文档库 最新最全的文档下载
当前位置:文档库 › 泛函分析作业

泛函分析作业

泛函分析作业
泛函分析作业

实变函数与泛函分析报告答案

试卷一 (参考答案及评分标准) 一、1. C 2 D 3. B 4. A 5. D 二、1.? 2、[]0,1; ? ; []0,1 3、***()()m T m T E m T CE =?+? 4、充要 5、11|()()|n i i i f x f x -=??-???? ∑成一有界数集。 三、1.错误……………………………………………………2分 例如:设E 是[]0,1上有理点全体,则E 和CE 都在[]0,1中稠密 ………………………..5分 2.错误…………………………………………………………2分 例如:设E 是Cantor 集,则0mE =,但E =c , 故其为不可数集 ……………………….5分 3.错误…………………………………………………………2分 例如:设E 是[],a b 上的不可测集,[],;(),,;x x E f x x x a b E ∈??=?-∈-?? 则|()|f x 是[],a b 上的可测函数,但()f x 不是[],a b 上的可测函数………………………………………………………………..5分 4.错误…………………………………………………………2分 0mE =时,对E 上任意的实函数()f x 都有()0E f x dx =?…5分 四、1.()f x 在[]0,1上不是R -可积的,因为()f x 仅在1x =处连续,即不连续点为正测度集………………………………………..3分 因为()f x 是有界可测函数,()f x 在[]0,1上是L -可积的…6分 因为()f x 与2x ..a e 相等,进一步,[]120,101()3f x dx x dx ==? ?…8分 2.解:设ln()()cos x n x n f x e x n -+=,则易知当n →∞时,()0n f x → …………………………..2分 又因' 2ln 1ln 0t t t t -??=< ??? ,(3t ≥),所以当3,0n x ≥≥时,

泛函分析讲义

第三章赋范空间 3.1. 范数的概念 “线性空间”强调元素之间的运算关系,“度量空间”则强调元素之间的距离关系,两者的共性在于:只研究元素之间的关系,不研究元素本身的属性。 为了求解算子方程,需要深入地了解函数空间的结构与性质,为此,我们不仅希望了解函数之间的运算关系和距离关系,还希望了解函数本身的属性。那么,究竟需要了解函数的什么属性呢? 3.1.1. 向量的长度 为了回答上述问题,我们需要从最简单的函数空间——欧氏空间——中寻找灵感。回想一下,三维欧氏空间中的元素被称为“向量”,向量最重要的两大属性是:长度和方向,向量的许多重要性质都是由其长度和方向所决定的。这一章的任务就是将欧氏空间中向量的长度推广为(以函数空间为原型的)一般线性空间中元素的广义长度,下一章的任务就是将欧氏空间中向量的方向推广为(以函数空间为原型的)一般线性空间中元素的广义方向。可以想象:其元素具有广义长度和广义方向的线性空间必将像欧氏空间那样,呈现出丰富多彩的性质,并且这些性质必将有助于求解算子方程。

图3.1.1. 三维欧氏空间中向量的大小和方向 矩阵论知识告诉我们:可以为欧氏空间中的向量赋予各种各样的长度,并且可以根据问题需要来选择最合适的向量长度。实际上,可以在数域F 上的n 维欧式空间n F 上定义向量12(,, ,)n x x x x =的如下三种长度(称为“范数”): ● 2-范数(也称为欧氏范数) :2x = ● 1-范数:11 n k k x x ==∑; ● ∞-范数:1max k k n x x ∞ ≤≤=。 图3.1.2. 三种向量范数对应的“单位圆” 图3.1.3. “单位圆”集合的艺术形式 下一节将谈到:就分析性质而言,这三种向量范数没有任何区别。 我们注意到:通常将 2 或 3 中两个向量之间的距离定义为两者的差向量的 长度。由此可知:如果有了长度的概念,就可以诱导出距离;反之则不然。因此,

泛函分析试卷

泛函分析期末考试试卷(总分100分) 一、选择题(每个3分,共15分) 1、设X 是赋范线性空间,X y x ∈,,T 是X 到X 中的压缩映射,则下列哪个式子成立(). A .10<<-≤-αα, y x Ty Tx B .1≥-≤-αα, y x Ty Tx C.10<<-≥-αα, y x Ty Tx D.1≥-≥-αα, y x Ty Tx 2、设X 是线性空间,X y x ∈,,实数x 称为x 的范数,下列哪个条件不是应满足的条件:(). A. 等价于0且,0==≥x x x C.y x y x +≤+ 3 ? 5、设(1)p l p <<+∞的共轭空间为q l ,则有1 1p q +的值为(). A.1- B. 12C.1D.12 - 二、填空题(每个3分,共15分) 1、度量空间中的每一个收敛点列都是()。 2、任何赋范线性空间的共轭空间是()。 3、1l 的共轭空间是()。 4、设X 按内积空间成为内积空间,则对于X 中任意向量x,y 成立不等式()

