文档库 最新最全的文档下载
当前位置:文档库 › 试卷分析和角平分线定理1

试卷分析和角平分线定理1

试卷分析和角平分线定理1
试卷分析和角平分线定理1

姓名左老师学生姓名陈宇恒填写时间2012年11月18日学科数学年级初二教材版本人教版

阶段观察期:第()周维护期课时统计第()课时共()课时

课题名称试卷分析和角平分线定理垂直平分线的应用上课时间

教学目标

同步教学知识内容

1试卷错题分析(为后面针对性的复习做准备)

2角平分线定理垂直平分线定理

个性化学习问题解决把知识点遗漏的环节补上养成好的学习态度

教学重点试卷分析教学难点

教学过程1试卷分析

2制定期末复习计划和目标

3角平分线定理

24.8 角平分线的性质及其逆定理

1. 如图,△ABC中,AD为∠BAC的平分线,DE⊥AB,DF⊥AC,E、F为垂足,在以

下结论中:①△ADE≌△ADF;②△BDE≌△CDF;③△ABD≌△ACD;④AE=AF;⑤BE=CF;

⑥BD=CD.其中正确结论的个数是()

A.1 B.2 C.3 D.4

答案:B.

2. 如图,Rt△ABC中,∠C=90o,BD是角平分线,DE⊥AB,垂足为E,BC=6,CD=3,AE=4,

则DE=_______,AD=_______,△ABC的周长是_______.

答案:3,5,24

3. 用三角尺画角平分线:如图,∠AOB是一个任意角,在边O A,

OB上分别取OM=ON,再分别过M、N作OA,OB的垂线,交点为P,画射线OP,则这条射线即为角平分线.请解释这种做法的道理.你还能举出哪些作角

平分线的方法,并说明这种做法的道理.

4. 如图,三条公路围成的一个三角形区域,要在这个区域中建一个加油站,使它到三条公路的距离都相等,加油站应建在什么位置?请用

A

B

C

D

E

F

A

B

C

D

E

尺规作图,找出建造加油站的位置.

5. 如图,△ABC 中,∠C =90o,BD 平分∠ABC 交AC 于D ,DE 是AB 的垂直平分线,DE =21

BD ,且DE =1.5cm ,则AC 等于( )

A .3cm

B .7.5cm

C .6cm

D .4.5cm

6. 如图,△ABC 中,P 是角平分线A D ,BE 的交点. 求证:点P 在∠C 的平分线上.

7. 如图,已知点D 是∠ABC 的平分线上一点,点P 在BD 上,PA ⊥AB ,PC ⊥BC ,垂足分别为A ,C .

求证:(1)AD =CD ;(2)∠ADB =∠CDB .

8. 如图,在∠AOB 的两边O A ,OB 上分别取OM =ON ,OD =OE ,DN 和EM 相交于点C .

求证:点C 在∠AOB 的平分线上.

9. 已知:如图,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,E 、F 分别为垂足. 求证:AD 垂直平分EF . 10. 如图,已知△ABC 中,

∠C =90o,∠BAC =2∠B ,D 是BC 上一点,DE ⊥

AB 于E ,DE =DC .

求证:AD =BD .

24.7 线段垂直平分线的性质定理及其逆定理

1. 如图,△ABC 中,∠CAB =120o,A B ,AC 的垂直平分线分别交BC 于点E 、F ,则∠EAF 等于( )A .40o B .50o C .60o D .80o

B

C D E

A

A

B

C D

E

P

A

B

C D

P A B

D

C E O

M

N

A

B

C

D E

F A

B

D

C

E

2. 已知线段AB 和它外一点P ,若PA =PB ,则点P 在AB 的____________________;若点P 在AB 的____________________,则PA =PB .

3. 已知:△ABC 中,边A B ,AC 的垂直平分线相交于点P . 求证:点P 在BC 的垂直平分线上.

4. 将一张长方形纸片按如图所示的方式折叠,B C ,BD 为折痕,则∠CBD 的度数为( ) A .60° B .75° C .90° D .95°

5. 如图,在△ABC 中,EF 是AC 的垂直平分线,AF =12,BF =3,则BC =__________.

6. 如图,四边形ABCD 中,AB =AD ,BC =CD ,A C ,BD 相交于E ,由这些条件你能推出哪些结论(不再添加辅助线,不再标注字母,不写推理过程,只要

求写出四个你认为正确的结论)?

7. 如图,△ABC 中,AB =AC ,点P 、Q 、R 分别在A B ,B C ,AC 上,且PB =QC ,QB =RC .

求证:点Q 在PR 的垂直平分线上.

C

A

B

E

F

E

B C

F

A E D

C

B

A

A

B

C

P Q R

8. 把16个边长为a 的正方形拼在一起,如图,连接BC ,CD ,则△BCD 是( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .任意三角形

9. 若一个三角形两边的垂直平分线的交点在第三边上,则这个三角形是( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .不能确定

线段垂直平分线和角的平分线部分典型习题

1、(2008·重庆)△ABC 中,AB=AC ,∠BAC=100°,两腰AB 、AC 的垂直平分线交于点P ,则( )

A 、点P 在△ABC 内

B 、点P 在△AB

C 底边上

C 、点P 在△ABC 外

D 、点P 的位置与△ABC 的边长有关

2、如果三角形两边的垂直平分线的交点恰好落在第三边上,则这个三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等边三角形

3、已知A 和B 两点在线段EF 的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB 等于( ) A 、95° B 、15° C 、95°或15° D 、170°或30°

4、(2009·陕西)如图1,在锐角△ABC 中,AB=4

,∠BAC=45°,∠BAC 的平分线交BC

于点D ,M 、N 分别是AD 和AB 上的动点,则B M +MN 的最小值是 。

5、(2009·甘肃)如图2,四边形ABCD 中,AD ∥BC ,若∠DAB 的平分线AE 交CD 于E ,连接BE ,且BE 恰好平分∠ABC ,则AB 的长与AD +BC 的长的大小关系是( ) A 、AB >AD +BC B 、AB =AD +BC C 、AB <AD +BC D 、无法确定

6、在直角梯形ABCD 中,∠A=∠B=90°,M 是AB 上一点,连接MD 、MC,MD 、MC 分别平分∠ADC 、∠BCD ,求证:(1)AM=BM ; (2)∠DMC=90°.

