU分解,并利用分解结果求 解由紧凑格式 故 从而 故 2求证:非奇异矩阵不一定有LU分解 证明设非奇异,要说明A不一定能做LU分解,只需举出一个反例即可。现考虑矩阵,显然A为非奇异矩阵。若A有LU分解,则 故,而,显然不能同时成立。这矛盾说明A不能做LU分解,故只假定A非奇异并不能保证A能做LU分解,只有在A的前阶顺序主子式 时才能保证A一定有LU分解。

3用追赶法求解如下的三对角方程组 解设有分解 由公式 其中分别是系数矩阵的主对角线元素及其下边和上边的次对角线元素,故有 从而有 故,,, 故,,,

4设A是任一阶对称正定矩阵,证明是一种向量范数 证明(1)因A正定对称,故当时,,而当时, (2)对任何实数,有 (3)因A正定,故有分解,则 故对任意向量和,总有 综上可知,是一种向量范数。 5 设,,已知方程组的精确解为 (1)计算条件数; (2)若近似解,计算剩余; (3)利用事后误差估计式计算不等式右端,并与不等式左边比较,此结果说明了什么?解(1) (2) (3)由事后误差估计式,右端为 而左端

这表明当A为病态矩阵时,尽管剩余很小,误差估计仍然较大。因此,当A病态时,用大小作为检验解的准确度是不可靠的。 6矩阵第一行乘以一数成为,证明当时,有最小值 证明设,则 又 故 从而当时,即时,有最小值,且 7讨论用雅可比法和高斯-赛德尔法解方程组时的收敛性。如果收敛,比较哪一种方 法收敛较快,其中 解对雅可比方法,迭代矩阵 , 故雅可比法收敛。 对高斯-赛德尔法,迭代矩阵

,故高斯-赛德尔法收敛。 因=故高斯-赛德尔法较雅可比法收敛快。 8设,求解方程组,求雅可比迭代法与高斯-赛德尔迭代法收敛的充要条件。 解雅可比法的迭代矩阵 , 故雅可比法收敛的充要条件是。 高斯-赛德尔法的迭代矩阵 ,

中南大学硕士研究生培养方案(科学学位)

硕士研究生培养方案(科学学位) 一、学科概况 中南大学机械工程学科创建于1955年,1960年招收研究生,1982年获得硕士学位授予权,1986年获博士学位授予权,1998年设立“机械工程”博士后科研流动站,2000年获得一级学科博士授予权,覆盖了机械制造及自动化、机械设计及理论、机械电子工程和车辆工程等4个二级学科和数字装备与计算制造、信息器件制造技术与装备等2个自主设置的二级学科,其中“机械设计及理论”与“机械制造及其自动化”学科为国家重点学科,“机械制造及其自动化”与“机械电子工程”学科为湖南省重点学科,机械工程一级学科于2007年被批准为一级学科国家重点学科。设有“高性能复杂制造”国家重点实验室,“现代复杂装备设计与极端制造”教育部重点实验室,“铝合金强流变技术与装备”教育部工程研究中心,湖南省“岩土设备设计与控制”工程研究中心,以及“金属塑性加工摩擦与润滑”、“设备测试与故障诊断中心”等1个国家重点实验室和5个省部级重点实验室、工程中心,以及国家高技术研究发展计划成果产业化基地、与国外ASM公司共建的“微电子封装技术实验室”等。 本学科致力于机械基础理论与技术集成、先进制造理论与技术等的研究,并围绕国民经济中起支柱作用以及国防和空天运载等关键技术与装备进行研究和