当且仅当x 与y 线性相关时不等式等号成立。 5、设T 为复希尔伯特空间X 上有界线性算子,则T 为自伴算子的充要条件是()。 三、判断题(每个3分,共15分) 1、设X 是线性赋范空间,X 中的单位球是列紧集,则X 必为有限维。() 2、?距离空间中的列紧集都是可分的。() 3、?若范数满足平行四边形法则,范数可以诱导内积。() 4、?任何一个Hilbert 空间都有正交基。() 5、设X 是线性赋范空间,T 是T 有逆算子。() 四、计算题(10分) 叙述1l 空间的定义,并求1l 12,证 明3i X 与n R 按范数1 ||||||n i i x ξ==∑组成的赋范线性空 间Y 共轭。 4、设X 是可分Banach 空间,M 是X '中的有界集,证明M 中每个点列含有 一个弱*收敛子列。 5、设H 是内积空间,M 为H 的子集,证明M 在H 中的正交补是H 中的闭线性子空间。 泛函分析期末考试试卷答案 一、选择题 1、A 2、D 3、B 4、D 5、D 二、填空题 1、柯西点列 2、巴拿赫空间 3、∞ l 4、||≦||x||||y||

(完整版)泛函分析复习与总结,推荐文档

《泛函分析》复习与总结 (2014年6月26日星期四 10:20--- 11:50) 第一部分 空间及其性质 泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函 分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的 性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。 以下几点是对第一部分内容的归纳和总结。 一.空间 (1)距离空间 (集合+距离)!验证距离的三个条件:称为是距离空间,如果对于 (,)X ρ,,x y z X ∈(i) 【非负性】,并且当且仅当 (,)0x y ρ≥(,)0x y ρ=【正定性】; x y =(ii) 【对称性】; (,)(,)x y y x ρρ=(iii) 【三角不等式】。 (,)(,)(,)x y x y y z ρρρ≤+距离空间的典型代表:空间、空间、所有的赋范线性空间、 s S 所有的内积空间。 (2)赋范线性空间 (线性空间 + 范数) !验证范数的三个条件:称为是赋范线性空间,如果 (,||||)X ?是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,x y X ∈(i) 【非负性】,并且当且仅当【正定性】 ||||0x ≥||||0x =0x =; (ii) 【齐次性】; ||||||||||ax a x =?

(iii) 【三角不等式】。 ||||||||||||x y x y +≤+赋范线性空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间()、空间(1,2,3,n =L p l 1p ≤≤∞([,])p L a b )、空间、空间、Banach 空间、所有的1p ≤≤∞[,]C a b [,]k C a b 内积空间(范数是由内积导出的范数)。 (3)内积空间 (线性空间 + 内积) !验证内积的四个条件:称为是内积空间,如果 (,(,))X ??是数域(或)上的线性空间,对于和 X K =?K =£a K ∈,成立 ,,x y z X ∈(i) 【非负性】,并且当且仅当【正 (,)0x x ≥(,)0x x =0x =定性】; (ii) 【第一变元可加性】; (,)(,)(,)x y z x z x z +=+(iii) 【第一变元齐次性】; (,)(,)ax z a x z =(iv) 【共轭对称性】。 (,)(,)x z z x =内积空间的典型代表:空间()、空间(n ?1,2,3,n =L n £) 、空间、空间。1,2,3,n =L 2l 2([,])L a b 注. 1) 从概念的外延来理解, 有如下的关系: {内积空间}{赋范线性空间}{距离空间}. ??2) 内积可导出范数, 范数可导出距离, 反之未必. 例如在赋范 线性空间中, 如果范数满足平行四边形公式, 则由范数可以定义内 积. 3) 在距离空间中,,当 0k x x ρ??→?0(,)0k x x ρ→; k →∞赋范线性空间中,,当;|||| 0k x x ???→?0||||0k x x -→k →∞

博士生入学考试泛函分析考试大纲

博士生入学考试《泛函分析》考试大纲 第一章度量空间 §1 压缩映象原理 §2 完备化 §3 列紧集 §4 线性赋范空间 4.1 线性空间 4.2 线性空间上的距离 4.3 范数与Banach空间 4.4 线性赋范空间上的模等价 4.5 应用(最佳逼近问题) 4.6 有穷维* B空间的刻划 §5 凸集与不动点 5.1 定义与基本性质 5.2 Brouwer与Schauder不动点原理* 5.3 应用* §6 内积空间 6.1 定义与基本性质 6.2 正交与正交基 6.3 正交化与Hilbert空间的同构 6.4 再论最佳逼近问题 第二章线性算子与线性泛函 §1 线性算子的概念 1.1 线性算子和线性泛函的定义 1.2线性算子的连续性和有界性 §2 Riesz定理及其应用 Laplace方程f ? -狄氏边值问题的弱解 u= 变分不等到式 §3 纲与开映象定理 3.1 纲与纲推理 3.2 开映象定理 3.3 闭图象定理 3.4 共鸣定理 3.5应用 Lax-Milgram定理 Lax等价定理 §4 Hahn-Banach定理