7、(2009·北京)如图3-①所示,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形。同时请你参考这个作全等三角形的方法,解答下列问题:

B

C

D

(1)如图3-②,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA 的平分线,AD、CE相交于点F。请你判断并写出FE与FD之间的数量关系;

(2)如图3-③,在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请

说明理由。

8、(2007·绵阳)如图4,在△ABC中,E、F分别是AB、AC上的点。①AD平分∠BAC,

②DE⊥AB,DF⊥AC,③AD⊥EF,以此三个中的两个

为条件,另一个为结论,可构成三个命题,即:①②?③,①③?②,②③?①。

(1)试判断上述三个命题是否正确(直接作答);

(2)请证明你认为正确的命题。

9、如图5,以△ABC两边AB、AC为边,向外作等边△

ABD和等边△ACE,连接BE、CD交于O点,求证:OA平分∠DOE

10、(2007·日照)如图6,在等腰Rt△ABC中,∠ACB=90,D为BC的中点,DE⊥AB,垂

足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.

(1)求证:AD⊥CF;

(2)连接AF,试判断△ACF的形状,并说明理由。

1.在△ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于50,求BC的长

变式1:如图,在△ABC中,AB的垂直平分线交AB于点D,交AC于点E,若∠BEC=70°,

则∠A=?

变式2:如图,Rt△ABC中,AB的垂直平分线交BC边于E,若BE=2,∠B=15°,求AC的长。变式3:如图,在Rt△ABC中,AB的垂直平分线交BC边于E,若BE=2,∠B=22.5°,求:AC

的长。

例1:如图1,在△ABC中,已知AC=27,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于50,求BC的长.

变式1:如图1,在△ABC中,AB的垂直平分线交AB于点D,交AC于点E,若∠BEC=70°,则∠A=?

变式2:

如图3,在Rt△ABC中,AB的垂直平分线交BC边于点E。若BE=2,∠B =15°

求:AC的长。

A

课后作业

备注

提交时间教研组长审批

角平分线定理

角平分线定理 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 ■ 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【注】三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 ■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。 ■定理1:在角平分线上的任意一点到这个角的两边距离相等。 ■逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 ■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 如:在△ABC中,BD平分∠ABC,则AD:DC=AB:BC 提供四种证明方法: 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 已知和证明1图 证明:方法1:(面积法) S△ABM=(1/2)·AB·AM·sin∠BAM, S△ACM=(1/2)·AC·AM·sin∠CAM, ∴S△ABM:S△ACM=AB:AC 又△ABM和△ACM是等高三角形,面积的比等于底的比,

证明2图 即三角形ABM面积S:三角形ACM面积S=BM:CM ∴AB/AC=MB/MC 方法2(相似形) 过C作CN‖AB交AM的延长线于N 则△ABM∽△NCM ∴AB/NC=BM/CM 又可证明∠CAN=∠ANC ∴AC=CN ∴AB/AC=MB/MC 证明3图 方法3(相似形) 过M作MN‖AB交AC于N 则△ABC∽△NMC, ∴AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN ∴AN=MN ∴AB/AC=AN/NC ∴AB/AC=MB/MC

角平分线定理

2 1O E D A B C 第十一讲 角平分线定理 【学习目标】 1、掌握角平分线的定理和逆定理。 2、能应用角平分线定理和逆定理进行作图和证明。 3、进一步掌握推理证明的方法,拓发展演绎推理能力,培养思维能力。 【知识要点】 1、 角平分线性质定理的证明及应用。 定理:角平分线上的点到这个角的两边的距离相等。 定理解释:“点到这个角边的距离”实际上就是“点到这角两边所作垂线段的长度”,定理即表明这两条垂线段相等。 2、 角平分线的性质定理的逆定理的证明以及应用。 逆定理:在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上。 3、 定理:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等。 4、用尺规作角的平分线: 【典型例题】 例1、 如图,CD ⊥AB ,BE ⊥AC ,垂足分别为D 、E ,BE 、CD 相交于O ,且∠1 =∠2。 求证:OB = OC 。 例2、已知,如图,CE ⊥AB ,BD ⊥AC ,∠B =∠C ,BF =CF 。求证:AF 为∠BAC 的平分线。