设计开发,在高性能材料制备与装备、信息器件制造、齿轮数字化制造、深海资源开发、车辆与工程装备、特种机器人等研究方向具有特色和优势。 二、培养目标 学位获得者应拥护中国共产党的领导,拥护社会主义制度,热爱祖国,掌握辩证唯物主义和历史唯物主义的基本原理;具有良好的科研作风、科学道德和合作精神,品行优秀,身心健康;掌握机械工程学科坚实的基础理论、系统的专门知识,掌握一定的生产实践及试验方面的知识和技能,熟练掌握一门外语,了解本学科前沿发展动态和方向,有严谨求实的工作作风和独力工作能力。成为既能从事机械工程领域的科学研究与设计工作,又可承担相关领域的教学和管理工作的高层次、高素质的科技人才。 三、学科专业主要研究方向

东南大学《数值分析》-上机题

数值分析上机题1 设2 21 1N N j S j ==-∑ ,其精确值为1311221N N ??-- ?+?? 。 (1)编制按从大到小的顺序222 111 21311 N S N = +++---,计算N S 的通用程序。 (2)编制按从小到大的顺序22 21111(1)121 N S N N =+++----,计算N S 的通用程序。 (3)按两种顺序分别计算210S ,410S ,610S ,并指出有效位数。(编制程序时用单精度) (4)通过本上机题,你明白了什么? 程序代码(matlab 编程): clc clear a=single(1./([2:10^7].^2-1)); S1(1)=single(0); S1(2)=1/(2^2-1); for N=3:10^2 S1(N)=a(1); for i=2:N-1 S1(N)=S1(N)+a(i); end end S2(1)=single(0); S2(2)=1/(2^2-1); for N=3:10^2 S2(N)=a(N-1); for i=linspace(N-2,1,N-2) S2(N)=S2(N)+a(i); end end S1表示按从大到小的顺序的S N S2表示按从小到大的顺序的S N 计算结果

通过本上机题,看出按两种不同的顺序计算的结果是不相同的,按从大到小的顺序计算的值与精确值有较大的误差,而按从小到大的顺序计算的值与精确值吻合。从大到小的顺序计算得到的结果的有效位数少。计算机在进行数值计算时会出现“大数吃小数”的现象,导致计算结果的精度有所降低,我们在计算机中进行同号数的加法时,采用绝对值较小者先加的算法,其结果的相对误差较小。

数值分析试卷及其答案

1、(本题5分)试确定7 22 作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22 =3.142857…=1103142857 .0-? π=3.141592… 所以 312102 11021005.0001264.0722--?=?=<=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22 作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3102 1 0005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:??? ?? ??=????? ??????? ??--654131*********x x x ; 解 设???? ? ??????? ? ?????? ??===????? ??--11111 1 131321112323121 32 132 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,215 27 ,25,2323121321- ==-== -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23 ,97,910(,)563, 7,4(== (3分) 3、(本题6分)给定线性方程组???????=++-=+-+=-+-=-+17 7222382311387 510432143213 21431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