4.1线性泛函的延拓定理 4.2几何形式----凸集分离定理 §5 共轭空间·弱收敛·自反空间 5.1 共轭空间的表示及应用(Runge) 5.2 共轭算子 5.3弱收敛及*弱收敛 5.4弱列紧性与*弱列紧性 §6 线性算子的谱 6.1 定义与例 6.2 Γелbφaнд定理 第三章紧算子与Fredholm算子 §1 紧算子的定义和基本性质 §2 Riesz-Fredholm 理论 §3 Riesz-Schauder理论 §4 Hilbert-Schmidt定理 §5 对椭圆方程的应用 §6 Fredholm算子 参考文献 1.张恭庆林源渠,“泛函分析讲义”,北京大学出版社,1987。 2.黄振友杨建新华踏红刘景麟《泛函分析》,科学出版社, 2003。

泛函分析答案

泛函分析答案: 1、 所有元素均为0的n ×n 矩阵 2、 设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、 设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、 设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的 λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、 设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z) for every x,y,z ∈E n 维欧几里德空间常用距离定义: 】 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=( 21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y) = ( 1 ||n p i i i x y =-∑ )1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)0(n ∞),这时记作 0lim n n x x -->∞ =,或 简单地记作x n x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iff x=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,for every x,y ∈E 8、设E 为线性赋范空间,{x n }∞ n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 $ 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2(a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2(a,b ), 2|()|b a f t dt ? <∞。 当 L 2(a,b )中内积的定义为(f,g )= _____ ()()b a f t g t dt ? (其中f(t),g(t)∈L 2(a,b ))时其为Hilbert 空间。 ★ 12、算子表示一种作用,一种映射。设X 和Y 是给定的两个线性赋范空间,集合D ?X , 若对D 中的每一个x ,均有Y 中的一个确定的变量y 与其对应,则说这种对应关系确定

泛函分析学习心得

泛函分析学习心得 学习《实变函数论与泛函分析》这门课程已有将近一年的时间,在接触这门课程之前就已经听闻这门课程是所有数学专业课中最难学的一门,所以一开始是带着一种“害怕学不好”的心理来学.刚开始接触的时候是觉得很难学,知识点很难懂,刚开始上课时也听不懂,只顾着做笔记了.后来慢慢学下来,在课前预习、课后复习研究、上课认真听课后发现没有想象中的那么难,上课也能听懂了.因此得出了一个结论:只要用心努力去学,所有课程都不会很难,关键是自己学习的态度和努力的程度. 在学习《泛函分析》的前一个学期先学习了《实变函数论》,《实变函数论》这部分主要学习了集合及其运算、集合的势、n 维空间中的点集、外测度与可测集、Lebesgue 可测集的结构、可测函数、P L 空间等内容,这为这学期学习《泛函分析》打下了扎实的基础.我们在这个学期的期中之前学习的《泛函分析》的主要内容包括线性距离空间、距离空间的完备性、内积空间、距离空间中的点集、不动点定理、有界线性算子及其范数等.下面我谈谈对第一章的距离空间中部分内容的理解与学习: 第一章第一节学习了线性距离空间,课本首先给出了线性空间的定义及其相关内容,这与高等代数中线性空间是基本一样的,所以学起来比较容易.接着是距离空间的学习,如果将n 维欧氏空间n R 中的距离“抽象”出来,仅采用性质,就可得到一般空间中的距离概念: 1.距离空间(或度量空间)的定义: 设X 为一集合,ρ是X X ?到n R 的映射,使得使得X z y x ∈?,,,均满足以下三个条件: (1))(0,≥y x ρ,且)(0,=y x ρ当且仅当y x =(非负性) (2))()(x y y x ,,ρρ=(对称性) (3))()()(z y y x z x ,,,ρρρ+≤(三角不等式), 则称X 为距离空间(或度量空间),记作)(ρ,X ,)(y x ,ρ为y x ,两点间的距离. 学习了距离空间定义后,我们可以验证:欧式空间n R ,离散度量空间,连