例3、如下图,一个工厂在公路西侧,在河的南岸,工厂到公路的距离与到河岸的距离相等,且与河上公路桥南首(点A )的距离为300米.请用量角器和刻度尺在图中标出工厂的位置. 例4、如右图,E 、D 分别是AB 、AC 上的一点,∠EBC 、∠BCD 的角平分线交于点M ,∠BE D 、∠EDC 的角平分线交于N . 求证:A 、M 、N 在一条直线上. 证明:过点N 作NF ⊥AB ,NH ⊥ED ,NK ⊥AC ,过点M 作MJ ⊥BC ,MP ⊥AB ,MQ ⊥AC ∵EN 平分∠BED ,DN 平分∠EDC ∴NF __________NH ,NH __________NK ∴NF __________NK ∴N 在∠A 的平分线上 又∵BM 平分∠ABC ,CM 平分∠ACB ∴__________=__________,__________=__________ ∴__________=__________ ∴M 在∠A 的__________上 ∴M 、N 都在∠A 的__________上 ∴A 、M 、N 在一条直线上 例5、如图1,OC 平分∠A O B ,P 是OC 上一点,D 是OA 上一点,E 是OB 上一点,且PD =PE ,求证:∠+∠=?P D O P E O 180。

角平分线定理在几何证明题中的妙用

角平分线定理在几何证明题中的妙用 颜庆波 利用角平分线的有关定理,我们不但可以用尺规作图的方法将角二、四、八、…等分,而且还可以利用它们简捷地证明几何问题。 例1 如图1,OC平分∠A O B,P是OC上一点,D是OA上一点,E是OB上一点,且PD=PE,求证:∠+ 1 O 8 0。 D E P ∠=? O P 例2 如图2,在?A B C中,∠B A C的平分线与BC边的垂直平分线相交于点P。过点P作AB、AC(或延长线)的垂线,垂足分别是M、N。求证:BM=CN。

初二数学几何证明难题 例3:已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) A F G C E B O D

例4:已知:如图,P是正方形ABCD内点,∠PAD=∠PDA =o 15.求证:△PBC是正三角形. 例5:已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN 于E、F.

求证:∠DEN=∠F. 例6:如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.求证:CE=CF.(初二)

例7:如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.求证:AE=AF.(初二) 例8:设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.求证:PA=PF.(初二)E

例9:已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5. 求:∠APB的度数.

角的平分线定理 定理1

角的平分线定理定理1:在角的平分线上的点到这个角的两边的距离相等定理2:到一个角的两边的距离相同的点,在这个角的平分线上 角的平分线是到角的两边距离相等的所有点的集合 矩形的定理 矩形性质定理1:矩形的四个角都是直角 矩形性质定理2:矩形的对角线相等 矩形判定定理1:有三个角是直角的四边形是矩形 矩形判定定理2:对角线相等的平行四边形是矩形 菱形定理 菱形性质定理1:菱形的四条边都相等 菱形性质定理2:菱形的对角线互相垂直,并且每一条对角线平分一组对角 菱形面积=对角线乘积的一半,即S=(a×b)÷2 菱形判定定理1:四边都相等的四边形是菱形 菱形判定定理2:对角线互相垂直的平行四边形是菱形 正方形定理 正方形性质定理1:正方形的四个角都是直角,四条边都相等 正方形性质定理2:正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角

等腰梯形性质定理 等腰梯形性质定理: 1.等腰梯形在同一底上的两个角相等 2.等腰梯形的两条对角线相等 等腰梯形判定定理: 1.在同一底上的两个角相等的梯形是等腰梯形 2.对角线相等的梯形是等腰梯形 平行线等分线段定理:如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等 推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰 推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边 平行四边形定理 平行四边形性质定理1:平行四边形的对角相等 平行四边形性质定理2:平行四边形的对边相等 推论:夹在两条平行线间的平行线段相等 平行四边形性质定理3:平行四边形的对角线互相平分 平行四边形判定定理1:两组对角分别相等的四边形是平行四边形 平行四边形判定定理2:两组对边分别相等的四边形是平行四边形 平行四边形判定定理3:对角线互相平分的四边形是平行四边形 平行四边形判定定理4:一组对边平行相等的四边形是平行四边形

八年级数学上册第12章角平分线定理使用中的几种辅助线作法(人教版)

角平分线定理使用中的几种辅助线作法 一、已知角平分线,构造三角形 例题、如图所示,在△ABC 中,∠ABC=3∠C,AD 是∠BAC 的平分线,BE⊥AD 于F 。 求证:1 ()2 BE AC AB =- 证明:延长BE 交AC 于点F 。 因为角是轴对称图形,对称轴是角的平分线所在的直线, 所以AD 为∠BAC 的对称轴, 又因为BE⊥AD 于Fs , 所以点B 和点F 关于AD 对称, 所以BE=FE= 1 2 BF ,AB=AF ,∠ABF=∠AFB。 因为∠ABF+∠FBC=∠ABC=3∠C, ∠ABF=∠AFB=∠FBC+∠C, 所以∠FBC+∠C+∠FBC=3∠C, 所以∠FBC=∠C,所以FB=FC , 所以BE= 12FC=12(AC -AF )=1 2(AC -AB ), 所以1 ()2 BE AC AB =-。 二、已知一个点到角的一边的距离,过这个点作另一边的垂线段 如图所示,∠1=∠2,P 为BN 上的一点,并且PD⊥BC 于D ,AB +BC=2BD 。 求证:∠BAP+∠BCP=180°。 证明:经过点P 作PE⊥AB 于点E 。 因为PE⊥AB,PD⊥BC,∠1=∠2, 所以PE=PD 。 在Rt△PBE 和Rt△PBC 中 BP BP PE PD =?? =? 所以Rt△PBE≌Rt△PBC(HL ), 2 1F E D C B A N P E D C B A

