文档库 最新最全的文档下载
当前位置:文档库 › 丙烯生产工艺研究进展

丙烯生产工艺研究进展

丙烯生产工艺研究进展
丙烯生产工艺研究进展

合成气碳酸丙烯酯脱碳技术

碳酸丙烯酯脱碳技术 脱除合成变换气中的二氧化碳的方法大致可分为:物理吸收法、化学吸 收法和物理化学吸收法。碳酸丙烯酯这一物理吸收法脱除变换气中的二氧化碳。 现将其应用情况总结如下。 1碳酸丙烯酯脱碳的原理 利用在同样压力、温度下,二氧化碳、硫化氢等酸性气体在碳酸丙烯酯中的溶解度比氢、氮气在碳酸丙烯酯中的溶解度大得多来脱除二氧化碳和硫化氢。而且二氧化碳在碳酸丙烯酯中溶解度是随压力升高和温度的降低而增加的,所以,在较高的压力下,碳酸丙烯酯吸收了变换气中的二氧化碳等酸性气体,在较低的压力下二氧化碳能从碳酸丙烯酯溶液中解吸出来,使碳酸丙烯酯溶液再生,重新 恢复吸收二氧化碳等酸性气体的能力。 2工艺流程 2.11气体流程 2.1.1原料气流程 由压缩机三段送来2.3MPa1的变换气首先进入水洗塔底部与水洗泵送来的水在塔内逆流接触,洗去变换气中的大部分油污及部分硫化物,并将气体温度降到30℃以下,同时降低变换气中饱和水蒸汽含量。气体自水洗塔塔顶出来进入分离器,自分离器出来的气体进入二氧化碳吸收塔底部,与塔顶喷淋下来的碳酸丙烯酯溶液逆流接触,将二氧化碳脱至工艺指标内。净化气由吸收塔顶部出来进入净化气洗涤塔底部,与自上而下的稀液(或脱盐水)逆流接触,将净化气中夹带的碳酸丙烯酯液滴与蒸气洗涤下来,净化气由塔顶出来后进入净化气分离器,将净化气夹带的碳酸丙烯酯雾沫进一步分离,净化气由分离器顶部出11来回压缩机四段入口总管。 2.1.12解吸气体回收流程 由闪蒸槽解吸出来的闪蒸气进入闪蒸气洗涤塔,自下而上与自上而下的稀液逆流接触,将闪蒸气夹带的液滴回收下来。闪蒸气自闪蒸气洗涤段出来后进入闪蒸气分离器,将闪蒸气夹带的碳酸丙烯酯液滴进一步分离下来,闪蒸气自分离器顶部出来送碳化,脱除二氧化碳并副产碳酸氢铵后,闪蒸气回压缩机一段入口总管。由常解塔解吸出来的常解气进入常解-汽提气洗涤塔的常解气洗涤段,与自上而下的稀液逆流接触,将常解气中夹带的碳酸丙烯酯液滴与饱和于常解气中的

聚丙烯酰胺合成方法

聚丙烯酰胺合成工艺 (1)A原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 B.丙烯酰胺水溶液聚合存在的问题:①聚合热为82.8 kJ/mol,相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

碳酸丙烯酯任务书

碳酸丙烯酯(PC)脱碳填料吸收塔课程设计任务书 一、设计任务 某厂以天然气为原料生产合成氨,选择碳酸丙烯酯(PC)为吸收剂脱除变换气中的CO2,脱碳气供合成氨下一工段使用。试设计一座碳酸丙烯酯(PC)脱碳填料塔。 二、操作条件 1.合成氨原料气量(30000+200X)m3 /h【X代表学号最后两位数】 2.变换气组成为:CO2 28%;CO 2.5%;H2 49.5%;N2 16.5%;CH4 3.5%。(均为体积%,下同。其它组分被忽略); 3.要求出塔净化气中CO2的浓度不超过0.5%; 4.PC吸收剂的入塔浓度根据操作情况自选; 5.气液两相的入塔温度均选定为30℃; 6.操作压强为2.8MPa; 三、设计内容 1.设计方案的确定及工艺流程的说明; 2.填料吸收塔的工艺设计; (1) 塔填料选择; (2) 吸收塔塔径计算; (3) 吸收塔填料层高度和填料层压降计算; (4) 吸收塔诸接管口径计算; (5) 主要设计参数核算; 3.填料吸收塔主要附属内件选型 主要附属内件包括初始液体分布器、液体再分布器、填料支承板、填料压板、除雾器、气体入塔分布器等。 4.附属尺寸确定 附件包括塔顶空间、塔底空间、人孔、裙座、封头和进出管口等。 5.填料塔高度计算 6.主要附属设备的计算与选型 计算贫液冷却器的换热面积,确定吸收剂循环泵的型号。 7.塔的工艺计算结果汇总一览表; 8.工艺流程简图和主体设备工艺条件图; 9.对本设计的评述或对有关问题的分析与讨论。