泛函分析答案

泛函分析答案: 1、所有元素均为0的n ×n 矩阵 2、设E 为一线性空间,L 是E 中的一个子集,若对任意的x,y ∈L ,以及变数λ和μ均有λx +μy ∈L ,则L 称为线性空间E 的一个子空间。子空间心室包含零元素,因为当λ和μ均为0时,λx +μy =0∈L ,则L 必定含零元素。 3、设L 是线性空间E 的子空间,x 0∈E\L,则集合x 0+L={x 0+l,l ∈L}称为E 中一个线性流形。 4、设M 是线性空间E 中一个集合,如果对任何x,y ∈M ,以及λ+μ=1,λ≥0,μ≥0的λ和μ,都有λx +μy ∈M ,则称M 为E 中的凸集。 5、设x,y 是线性空间E 中的两个元素,d(x,y)为其之间的距离,它必须满足以下条件: (1) 非负性:d(x,y)>0,且d(x,y)=0<―――>x=y (2) d(x,y)=d(y,x) (3) 三角不等式:d(x,y)≤d(x,z)+d(y,z)foreveryx,y,z ∈E n 维欧几里德空间常用距离定义: 设x={x 1,x 2,…x n }T ,y={y 1y 2,…y n }T d 2(x,y)=(21 ||n i i i x y =-∑)1/2 d 1(x,y)=1 ||n i i i x y =-∑ d p (x,y)=(1 ||n p i i i x y =-∑)1/p d ∞(x,y)=1max ||i i i n x y ≤≤- 6、距离空间(x,d)中的点列{x n }收敛到x 0是指d(x n ,x 0)?0(n ?∞),这时记作 0lim n n x x -->∞ =,或简单地记作x n ?x 0 7、设||x||是线性空间E 中的任何一个元素x 的范数,其须满足以下条件: (1)||x||≥0,且||x||=0 iffx=0 (2)||λx||=λ||x||,λ为常数 (3)||x+y||≤||x||+||y||,foreveryx,y ∈E 8、设E 为线性赋范空间,{x n }∞n=1是其中的一个无穷列,如果对于任何ε>0,总存在自然数N ,使得当n>N,m>N 时,均有|x m -x n |<ε,则称序列{x n }是E 中的基本列。若E 的基本列的收敛元仍属于E ,则称E 为完备的线性赋范空间,即为Banach 空间。线性赋范空间中的基本列不一定收敛。 9、有限维的线性赋范空间必然完备,所以它必定是Banach 空间。 10、如果内积空间能在由内积诱导的赋范空间完备,则此内积空间称为Hilbert 空间。 11、L 2 (a,b )为定义在(a,b)上平方可积函数空间,即设f(t)∈L 2 (a,b ),2|()|b a f t dt ?<∞。

实变函数与泛函分析基础(第三版)-----第三章_复习指导

主要内容 本章介绍了勒贝格可测集和勒贝格测度的性质. 外测度和内测度是比较直观的两个概念,内外测度一致的有界集就是勒贝格可测集. 但是,这样引入的可测概念不便于进一步讨论. 我们通过外测度和卡拉皆屋铎利条件来等价地定义可测集(即定义),为此,首先讨论了外测度的性质(定理). 注意到外测度仅满足次可列可加(而非可列可加)性,这是它和测度最根本的区别. 我们设想某个点集上可以定义测度,该测度自然应该等于这个集合的外测度,即测度应是外测度在某集类上的限制. 这就容易理解卡拉皆屋铎利条件由来,因为这个条件无非是一种可加性的要求. 本章详细地讨论了勒贝格测度的性质. 其中,最基本的是测度满足在空集上取值为零,非负,可列可加这三条性质. 由此出发,可以导出测度具有的一系列其它性质,如有限可加,单调,次可列可加以及关于单调集列极限的测度等有关结论. 本章还详细地讨论了勒贝格可测集类. 这是一个对集合的代数运算和极限运算封闭的集类. 我们看到勒贝格可测集可以分别用开集、闭集、型集和 型集逼近. 正是由于勒贝格可测集,勒贝格可测集类,勒贝格测度具有一系列良好而又非常重要的性质,才使得它们能够在勒贝格积分理论中起着基本的、有效的作用. 本章中,我们没有介绍勒贝格不可测集的例子. 因为构造这样的例子要借助于策墨罗选择公理,其不可测性的证明还依赖于勒贝格测度的平移不变性. 限于本书的篇幅而把它略去. 读者只须知道:任何具有正测度的集合一定含有不可测子集. 复习题 一、判断题

1、对任意n E R ?,* m E 都存在。(√ ) 2、对任意n E R ?,mE 都存在。(× ) 3、设n E R ?,则* m E 可能小于零。(× ) 4、设A B ?,则** m A m B ≤。(√ ) 5、设A B ?,则** m A m B <。(× ) 6、* *1 1( )n n n n m S m S ∞ ∞===∑。(× ) 7、* *1 1 ( )n n n n m S m S ∞ ∞==≤∑。(√ ) 8、设E 为n R 中的可数集,则* 0m E =。(√ ) 9、设Q 为有理数集,则* 0m Q =。(√ ) 10、设I 为n R 中的区间,则* m I mI I ==。(√ ) 11、设I 为n R 中的无穷区间,则* m I =+∞。(√ ) 12、设E 为n R 中的有界集,则*m E <+∞。(√ ) 13、设E 为n R 中的无界集,则*m E =+∞。(× ) 14、E 是可测集?c E 是可测集。(√ ) 15、设{n S }是可测集列,则 1 n n S ∞=, 1 n n S ∞=都是可测集。 (√ ) 16、零测集、区间、开集、闭集和Borel 集都是可测集。(√ ) 17、任何可测集总可表示成某个Borel 集与零测集的差集。(√ ) 18、任何可测集总可表示成某个Borel 集与零测集的并集。(√ ) 19、若E =?,则* 0m E >。(× ) 20、若E 是无限集,且*0m E =,则E 是可数集。(× ) 21、若mE =+∞,则E 必为无界集。(√ ) 22、在n R 中必存在测度为零的无界集。(√ )