所以BE=BD 。 因为AB +BC=2BD ,BC=CD +BD ,AB=BE -AE , 所以AE=CD 。 因为PE⊥AB,PD⊥BC, 所以∠PEB=∠PDB=90°. 在△PAE 和Rt△PCD 中 PE PD PEB PDC AE DC =?? ∠=∠??=? 所以△PAE≌Rt△PCD, 所以∠PCB=∠EAP。 因为∠BAP+∠EAP=180°, 所以∠BAP+∠BCP=180°。 三、已知角平分线和其上面的一点,过这一点作角的两边的垂线段 例题、如图所示,在△ABC 中,PB 、PC 分别是∠ABC 的外角的平分线,求证:∠1=∠2 证明:过点P 作PE⊥AB 于点E ,PG⊥AC 于点G ,PF⊥BC 于点F . 因为P 在∠EBC 的平分线上,PE⊥AB,PH⊥BC, 所以PE=PF 。 同理可证PF=PG 。 所以PG=PE , 又PE⊥AB,PG⊥AC, 所以PA 是∠BAC 的平分线, 所以∠1=∠2。 2 1P F E C B A

(名师整理)最新中考数学专题复习《角平分线定理》精品教案

中考数学人教版专题复习:角平分线定理 考点考纲要求分值考向预测 角平分 定理 1. 理解并掌握角平线定义、角 平分线定理及逆定理; 2. 应用定理解决问题。 3~5 分 本类问题主要考查填空、选 择题,内容以角平分线定理 为主,难度不大,各省市题 量也不多,但要注意在综合 性问题中应用这一知识点。 1. 角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。 2. 三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。 【重要提示】 ①三角形的角平分线不是角的平分线,是线段。角的平分线是射线。 1

②三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等(即内心)。 3. 角平分线定理:角平分线上的点到这个角的两边的距离相等。(利用全等三角形进行证明ASA) 4. 角平分线定理的逆定理:在一个角的内部(包括顶点),且到这个角的两边距离相等的点在这个角的角平分线上。 【方法指导】 1. 三角形的三条内角平分线交于一点,并且到三条边的距离相等。有时候做三角形面积问题时经常使用。 2. 当题目中有角的平分线时,可根据角的平分线性质证明线段或角相等,或利用角的平分线构造全等三角形或等腰三角形来寻找解题思路。 3. 有角平分线考虑向角两边作垂线。 4. 三角形中有时候从内角平分线作垂线,有时候作外角平分线,注意区分。 【随堂练习】 如图,在△ABC中,∠C=90°,AB=10,AD是△ABC的一条角平分线。若CD=3,则△ABD的面积为。 2

答案:解:作DE⊥AB于E。∵AD平分∠BAC,DE⊥AB,DC⊥AC,∴DE=CD=3。∴△ABD的面积为1 ×3×10=15。故答案是15。 2 思路分析:要求△ABD的面积,现有AB=7可作为三角形的底,只需求出该底上的高AB于E。根据角平分线的性质求得DE的长,即可求解。 即可,需作DE⊥ 典例精析 例题1 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=7,DE=2,AB=4,则AC长是() D. 5 A. 3 B. 4 C. 6 思路分析:过点D作DF⊥AC于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△ACD列出方程求解即可。 3

角平分线的性质定理教案

角平分线的性质定理教案 慧光中学:王晓艳 教学目标:(1)掌握角平分线的性质定理; (2)能够运用性质定理证明两条线段相等; 教学重点:角平分线的性质定理及它的应用。 教学难点:角平分线定理的应用; 教学方法:引导学生发现、探索、研究问题,归纳结论的方法 教学过程: 一,新课引入: 1.通过复习线段垂直平分线的性质定理引出角平分线上的点具有什么样的特点 操作:(1)画一个角的平分线; (2)在这条平分线上任取一点P,画出P点到角两边的距离。 (3)说出这两段距离的关系并思考如何证明。 2.定理的获得: A、学生用文字语言叙述出命题的内容,写出已知,求证并给予证明, 得出此命题是真命题,从而得到定理,并写出相应的符号语言。 B、分析此定理的作用:证明两条线段相等; 应用定理所具备的前提条件是:有角的平分线,有垂直距离。 3.定理的应用 二.例题讲解: 例1:已知:如图,点B、C在∠A的两边上,且AB=AC,P为∠A内一点,PB=PC,PE⊥AB,PF⊥AC,垂足分别是E、F。 求证:PE=PF (此题已知中有垂直,缺乏角平分线这个条件)

例2:已知:如图,⊙O与∠MAN的边AM交于点B、C,与边AN交于点 E、F, 圆心O在∠MAN的角平分线AQ上。 求证:BC=EF (此题已知中有角平分线,缺乏垂直这个条件) 三:课堂小结: ①应用角平分线的性质定理所具备的前提条件是:有角的平分线,有垂 直距离; ②若图中有角平分线,,可尝试添加辅助线的方法:向角的两边引垂线段.四:巩固练习 1.已知:如图,△ABC中,D是BC上一点,BD=CD,∠1=∠2求证:AB=AC 分析:此题看起来简单,其实不然。题中虽然有三个条件(∠1= ∠2;BD=CD,AD=AD),但无法证明△ABD ≌△ACD,所以必须添加一些线帮助解题。

三角形内外角平分线定理上课讲义

三角形内外角平分线 定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 ABC AD BAC AB BD AC CD ∠=在中,若为的平分线,则:

求证: BA/AC=BD/DC 证明2:过D作DE⊥AB于E,DF⊥AC于F; ∵∠BAD=∠CAD;(已知) ∴ DE=DF; ∵ BA/AC=S△BAD/S△DAC;(等高时,三角形面积之比等于底之比) BD/DC=S△BAD/S△ABCDAC;(同高时,三角形面积之比等于底之比)∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD是△ABC中∠BAC的外角∠CAF的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD的平行线。 证明1:过C作CE∥DA与BA交于E。则: BA/AE=BD/DC ∵∠DAF=∠CEA;(两线平行,同位角相等) ∠DAC=∠ECA;(两线平行,内错角相等) ∠DAF=∠DAC;(已知) ∴∠CEA=∠ECA;(等量代换) ∴ AE=AC; ∴ BA/AC=BD/DC 。