计算数学排名

070102 计算数学 计算数学也叫做数值计算方法或数值分析。主要内容包括代数方程、线性代数方程组、微分方程的数值数值逼近问题,矩阵特征值的求法,最优化计算问题,概率统计计算问题等等,还包括解的存在性、唯一性差分析等理论问题。我们知道五次及五次以上的代数方程不存在求根公式,因此,要求出五次以上的高次代一般只能求它的近似解,求近似解的方法就是数值分析的方法。对于一般的超越方程,如对数方程、三角方采用数值分析的办法。怎样找出比较简洁、误差比较小、花费时间比较少的计算方法是数值分析的主要课题的办法中,常用的办法之一是迭代法,也叫做逐次逼近法。迭代法的计算是比较简单的,是比较容易进行的以用来求解线性方程组的解。求方程组的近似解也要选择适当的迭代公式,使得收敛速度快,近似误差小。 在线性代数方程组的解法中,常用的有塞德尔迭代法、共轭斜量法、超松弛迭代法等等。此外,一些比消去法,如高斯法、追赶法等等,在利用计算机的条件下也可以得到广泛的应用。在计算方法中,数值逼近本方法。数值逼近也叫近似代替,就是用简单的函数去代替比较复杂的函数,或者代替不能用解析表达式表值逼近的基本方法是插值法。 初等数学里的三角函数表,对数表中的修正值,就是根据插值法制成的。在遇到求微分和积分的时候,的函数去近似代替所给的函数,以便容易求到和求积分,也是计算方法的一个主要内容。微分方程的数值解法。常微分方程的数值解法由欧拉法、预测校正法等。偏微分方程的初值问题或边值问题,目前常用的是有限元素法等。有限差分法的基本思想是用离散的、只含有限个未知数的差分方程去代替连续变量的微分方程求出差分方程的解法作为求偏微分方程的近似解。有限元素法是近代才发展起来的,它是以变分原理和剖分的方法。在解决椭圆形方程边值问题上得到了广泛的应用。目前,有许多人正在研究用有限元素法来解双曲方程。计算数学的内容十分丰富,它在科学技术中正发挥着越来越大的作用。 排名学校名称等级 1 北京大学A+ 2 浙江大学 A+ 3 吉林大学A+ 4 大连理工大学A+ 5 西安交通大学A 北京大学:http:https://www.wendangku.net/doc/b610197992.html,/NewsSpecialDetailsInfo.aspx?SID=4 浙江大学:http:https://www.wendangku.net/doc/b610197992.html,/NewsSpecialDetailsInfo.aspx?SID=21847 吉林大学:http:https://www.wendangku.net/doc/b610197992.html,/NewsSpecialDetailsInfo.aspx?SID=5506 大连理工大学:http:https://www.wendangku.net/doc/b610197992.html,/NewsSpecialDetailsInfo.aspx?SID=4388 西安交通大学:http:https://www.wendangku.net/doc/b610197992.html,/NewsSpecialDetailsInfo.aspx?SID=18285

东南大学-数值分析上机题作业-MATLAB版

2015.1.9 上机作业题报告 JONMMX 2000

1.Chapter 1 1.1题目 设S N =∑1j 2?1 N j=2 ,其精确值为 )1 1 123(21+--N N 。 (1)编制按从大到小的顺序1 1 131121222-+ ??+-+-=N S N ,计算S N 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-= N N S N ,计算S N 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 1.2程序 1.3运行结果

1.4结果分析 按从大到小的顺序,有效位数分别为:6,4,3。 按从小到大的顺序,有效位数分别为:5,6,6。 可以看出,不同的算法造成的误差限是不同的,好的算法可以让结果更加精确。当采用从大到小的顺序累加的算法时,误差限随着N 的增大而增大,可见在累加的过程中,误差在放大,造成结果的误差较大。因此,采取从小到大的顺序累加得到的结果更加精确。 2.Chapter 2 2.1题目 (1)给定初值0x 及容许误差ε,编制牛顿法解方程f(x)=0的通用程序。 (2)给定方程03 )(3 =-=x x x f ,易知其有三个根3,0,3321= *=*-=*x x x ○1由牛顿方法的局部收敛性可知存在,0>δ当),(0δδ+-∈x 时,Newton 迭代序列收敛于根x2*。试确定尽可能大的δ。 ○2试取若干初始值,观察当),1(),1,(),,(),,1(),1,(0+∞+-----∞∈δδδδx 时Newton 序列的收敛性以及收敛于哪一个根。 (3)通过本上机题,你明白了什么? 2.2程序