泛函分析课程总结

泛函分析课程总结 数学与计算科学学院 09数本5班 符翠艳 2009224524 序号:26 一.知识总结 第七章 度量空间和赋范线性空间 1. 度量空间的定义:设X 是一个集合,若对于X 中任意两个元素,x y ,都有唯 一确定的实数(),d x y 与之相对应,而且满足 ()()()()()()()1,0,,0=;2,,;3,,,,d x y d x y x y d x y d y x d x y d x z d z y z ≥=?? ??=????≤+?? 、的充要条件是、、对任意都成立。 则称d 为X 上的一个度量函数,(d X ,)为度量空间,),(y x d 为y x ,两点间的度量。 2. 度量空间的例子 ①离散的度量空间(),X d 设X 是任意的非空集合,对X 中任意两点,x y X ∈,令 ()1,,0,x y d x y x y ≠?? =??=?? 当当 ②序列空间S 令S 表示实数列(或复数列)的全体,对S 中任意两点 ()()12n 12,,...,,...,,...,,...n x y ξξξηηη==及,令 ()11,21i i i i i i d x y ξηξη∞ =-=+-∑ ③有界函数空间B (A ) 设A 是一给定的集合,令B (A )表示A 上有界实值(或复值)函数全体,对B (A )中任意两点,x y ,定义 (),()()sup t A d x y x t y t ∈=- ④可测函数空间m(X) 设m(X)为X 上实值(或复值)的L 可测函数全体,m 为L 测度,若()m X ≤∞,对任意两个可测函数()()f t g t 及,令 ()()(),1()() X f t g t d f g dt f t g t -=+-?

泛函分析习题解答

第七章 习题解答 1.设(X ,d )为一度量空间,令 }),(,|{),(},),(,|{),(0000εεεε≤∈=<∈=x x d X x x x S x x d X x x x U 问),(0εx U 的闭包是否等于),(0εx S ? 解 不一定。例如离散空间(X ,d )。)1,(0x U ={0x },而)1,(0x S =X 。 因此当X 多于两点时,)1,(0x U 的闭包不等于)1,(0x S 。 2. 设 ],[b a C ∞是区间],[b a 上无限次可微函数的全体,定义 证明],[b a C ∞按),(g f d 成度量空间。 证明 (1)若),(g f d =0,则) ()(1)()(max ) () ()()(t g t f t g t f r r r r b t a -+-≤≤=0,即f=g (2))()(1)()(max 2 1 ),()()()()(0t g t f t g t f g f d r r r r b t a r r -+-=≤≤∞ =∑ =d (f ,g )+d (g ,h ) 因此],[b a C ∞按),(g f d 成度量空间。 3. 设B 是度量空间X 中的闭集,证明必有一列开集ΛΛn o o o 21,包含B ,而且B o n n =?∞ =1 。 证明 令n n n o n n B x d Bo o .2,1},1 ),({K =<==是开集:设n o x ∈0,则存在B x ∈1,使 n x x d 1),(10<。设,0),(1 10>-=x x d n δ则易验证n o x U ?),(0δ,这就证明了n o 是 开集 显然B o n n ??∞=1 。若n n o x ∞ =?∈1 则对每一个n ,有B x n ∈使n x x d 1 ),(1< ,因此

理工大泛函分析复习题.docx

-、(10分)设d(x, y)为空间X上的距离。证明 l + d(3) 也是X上的距离。 1、求证/(X,r)为3空间。(其中X为/空间,丫为B空间) 2、S是由一切序列兀=(召,兀2,?…,£,???)组成的集合,在S中定义距离为 p(x,y ,求证S是一个完备的距离空间。 3、Hilbert空间X中的正交投影算子为线性有界算子。 4、附加题 开映射定理(P92) 设x,y都是B空间,若TG/(x,r)是一个满射,则卩是开映射。Hahn—Banach延拓定理(%) 设X是T空间,X。是X的线性子空间,人是定义在X。上的有界线性泛函,则在X上必有有界线性泛函/满足: ⑴芦(兀)=九(兀)(办丘Xo)(延拓条件); (2)||/|| = UII0(保范条件), 其中表示人在X。上的范数。 闭图像定理(乙8)设都是3空间,若丁是X T Y的闭线性算子,并且D(T)是闭的,则卩是连续的。 共鸣定理(毘9)设X是B空间,丫是£空间,如果 Wu/(X,Y),使得sup||Ar||