第二节角平分线定理

第二节角平分线定理 【知识点拨】 1、三角形内角平分线的性质定理: 三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。(试证明) 2、三角形外角平分线性质定理: 三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。 3、常见问题 对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。 【赛题精选】 例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。 求CD的长。 例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。 求A D·DC的值。(2001年全国竞赛题)

【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。计算时要注意对应关系,正确书写比例式。 对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。 例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。 求证:BC AC AB ID AI +=。 例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分 ∠CAB 交CD 于E ,交CB 于F ,且EG ∥AB 交CB 于G 。 试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀 请赛题) 【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2 211n m n m =,从而得到21x b x a =,再证21x x =,从而得到a =b 。 本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。 例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。求证:AC ∥DF 。

三角形内外角平分线定理

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC 证明2:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ; ∵ ∠BAD=∠CAD ;(已知) ∴ DE=DF ; ∵ BA/AC=S △BAD/S △DAC ; (等高时,三角形面积之比等于底之比) BD/DC=S △BAD/S △ABCDAC ;(同高时,三角形面积之比等于底之比) ∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD 是△ABC 中∠BAC 的外角∠CAF 的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 交于E 。则: BA/AE=BD/DC ∵ ∠DAF=∠CEA ;(两线平行,同位角相等) ∠DAC=∠ECA ;(两线平行,内错角相等) ∠DAF=∠DAC ;(已知) ∴ ∠CEA=∠ECA ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 ABC AD BAC AB BD AC CD ∠=在中,若为的 平分线,则:

角平分线定理专题

角平分线定理专题(基础题) 1. 如图,AD 是 的角平分线, ,垂足为F , , 和 的面积分别为60和35,则 的面积为 A. 25 B. C. D. 2.如图,P 是∠AOB 平分线OC 上一点,PD ⊥OB ,垂足为D ,若PD=2,则点P 到边OA 的距离是 A.1 B.2 C. D.4 3.如图,△ABC 的三边AB,BC,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO ∶S △BCO ∶S △CAO 等于________. 4.(2016·怀化)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是( ) A .PC =PD B .∠CPD =∠DOP C .∠CPO =∠DPO D .OC =OD 5.(2016·淮安)如图,在Rt △ABC 中,∠C =90°,以顶点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于1 2MN 的长为半径画弧,两弧 交于点P ,作射线AP 交边BC 于点D ,若CD =4,AB =15,则△ABD 的面积是( ) A .15 B .30 C .45 D .60 6.如图,△ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D.已知BD ∶CD =3∶2,点D 到AB 的距离是6,则BC 的长是______ 7.如图所示,已知△ABC 的周长是20,OB ,OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于点D ,且OD =3,则△ABC 的面积是. ______

角平分线定理

【知识点拨】 1、三角形内角平分线的性质定理: 三角形内角的平分线内分对边所成的两条线段和相邻两边对应成比例。(试证明) 2、三角形外角平分线性质定理: 三角形外角平分线分对边所得的两条线段和相邻的两边对应成比例。 3、常见问题 对于涉及角平分线的相关计算,常由角平分线性质定理列出比例式进行计算,对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明的目的。 【赛题精选】 例1、在△ABC中,∠C=900,CD是∠C的平分线,且CA=3,CB=4。 求CD的长。 例2、若PA=PB,∠APB=2∠ACB,AC与PB相交于点D,且PB=4,PD=3。 求AD·DC的值。(2001年全国竞赛题) 【说明】角平分线性质定理又提供计算线段的方法,解题时要注意应用。计算时要注意对应关系,正确书写比例式。

对于求线段ab 的值的题目,常由相关定理证出等积式ab =cd ,求出cd 的值即可。 例3、I 是△ABC 内角平分线的交点,AI 交对应边于D 。 求证:BC AC AB ID AI +=。 例4、Rt △ABC 中,∠ACB =900,CD ⊥AB 于D ,AF 平分∠CAB 交CD 于E ,交CB 于F ,且 EG ∥AB 交CB 于G 。 试求:CF 与GB 的大小关系如何?(1998年“希望杯”邀请赛题) 【说明】欲证线段a =b ,由线段成比例定理得出含a 、b 的比例式,111n m x a =、222n m x b =, 然后证2211n m n m =,从而得到2 1x b x a =,再证21x x =,从而得到a =b 。 本题证法较多,如过点E 作EH ∥BC 交AB 于H ,则EH =GB ,再证EH =EC 、EC =CF ;或过F 作FM ⊥AB 于M ,证Rt △CEG ≌Rt △FMB 。 例5、在△ABC 中,AD 平分∠BAC ,CE ⊥AD 交AB 于G ,AM 是BC 边的中线,交CG 于F 。求证:AC ∥DF 。 【说明】三角形角平分线的性质为比例关系的转化提供了新的方法,从而开阔了解题思路,另外在证明几何题时,还应注意合比、等比性质的应用。 本题是由线段成比例证明两条直线平行的,这是证两条直线平行的新方法,对于题设