数值分析试卷及其答案2

1、(本题5分)试确定7 22作为π的近似值具有几位有效数字,并确定其相对误差限。 解 因为 7 22=3.142857…=1103142857.0-? π=3.141592… 所以 3 12 10 2 110 21005.0001264.07 22--?= ?= <=- π (2分) 这里,3,21,0=-=+-=n n m m 由有效数字的定义可知7 22作为π的近似值具有3位有效数字。 (1分) 而相对误差限 3 10 2 10005.00004138.0001264.07 22-?= <≈= -= π π πε r (2分) 2、(本题6分)用改进平方根法解方程组:???? ? ??=????? ??????? ??--654131321 112321x x x ; 解 设???? ? ? ?????? ? ?????? ??===????? ? ?--11 1 11113 1321 11232312132 1 32 31 21 l l l d d d l l l LDL A T 由矩阵乘法得: 5 7,21,21527,25,2323121321- == - == -==l l l d d d (3分) 由y D x L b Ly T 1 ,-==解得 T T x y )9 23,97,910( ,)5 63, 7,4(== (3分) 3、(本题6分)给定线性方程组??? ? ? ??=++-=+-+=-+-=-+17722238231138751043214321 321431x x x x x x x x x x x x x x 1)写出Jacoib 迭代格式和Gauss-Seidel 迭代格式; 2)考查Jacoib 迭代格式和Gauss-Seidel 迭代格式的敛散性; 解 1)Jacoib 迭代格式为

北航2010-2011年研究生数值分析期末模拟试卷1-3

数值分析模拟试卷1 一、填空(共30分,每空3分) 1 设??? ? ??-=1511A ,则A 的谱半径=)(a ρ______,A 的条件数=________. 2 设 ,2,1,0,,53)(2==+=k kh x x x f k ,则],,[21++n n n x x x f =________, ],,[321+++n n n n x x x x f ,=________. 3 设?????≤≤-++≤≤+=2 1,121 0,)(2 323x cx bx x x x x x S ,是以0,1,2为节点的三次样条函数,则b=________,c=________. 4 设∞=0)]([k k x q 是区间[0,1]上权函数为x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x q ,则 ?=1 )(dx x xq k ________,=)(2 x q ________. 5 设???? ??????=11001a a a a A ,当∈a ________时,必有分解式,其中L 为下三角阵,当 其对角线元素)3,2,1(=i L ii 满足条件________时,这种分解是唯一的. 二、(14分)设4 9,1,41,)(2102 3 === =x x x x x f , (1)试求)(x f 在]4 9,41[上的三次Hermite 插值多项式)(x H 使满足 2,1,0),()(==i x f x H i i ,)()(11x f x H '='. (2)写出余项)()()(x H x f x R -=的表达式. 三、(14分)设有解方程0cos 2312=+-x x 的迭代公式为n n x x cos 3 2 41+ =+, (1) 证明R x ∈?0均有? ∞ →=x x n x lim (? x 为方程的根); (2) 取40=x ,用此迭代法求方程根的近似值,误差不超过,列出各次迭代值; (3)此迭代的收敛阶是多少?证明你的结论. 四、(16分) 试确定常数A ,B ,C 和,使得数值积分公式 有尽可能高的代数精度. 试问所得的数值积分公式代数精度是多少?它是否为Gauss 型的?

东南大学数值分析上机解剖

第一章 一、题目 设∑ =-=N j N j S 22 1 1,其精确值为)11 123(21+--N N 。 (1)编制按从大到小的顺序1 1 131121222-+ ??+-+-=N S N ,计算SN 的通用程序。 (2)编制按从小到大的顺序1 21 1)1(111222-+ ??+--+-=N N S N ,计算SN 的通用程序。 (3)按两种顺序分别计算64210,10,10S S S ,并指出有效位数。(编制程序时用单精度) (4)通过本次上机题,你明白了什么? 二、MATLAB 程序 N=input('请输入N(N>1):'); AccurateValue=single((0-1/(N+1)-1/N+3/2)/2); %single 使其为单精度 Sn1=single(0); %从小到大的顺序 for a=2:N; Sn1=Sn1+1/(a^2-1); end Sn2=single(0); %从大到小的顺序 for a=2:N; Sn2=Sn2+1/((N-a+2)^2-1); end fprintf('Sn 的值 (N=%d)\n',N); disp('____________________________________________________') fprintf('精确值 %f\n',AccurateValue); fprintf('从大到小计算的结果 %f\n',Sn1); fprintf('从小到大计算的结果 %f\n',Sn2); disp('____________________________________________________')