x-x0 = inf x-y yeM 七、(15分)设/(兀)=匸兀(『)力—[比)力,求证:/G(C[-1,1])\且求||/||。 八、(15分)简答题 1?试说明C[a,b]与I3[a,b]中函数的差异; 2.泛函分析也称无穷维分析,为什么耍研究无穷维分析,试举例说明; 3.H订bert空间是最接近有限维Euclid空间的空间,请做简要说明。 一、在C[-1,1]上定义内积V /,g〉=[/(f)ga)〃,若记M为C[-1,1]屮奇函数全 体,N为C[-l,l]中偶函数全体,求证:M十W二且丄。 设厶为内积空间H中的一个稠密子集,且x丄厶,证明x = 0. 二、在R中赋予距离p(x,y) =| arctan x-arctan y |,问(R,p)是完备空间吗?为什么?设Tx(t) = rx(r),若T是从厶[0,1] t厶[0,1]的算了,计算||T||;若T是从 Q0,1]T Q0,1]的算子再求||门 四论述题: 1、证明C[a,b]完备,并叙述证明空间完备的一般步骤。 2、论述紧集、相对紧集、完全有界集、有界集的关系。 3、证明||x||=maxx(r)为心,刃上范数,并论述证明范数的一般步骤。 ie[a,b] 设H是内积空间,£,兀儿则当X" t X,儿Ty时,(£,几)T(x,y),即内积 关于两变元连续。 10?设叭叭皿赋范空何,?“ 八码),证明 ⑴+ 7V, (2) fit (】)任取f€E;及则 (T: + T t) V(r)r s)?> f(T^) + /(r?z > -r:/(z) + Ty(x) = (T: +T;)/(z) ? 山人工的任尴性.得: 《珀 + T护= + <2)由共馳算子性质1?■即得:工

泛函分析报告结课论文设计

泛函分析结课论文Functional Analysis Course Paper 学号

一、泛函分析空间理论 泛函中四大空间的认识 第一部分我们将讨论线性空间,在线性空间的基础上引入长度和距离的概念,进而建立了赋线性空间和度量空间。 在线性空间中赋以“数”,然后在数的基础上导出距离,即赋线性空间,完备的赋线性空间称为巴拿赫空间。数可以看出长度,赋线性空间相当于定义了长度的空间,所有的赋线性空间都是距离空间。 在距离空间过距离的概念引入了点列的极限,但是只有距离结构、没有代数结构的空间,在应用过程中受到限制。赋线性空间和积空间就是距离结构与代数结构相结合的产物,较距离空间有很大的优越性。 赋线性空间是其中每个向量赋予了数的线性空间,而且由数诱导出的拓扑结构与代数结构具有自然的联系。完备的赋线性空间是Banach空间。赋线性空间的性质类似于熟悉的n R,但相比于距离空间,赋线性空间在结构上更接近于n R。 赋线性空间就是在线性空间中,给向量赋予数,即规定了向量的长度,而没有给出向量的夹角。 在积空间中,向量不仅有长度,两个向量之间还有夹角。特别是定义了正交的概念,有无正交性概念是赋线性空间与积空间的本质区别。任何积空间都赋线性空间,但

赋线性空间未必是积空间。 距离空间和赋线性空间在不同程度上都具有类似于n R 的空间结构。事实上,n R 上还具有向量的积,利用积可以定义向量的模和向量的正交。但是在一般的赋线性空间中没有定义积,因此不能定义向量的正交。积空间实际上是定义了积的线性空间。在积空间上不仅可以利用积导出一个数,还可以利用积定义向量的正交,从而讨论诸如正交投影、正交系等与正交相关的性质。Hilbert 空间是完备的积空间。与一般的Banach 空间相比较,Hilbert 空间上的理论更加丰富、更加细致。 1 线性空间 (1)定义:设X 是非空集合,K 是数域,X 称为数域上K 上的线性空间,若,x y X ?∈,都有唯一的一个元素z X ∈与之对应,称为x y 与的和,记作 z x y =+ ,x X K α?∈∈,都会有唯一的一个元素u X ∈与之对应,称为x α与的积,记作 u x α= 且,,x y z X ?∈,,K αβ∈,上述的加法与数乘运算,满足下列8条运算规律: 10 x y y x +=+ 20 ()()x y z x y z ++=++ 30 在X 中存在零元素θ,使得x X ?∈,有x x θ+= 40 x X ?∈,存在负元素x X ?-∈,使得()x x θ+-= 50 1x x ?= 60 ()()x x αβαβ= 70 ()+x x x αβαβ+= 80 ()x y x y ααα+=+ 当K R =时,称X 为实线性空间;当K C =时,称X 为复线性空间 (2)维数: 10 设X 为线性空间, 12,,,n x x x X ∈若不存在全为0的数12,,,n K ααα∈,使 得 11220n n x x x ααα++ +=

泛函分析试题B

泛函分析试题B PTU院期末考试试卷 (B)卷 2010 ——2011 学年第 1 学期课程名称: 泛函分析适用年级/专业 07 数学试卷类别:开卷(?)闭卷( ) 学历层次: 本科考试用时: 120 分钟 《考生注意:答案要全部抄到答题纸上,做在试卷上不给分》(((((((((((((((((((((((((((一、填空题(每小题3分,共15分) (,)Xdx1.设=是度量空间,是中点列,如果____________________________, XX,,n x则称是中的收敛点列。 X,,n ffNf2. 设是赋范线性空间,是上线性泛函,那么的零空间是中的闭子空XXX,,间的充要条件为_____________________________。 3. 为赋范线性空间到赋范线性空间中的线性算子,如果_________________, TXY 则称T是同构映射。 xyX,,4. 设是实Hilbert空间,对中任何两个向量满足的极化恒等式公式 为:XX ___________________________________________。 ,,5. 设是赋范线性空间,是的共轭空间,泛函列,如果XXXfXn,,(1,2,)Ln ff_______________________________________________,则称点列强收敛 于。 ,,n二、计算题(共20分) ppl叙述空间的定义,并求的共轭空间。 lp(1),,,, 三、证明题(共65分) p1、(12分)叙述并证明空间中的Holder不等式。 lp(1),