三角形内外角平分线定理

三角形内外角平分线定 理 -CAL-FENGHAI.-(YICAI)-Company One1

三角形内角与外交平分线定理 一、内角平分线定理 已知:如图所示,AD 是△ABC 的内角∠BAC 的平分线。 求证: BA/AC=BD/DC; 思路1:过C 作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 的延长线交于E 。 则: BA/AE=BD/DC; ∵ ∠BAD=∠AEC ;(两线平行,同位角相等) ∠CAD=∠ACE ;(两线平行,内错角相等) ∠BAD=∠CAD ;(已知) ∴ ∠AEC=∠ACE ;(等量代换) ∴ AE=AC ; ∴ BA/AC=BD/DC 。 结论1:该证法具有普遍的意义。 引出三角形内角平分线定理:三角形任意两边之比等于它们夹角的平分线分对边之比。 思路2:利用面积法来证明。 已知:如图8-4乙所示,AD 是△ABC 的内角∠BAC 的平分 线。 求证: BA/AC=BD/DC 证明2:过D 作DE ⊥AB 于E ,DF ⊥AC 于F ; ∵ ∠BAD=∠CAD ;(已知) ∴ DE=DF ; ∵ BA/AC=S △BAD/S △DAC ; (等高时,三角形面积之比等于底之比) BD/DC=S △BAD/S △ABCDAC ;(同高时,三角形面积之比等于底之比) ∴ BA/AC=BD/DC 结论2:遇到角平分线,首先要想到往角的两边作平行线,构造等腰三角形或菱形,其次要想到往角的两边作垂线,构造翻转的直角三角形全等,第三,要想到长截短补法。 二、外角平分线定理 已知:如图所示,AD 是△ABC 中∠BAC 的外角∠CAF 的平分线。 求证: BA/AC=BD/DC 思路1:作角平分线AD 的平行线。 证明1:过C 作CE ∥DA 与BA 交于E 。则: BA/AE=BD/DC ∵ ∠DAF=∠CEA ;(两线平行,同位角相等) ABC AD BAC AB BD AC CD ∠=在中,若为的 平分线,则:

角平分线定理的多种证明方法

三角形内角平分线定理的多种证明方法 已知,如图,AM为△ABC的角平分线,求证AB/AC=MB/MC 证明:方法一:(面积法) 三角形ABM面积S=(1/2)*AB*AM*sin∠BAM, 三角形ACM面积S=(1/2)*AC*AM*sin∠CAM, 所以三角形ABM面积S:三角形ACM面积S=AB:AC 又三角形ABM和三角形ACM是等高三角形,面积的比等于底的比, 即三角形ABM面积S:三角形ACM面积S=BM:CM 所以AB/AC=MB/MC 方法二(相似形) 过C作CN平行于AB交AM的延长线于N 三角形ABM相似三角形NCM, AB/NC=BM/CM, 又可证明∠CAN=∠ANC 所以AC=CN,所以AB/AC=MB/MC 方法三(相似形) 过M作MN平行于AB交AC于N 三角形ABC相似三角形NMC, AB/AC=MN/NC,AN/NC=BM/MC 又可证明∠CAM=∠AMN 所以AN=MN,所以AB/AC=AN/NC 所以AB/AC=MB/MC 方法四(正弦定理) 作三角形的外接圆,AM交圆于D, 由正弦定理,得, AB/sin∠BMA=BM/sin∠BAM, AC/sin∠CMA=CM/sin∠CAM 又∠BAM=∠CAM,∠BMA+∠AMC=180 sin∠BAM=sin∠CAM,sin∠BMA=sin∠AMC, 所以AB/AC=MB/MC 阅读下面材料,按要求完成后面作业。 三角形内角平分线性质定理:三角形内角平分线分对边所得的两条线段和这个角的两边对应成比例。

已知:△ABC中,AD是角平分线(如图1),求证:=。 分析:要证=,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在的三角形相似,现在B、D、C在一条直线,△ABD与△ADC不相似,需要考虑用别的方法换比。 在比例式=中,AC恰好是BD、DC、AB的第四比例项, 所以考虑过C作CE∥AD交BA的延长线于E,从而得到BD、DC、AB的 第四比例项AE,这样,证明=,就可转化证=。 (1)完成证明过程: 证明: (2)上述证明过程中,用到了哪些定理(写对两个即可) 答:用了:①____________;②_____________。 (3)在上述分析和你的证明过程中,主要用到了下列三种数学思想的哪一种:①数形结合思想②转化思想③分类讨论思想答:____________。 (4)用三角形内角平分线定理解答问题: 如图2,△ABC中,AD是角平分线,AB=5cm,AC=4cm,BD=7cm,求BC之长。 (1)证明:过点C作CE//AD交BA的延长线于点E, 则∠E=∠BAD=∠DAC=∠ECA,所以AE=AC,由CE//AD, 可得=,∴=。 (2)两直线平行,同位角相等;等腰三角形的判定;三角形相似的判定的定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。

角平分线定理的逆定理

角的平分线的性质定理的逆定理教学设计 (一)内容 角的平分线的性质定理的逆定理. (二)内容解析 本节课是学生在学习了角平分线的性质的基础上,进一步研究角平分线性质定理的逆命题是否正确. 教科书首先提出了一个具有实际背景的问题,在公路和铁路的交叉区域内建一个集贸市场,学习了角平分线的性质,学生可能猜想到集贸市场应建在公路和铁路夹角的平分线上.教科书没有直接给出答案,而是从另一个角度引导,将角的平分线的性质的题设和结论交换位置,所得到的结论是否仍然成立?这就引出了“角的内部到角的两边距离相等的点在角的平分线上”.接着让学生利用三角形全等证明这个结论. 本节课学习的内容是全等三角形知识的运用和延续,是今后学习圆的内心的基础. 基于以上分析,本节课的教学重点是:角的平分线的性质定理的逆定理. 二、目标和目标解析 (一)目标 1.探索并证明角平分线性质定理的逆定理. 2.会用角平分线性质定理的逆定理解决问题. (二)目标解析