数值分析试题及答案

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111l x = C .() 00l x =1,()111 l x = D . () 00l x =1,()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 得 分 评卷人 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间 内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 9和29 2. ()() 0101 f x f x x x -- 3. 1 8 4. ()()120 f f < 5. ()12 00.1 1.1,0,1,210.11k k y y k k y +???? ?=+? ?=+???? =??L 得 分 评卷人 三、计算题(每题15分,共60分) 1. 已知函数 21 1y x = +的一组数据: 求分 段线性插值函数,并计算 () 1.5f 的近似值. 计算题1.答案 1. 解 []0,1x ∈, ()1010.510.50110x x L x x --=?+?=---% []1,2x ∈,()210.50.20.30.81221x x L x x --=?+?=-+--%

数值分析练习1-3章

第一章 绪论 一、填空题 1、 已知 71828.2e =,求x 的近似值a 的有效数位和相对误差: 题号 精确数x x 的近似数a a 的有效数位 a 的相对误差 ⑴ e 2.7 ⑵ e 2.718 ⑶ e/100 0.027 ⑷ e/100 0.02718 2、 设原始数据x 1,x 2,x 3和x 4的近似值(每位均为有效数字)如下: a 1=1.1021,a 2=0.031,a 3=385.6,a 4=56.430 则 ⑴ a 1+a 2+a 4= ,相对误差界为 ; ⑵ a 1a 2a 3= ,相对误差界为 ; ⑶ a 2/a 4= ,相对误差界为 。 二、为使20的近似值的相对误差小于0.01%,问应取多少位有效数字? 三、当x 接近于0时,怎样计算 x x sin cos 1-以及当x 充分大时,怎样计算 x x -+1,才会使其结果的有效数字不会严重损失。 四、在数值计算中,为了减小误差,应该尽量避免的问题有哪些?并举出相 应的实例. 五、对于序列 ,1,0,9991 =+=? n dx x x I n n ,试构造两种递推算法计算 10I ,在你构造的算法中,那一种是稳定的,说明你的理由;

第二章 插值法 1、在互异的n+1个点处满足插值条件P(x i )=y i ,(i=0,1,…n)的次数不高于n 的 多项式是( )的 (A)存在且唯一 (B)存在 (C)不存在 (D)不唯一 2、当f(x)是次数不超过n 的多项式时,f(x)的插值多项式是 ( ) (A)不确定 (B)次数为n (C)f(x)自身 (D )次数超过n 3、 插值基函数的和 ∑=n j j x l )(= ( ) (A)0 (B)1 (C)2 (D)不确定 4、 设f(x)=x 3-x+5,则f[20,21,22,23]= ( ); f[20,21,22,23,24]= ( ) (A)0 (B)1 (C)2 (D)不确定 5、( )插值方法具有公式整齐、程序容易实现的优点,而( )插值方法 计算灵活,如果节点个数变化时,不需要重新构造多项式,它们都是( )的方法 (A)构造性 (B)解方程组 (C)拉格朗日 (D)牛顿 6、一般地,内插公式比外推公式( ),高次插值比低次插值( ),但 当插值多项式的次数高于七、八次时,最好利用( )插值公式 (A)粗糙 (B)精确 (C)分段低次 (D)高次 7、整体光滑度高,收敛性良好,且在外型设计、数值计算中应用广泛的分 段插值方法为( ). (A)分段线性插值 (B)分段抛物插值 (C)分段三次埃尔米特插值 (D)三次样条插值。 8、差商与差分的关系式为 f[x 0,x 1,…,x k ]=( ),f[x n ,x n-1,…,x n-k ]=( )。 (A)k n k h k f !? (B)k k h k f !0? (C)k n k h k f !? (D)k k h k f !0 ?

相关文档 最新文档