,,MM,2、(15分)设是Hilbert空间的闭子空间,证明。 MX 试卷第 1 页共 2 页 3、(14分)Hilbert空间是可分的,证明任何规范正交系至多为可数集。 XX 4、(12分) 证明Banach空间自反的充要条件是的共轭空间自反。 XX ,,ll5、(12分)叙述空间的定义,并证明空间是不可分的。 试卷第 2 页共 2 页

数学专业参考材料书汇总整编推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了整理: 从数学分析开始讲起: 数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或者叫数学一的高数部分。 记住以下几点: 1,对于数学分析的学习,勤奋永远比天分重要。 2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。 3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。 4,看得懂的仔细看,看不懂的硬着头皮看。 5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。 6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。 7,经常回头看看自己走过的路 以上几点请在学其他课程时参考。 数学分析书: 初学从中选一本教材,一本参考书就基本够了。我强烈推荐11,推荐1,2,7,8。另外建议看一下当不了教材的16,20。 中国人自己写的:

1《数学分析》陈传璋,金福临,朱学炎,欧阳光中著(新版作者顺序颠倒) 应该是来自辛钦的《数学分析简明教程》,是数学系用的时间最长,用的最多的书,大部分学校考研分析的指定教材。我大一用第二版,现在出了第三版,但是里面仍有一些印刷错误,不过克可以一眼看出来。网络上可以找到课后习题的参考答案,不过建议自己做。不少经济类工科类学校也用这一本书。里面个别地方讲的比较难懂,而且比其他书少了一俩个知识点,比如好像没有讲斯托尔滋(stolz)定理,实数的定义也不清楚。不过仍然不失为一本好书。能广泛被使用一定有它自己的一些优势。 2《数学分析》华东师范大学数学系著 师范类使用最多的书,课后习题编排的不错,也是考研用的比较多的一本书。课本最后讲了一些流形上的微积分。虽然是师范类的书,难度比上一本有一些降低,不过还是值得一看的。3《数学分析》陈纪修等著 以上三本是考研用的最多的三本书。 4《数学分析》李成章,黄玉民 是南开大学一个系列里的数学分析分册,这套教材里的各本都经常被用到,总体还是不错的,是为教学改革后课时数减少后的数学系各门课编写的教材。 5《数学分析讲义》刘玉链 我的数学分析老师推荐的一本书,不过我没有看,最近应该出了新版,貌似是第五?版,最初是一本函授教材,写的应该比较详细易懂。不要因为是函授教材就看不起,事实上最初的函授工作都是由最好的教授做的。细说就远了,总之可以看看。 6《数学分析》曹之江等著 内蒙古大学数理基地的教材,偏重于物理的实现,会打一个很好的基础,不会盲目的向n 维扩展。适合初学者。国家精品课程的课本。

泛函分析答案2:

泛函分析期末复习题(2005-2006年度) (1)所有矩阵可以构成一个线性空间。试问这个线性空间中的零元素是什么? (2)什么是线性空间的子空间?子空间是否一定包含零元素?为什么? (3)什么是线性流形? (4)什么是线性空间中的凸集? (5)如果一个度量能够成为一个线性空间上定义的距离,那么这个度量必须满足什么条件?试给出几个在维欧几里德空间上常用的距离定义 (6)距离空间上的收敛是如何定义的? (7)线性空间上定义的范数必须满足哪些条件? (8)什么是巴拿赫空间?赋范空间中的基本列一定收敛吗? (9)有限维的线性赋范空间都是巴拿赫空间吗? (10)什么是希尔伯特空间? (11)空间是如何构成的?在怎样的内积定义下其可以成为一个希尔伯特空间?(12)什么是算子?为什么要求算子的定义域是一个子空间? (13)算子的范数是如何定义的?从直观角度谈谈对算子范数定义的理解。 (14)线性算子的零空间一定是值域空间中的子空间吗? (15)什么是有界算子?举一个无界算子的例子。 (16)算子的强收敛是如何定义的? (17)设为一个线性赋范空间,而为一个Banach空间。那么从到的线性算子所构成的空间是否构成一个Banach空间? (18)什么是压缩映像原理?它在力学中有什么重要应用? (19)什么是泛函?什么是泛函的范数? (20)什么是线性赋泛空间的共轭空间?线性赋泛空间的共轭空间是否总是完备的?(21)什么是弱收敛?弱收敛与强收敛之间是什么关系? (22)什么是的Gateaux微分? (23)什么是泛函的(一阶)变分?它是如何定义的? (24)形如的泛函,其对应的Euler-Lagrange方程是什么? (25)什么是结构的应变能密度?什么是余能密度?二者关系如何?试画图说明。(26)有限元方法的本质是什么?瑞兹+具有局部紧支集的分片插值函数 (27)什么是最小势能原理?最小势能原理中的基本未知函数是什么?对这些基本未知函数有什么要求?推导并证明使得势能泛函取最小值的位移函数对应结构真实的位移场。(28)什么是最小余能原理?最小余能原理中的基本未知函数是什么?对这些基本未知函数有什么要求?推导并证明使得余能泛函取最小值的位移函数对应结构真实的应力场。(29)什么是Hellinger-Reissner混合变分原理?推导并证明使得余能泛函取最小值的位移函数和应力函数对应结构真实的位移场和应力场。