达成目标1的标志是:学生能准确表述角平分线性质定理的逆定理的内容.能正确地写出已知、求证,能运用三角形全等的“HL”判定方法和三角形的性质证明角平分线的性质的逆定理. 达成目标2的标志是:学生能利用角的平分线的性质的逆定理证明与角相等的有关简单问题. 三、教学问题诊断分析 本节课的学习中,学生在分清角的平分线的判定的条件和结论,并进行严格的逻辑证明过程中常常感到困难.例如,在用符号语言表述判定条件和结论时,不知“距离”应为“条件”还是“结论”.其主要原因是角的平分线的判定是以文字命题的形式给出的,其条件和结论具有一定的隐蔽性.教学时,教师要引导学生分析性质中的条件和结论,正确写出已知和求证. 基于以上分析,本节课的教学难点是:证明角平分线的判定定理. 四、教学过程设计 (一)引言 上节课我们已经学习了角的平分线的性质,如果把它的题设和结论调换位置,得到的命题还是真命题吗? 【设计意图】通过实际问题,复习角平分线的性质定理. (二)探索角平分线的判定定理 问题1 写出角的平分线的性质的逆命题. 师生活动:教师提出问题,学生独立思考. 追问1:上述逆命题成立吗?你能证明这个结论的正确性吗? 已知:如图,QD⊥OA,QE⊥OB,点D、E为垂足,QD=QE.

角平分线定理应用

1 A B 一、选择题 1. (2009 山东省临沂市) 如图,OP 平分AOB ∠,PA OA ⊥,PB OB ⊥, 垂足分别为A ,B .下列结论中不一定成立的是() A .PA PB = B .PO 平分APB ∠ C .OA OB = D .AB 垂直平分OP 2. (2010 吉林省长春市) 如图,ABC △中,90C ∠=°,40B ∠=°,AD 是角平分线,则ADC ∠的度数为() (A )25°(B )50°(C )65°(D )70° 3. (2010 广西柳州市) 如图,Rt ABC △中,90C ∠=°,ABC ∠的平分线BD 交AC 于D ,若3c m CD =,则点D 到AB 的距离DE 是() A .5cm B.4cm C.3cm D.2cm 4. (2010 湖南省益阳市) 如图3,已知△ABC ,求作一点P ,使P 到∠A 两边的距离相等,且P A =PB .下 列确定P 点的方法正确的是 A.P 为∠A 、∠B 两角平分线的交点 B.P 为∠A 的角平分线与AB 的垂直平分线的交点 C.P 为AC 、AB 两边上的高的交点 D.P 为AC 、AB 两边的垂直平分线的交点 5. (2010 湖北省襄樊市) 如图1,已知直线AB CD BE ∥,平分ABC ∠,交CD 于D ,150CDE ∠=°,则C ∠的度数为( ) A.150° B.130° C.120° D.100° O B A P A B C D E E D C B A 图1

2 二、填空题 6. (2011 江西省) 如图,在ABC △中,点P ABC 是△的内心,则PBC PCA PAB ∠+∠+∠=______度. 7. (2012 广东省广州市) 已知30ABC ∠=°,BD 是ABC ∠的平分线,则ABD ∠=_______度. 8. (2013 湖南省长沙市) 如图,BD 是ABC ∠的平分线,P 是BD 上的一点,PE BA ⊥于点E ,4cm PE =, 则点P 到边BC 的距离为cm . 9. (2013 福建省泉州市) 如图,70AOB ∠= ,QC OA ⊥于C ,QD OB ⊥于D ,若QC QD =,则 AOQ ∠=°. B P C A

赣县中学高中数学竞赛平面几何第3三讲角平分线定理

第三讲 角平分线定理 一、知识要点: 1、 三角形内角平分线的性质定理 三角形内角的平分线内分对边所得的两条线段和相邻的两边对应成比例。 已知:如图,在ABC ?中,AD 平分BAC ∠交BC 于D,求证: AC AB DC BD = A B C D A B C D 2、 三角形外角平分线的性质定理 三角形外角的平分线外分对边所得的两条线段和相邻的两边对应成比例。 已知:如图,在ABC ?中, BAC ∠的外角平分线交BC 的延长线于点D,求证:AC AB DC BD = A B D C A B D C 二、要点分析: 1、 对于涉及与角平分线相关的计算,常由角平分线性质定理列出比例式进行计算; 2、 对于关于角平分线的证明题,常由角平分线性质定理列出比例式进行代换,达到证明 的目的;

三、例题讲解: 题型一:计算题 例1、 在ABC ?中, 90=∠C ,CD 是C ∠的平分线,且CA=3,CB=4,求CD 的长。 C A B D 例2、 如图:若PA=PB,ACB APB ∠=∠2,AC 与PB 相交于点D,且PB=4,PD=3,求 DC AD ?的值。 P A B C D 题型二:证明题 例3、 如图:I 是ABC ?三个内角平分线的交点,AI 交对边于D,求证: BC AC AB ID AI += A B C D I 例4、如图:Rt ABC ?中, 90=∠ACB ,CD ⊥AB 于D,AF 平分CAB ∠交CD 于E,交CB 于F,且EG ∥AB 交CB 于G,求证: CF=GB A B C D F E G