泛函分析知识总结

泛函分析知识总结与举例、应用 学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。本文主要对前面两大内容进行总结、举例、应用。 一、度量空间和赋范线性空间 (一)度量空间 度量空间在泛函分析中是最基本的概念,它是n维欧氏空间n R(有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。 1.度量定义:设X是一个集合,若对于X中任意两个元素x,y,都有唯一确定的实数d()与之对应,而且这一对 应关系满足下列条件: 1°d()≥0 ,d()=0 ?x=y(非负性) 2°d()= d() (对称性) 3°对?z ,都有d()≤d()() (三点不等式) 则称d()是x、y之间的度量或距离(或),称为 ()度量空间或距离空间()。 (这个定义是证明度量空间常用的方法)

注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(),只要 满足1°、2°、3°都称为度量。这里“度量”这个名 称已由现实生活中的意义引申到一般情况,它用来描 述X 中两个事物接近的程度,而条件1°、2°、3°被 认为是作为一个度量所必须满足的最本质的性质。 ⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个 集合X 上若有两个不同的度量函数1d 和2d ,则我们认为 (X, 1d )和(X, 2d )是两个不同的度量空间。 ⑶ 集合X 不一定是数集,也不一定是代数结构。为直观 起见,今后称度量空间()中的元素为“点” ,例如若 x X ∈,则称为“X 中的点” 。 ⑷ 在称呼度量空间()时可以省略度量函数d ,而称“度 量空间X ” 。 1.1举例 1.11离散的度量空间:设X 是任意的非空集合,对X 中任意两点∈X ,令 ()1x y d x y =0x=y ≠??? ,当,,当,则称(X ,d )为离散度量空间。 1.12 序列空间S :S 表示实数列(或复数列)的全体,d()=1121i i i i i i ?η?η∞=-+-∑; 1.13 有界函数空间B(A):A 是给定的集合,B(A)表示A 上有界

最新泛函分析考试题集与答案

泛函分析复习题2012 1.在实数轴R 上,令p y x y x d ||),(-=,当p 为何值时,R 是度量 空间,p 为何值时,R 是赋范空间。 解:若R 是度量空间,所以R z y x ∈?,,,必须有: ),(),(),(z y d y x d z x d +≤成立 即p p p z y y x z x ||||||-+-≤-,取1,0,1-===z y x , 有2112=+≤p p p ,所以,1≤p 若R 是赋范空间,p x x x d ||||||)0,(==,所以R k x ∈?,, 必须有:||||||||||x k kx ?=成立,即p p x k kx ||||||=,1=p , 当1≤p 时,若R 是度量空间,1=p 时,若R 是赋范空间。 2.若),(d X 是度量空间,则)1,m in(1d d =,d d d +=12也是使X 成为度量空间。 解:由于),(d X 是度量空间,所以X z y x ∈?,,有: 1)0),(≥y x d ,因此0)1),,(m in(),(1≥=y x d y x d 和0) ,(1) ,(),(2≥+= y x d y x d y x d 且当y x =时0),(=y x d , 于是0)1),,(m in(),(1==y x d y x d 和0) ,(1) ,(),(2=+=y x d y x d y x d 以及若

0)1),,(m in(),(1==y x d y x d 或0) ,(1) ,(),(2=+= y x d y x d y x d 均有0),(=y x d 成立,于是y x =成立 2)),(),(y x d x y d =, 因此),()1),,(m in()1),,(m in(),(11y x d y x d x y d x y d === 和),() ,(1) ,(),(1),(),(22y x d y x d y x d x y d x y d x y d =+=+= 3)),(),(),(z y d y x d z x d +≤,因此 }1),,(),(m in{)1),,(m in(),(1z y d y x d z x d z x d +≤= ),(),()1),,(m in()1),,(m in(11z y d y x d z y d y x d +=+≤ 以及设x x x f += 1)(,0)1(1)(2 >+='x x f ,所以)(x f 单增, 所以) ,(),(1),(),(),(1),(),(2z y d y x d z y d y x d z x d z x d z x d +++≤+= ),(),(1) ,(),(),(1),(z y d y x d z y d z y d y x d y x d +++++= ),(),() ,(1) ,(),(1),(22z y d y x d z y d z y d y x d y x d +=+++≤ 综上所述)1,m in(1d d =和d d d += 12均满足度量空间的三条件, 故),(1y x d 和),(2y x d 均使X 成为度量空间。

相关文档
相关文档 最新文档