例5:如图:在ABC ?中,AD 平分BAC ∠,C E ⊥AD 交AB 于G,AM 是BC 边的中线, 交CG 于F,求证:AC ∥DF A B C D E G F 例6、如图:在ABC ?中,A 、B 、C 的对边分别是c b a 、、,且c b a >>,AS 、'AS 为 A ∠的平分线与外角平分线,'BT 、BT 为 B ∠的平分线与外角平分线,' C U CU 、为B ∠的平分线与外角平分线,求证:'''111TT UU SS =+ S A S ’ B C

角平分线定理的巧妙应用

Go the distance 浅谈角平分线定理的巧妙应用 吉林省磐石市第一中学:周喜瑞 定理:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例, 即在△ABC 中,BD 平分∠ABC,则AD :DC=AB :BC (注:定理的逆命题也成立) 这是初中和高中都没有直接给出的重要定理,而它的应用却是那么的广泛,令很多老师学生望而生畏,下面就其三个方面的应用作以详细的介绍,仅供参考: 应用1:半角与倍角 这是在人教A 版必修Ⅱ练习册中出现的习题,而此时还没有学习三角函数的半角与倍角公式,因此很多教师把这样的习题都删了。笔者认为放在这里自有它的作用,通过平面几何知识可以巧妙地解决此类问题。 例题1、已知两点()10,2--A ,()4,6-B ,直线l 的倾斜角是直线AB 的倾斜角的一半,求直线l 的斜率。 解析:4 3= AB k ,如图:作直角三角形ACB ,AD 是角A 的平分线 由角平分线定理得DB CD AB AC =,又由勾股定理得5=AB x x -=∴354,解得34=x ,因此31=AC DC ,31=l k 例题2、一条直线l 经过点()1,2P ,并且满足倾斜角是直线1l :034=+-y x 的倾斜角的两倍;求直线l 方程。 解析:4 11= l k ,如图:作直角三角形ACB ,AD 是角A 的平分线 由角平分线定理得DB CD AB AC =,又由勾股定理得 ()()222144++=x x ,解得15 17=x 或1-=x (舍), 因此158415171=+=AC BC ,158=l k ,所以直线l 的方程为01158=--y x 应用2:求轨迹方程 我们知道动点P 与两个定点A ,B 的距离的比为定值λ,若1=λ,则动点P 的轨迹是线段AB 的垂直平分线。若1≠λ,则动点P 的轨迹是圆。我们可以通过建立适当的坐标系,用坐标法求出动点P 的轨迹方程,进而说明轨迹形状。下面用另一种方法,从几何角度求出动点P 的轨迹。 例题3、已知定点()0,2-A ,()0,1B ,动点P 与A ,B 两点的距离的比为2:1,求动点P 的

三角形内角平分线性质定理

三角形内角平分线性质定理 张修元 20161209 1、已知:△ABC 中,∠1=∠2,求证: AC AB DC BD = 证明:(一)过D 作DE ∥AC ,交AB 于点E 。 则∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴ EA =DE , ∵DE ∥AC ,∴AE BE DC BD =,∴DE BE DC BD = ∵DE ∥AC ,∴AC AB DE BE =,∴AC AB DC BD =。 (二)过D 作DE ∥AB ,交AC 于点E 。 则∠3=∠1,∵∠1=∠2,∴∠2=∠3,∴ EA =ED , ∵DE ∥AB ,∴EC AE DC BD =,∴EC ED DC BD = ∵DE ∥AB ,∴AC AB EC DE =,∴AC AB DC BD =。 (三)过B 作BE ∥AC ,交AD 的延长线于点E 。 则∠E =∠2,∵∠1=∠2,∴∠1=∠E ,∴ AB =BE , ∵BE ∥AC ,∴AC BE DC BD =,∴AC AB DC BD = (四)过B 作BE ∥AD ,交CA 的延长线于点E 。 则∠E =∠2,∠1=∠3,∵∠1=∠2,∴∠3=∠E ,∴ AB =AE , ∵BE ∥AD ,∴AC AE DC BD =,∴AC AB DC BD = (五)过C 作CE ∥AB ,交AD 的延长线于点E 。则∠E =∠1, ∵∠1=∠2,∴∠2=∠E ,∴ AC =EC , ∵CE ∥AB ,∴CE AB DC BD =,∴AC AB DC BD = (二) B B (四) D B C C

(六)过C 作CE ∥AD ,交BA 的延长线于点E 。则∠E =∠1,∠3=∠2, ∵∠1=∠2,∴∠3=∠E ,∴ AC =AE , ∵CE ∥AD ,∴AE AB DC BD =,∴AC AB DC BD = (七)∵∠1=∠2,∴Sin ∠1= Sin ∠2, ∵∠ADB =180°-∠ADC ,∴Sin ∠ADB= Sin ∠ADC, ∵S △ADB =121 ∠???Sin AD AB S △ADC =22 1 ∠???Sin AD AC ∴ AC AB S S ADC ABD =?? ∵S △ADB =ADB Sin AD BD ∠???2 1 S △ADC =ADB Sin AD DC ADB Sin AD DC ADC Sin AD DC ∠???=∠-????=∠???2 1 )180(2121 ∴DC BD S S ADC ABD =?? ∴AC AB DC BD = (八)作AP ⊥BC ,DM ⊥AB ,DN ⊥AC , ∵S △ADB =DM AB ??21 S △ADC =DN AC ??2 1 ∴AC AB S S ADC ABD =?? ∵S △ADB =AP BD ??21 S △ADC =AP DC ??2 1 ∴ DC BD S S ADC ABD =?? ∴AC AB DC BD = (六) D C 12 D C B A C B

相关文档
相关文档 最新文档