(4)密度与温度的关系 C)kJ/(kg ) 10(00181.039.1p ??-+=t c (6)表面张力 (7)凝固点 2.CO 2在碳酸丙烯酯(PC )中的亨利系数 3.CO 2在碳酸丙烯酯(PC )中的溶解度数据(一) 注:表中溶解度数据单位为STPm 3CO 2/m 3PC 。 4.CO 2在碳酸丙烯酯(PC )中的溶解度数据(二)(单位为STPm 3CO 2/m 3PC )

碳酸丙烯酯(PC)脱碳填料塔的工艺设计

碳酸丙烯酯(PC)脱碳填料塔的工艺设计 学校上海工程技术大学 专业 姓名 学号 上海工程技术大学

48000t/a合成氨碳酸丙烯酯(PC)脱碳填料塔设计 目录 碳酸丙烯酯(PC)脱碳填料塔设计工艺设计任务书 3 一、设计题目 3 二、操作条件 3 三、设计内容 3 四、基础数据 4 设计依据: (5) 一、计算前的准备 (6) 1.CO2在PC中的溶解度关系 (6) 2.PC密度与温度的关系 (7) 3.PC蒸汽压的影响 (8) 4.PC的粘度 (8) 二、物料衡算 (8) 1.各组分在PC中的溶解量 (8) 2.溶剂夹带量Nm3/m3PC (9) 3.溶液带出的气量Nm3/m3PC (9) 4.出脱碳塔净化气量 (10) 5.计算PC循环量 (10) 6.验算吸收液中CO2残量为0.15 Nm3/m3PC时净化气中CO2的含量 (10) 7.出塔气体的组成 (11) 三、热量衡算 (12) C (12) 1.混合气体的定压比热容 pV C (13) 2.液体的比热容 pL Q (13) 3.CO2的溶解热 s T (14) 4.出塔溶液的温度 1L 5.最终的衡算结果汇总 (15) 四、设备的工艺与结构尺寸的设计计算 (16) (一)确定塔径及相关参数 (16) 五、填料层高度的计算 (18) 六、填料层的压降 (26) 七、附属设备及主要附件的选型 (26) 1.塔壁厚 (26) 2.液体分布器 (26) 3.除沫器 (26) 4.液体再分布器 (27) 5.填料支撑板 (27) 6.塔的顶部空间高度 (27)

八、设计概要表 27 九、对本设计的评价 28 参考文献 (28)

碳酸丙烯酯

碳酸丙烯酯 目录 基本信息 化学名称:丙二醇碳酸酯, 碳酸丙烯酯 英文化学名:Propylene carbonate 其实,Propylene Carbonate所对应的中文规范名称并非“碳酸丙烯酯”,从结构上我们可知,其中并没有“烯”的不饱和键(只有酯的碳氧双键),且其为环状结构,而“碳酸丙烯酯”的叫法并未反映出这种结构。究其原因在于“Propylene ”一词具有“丙烯”和“亚丙基”这两种意思,“碳酸丙烯酯”恐怕是在对其结构并不了解的情况下仅根据词义进行的汉化,后来在网络上反而逐渐演变成将错就错的主流叫法了……规范地说,Propylene Carbonate可以翻译成碳酸亚丙基酯、碳酸丙二醇酯后者1,2-丙二醇碳酸酯,或者4-甲基-2,5-二氧戊环-1-酮等。 性质与用途 分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂等。 特性分子量:102.09 物理性质:外观无色透明液体 熔点-48.8 ℃

沸点242℃ 闪点132℃ 相对密度1.2069 饱和蒸汽压0.004kpa 溶解性:溶于水,可混溶于丙酮、醇,乙醚、苯、乙酸乙酯等有机溶剂. 折光率1.4189 比重1.189 粘度2.5mPa.s 介电常数69c/v.m 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口 LD50=2,9000 mg/kg. 用途·电子工业上可作高能电池及电容器的优良介质·高分子工 业上可作聚合物的溶剂和增塑剂。·化工行业是合成碳酸二甲酯的主要原 料也可用于脱除天然气、石油裂解气中二氧化碳和硫化氢。·另外:还可 用于纺织、印染等工业领域。 包装 200公斤镀锌铁桶包装,也可按顾客要求进行包装。储运应储 存于阴凉、干燥、通风良好的场所,钢瓶应垂直放置,避免受热和爆晒 质量指标 (质量体系符合ISO9001:2000标准) 指标优级品一级品合格品 含量 99.90% min 99.50% min 99.0% min 水分 200 ppm max 0.10% max 0.15% max 色度(铂-钴) 10 20 40 密度(20°C) 1.200±0.005 g/cm3 1.200±0.005 g/cm3 1.200±0.005 g/cm3 Cl 1 ppm max -- -- SO4 1 ppm max -- -- K 1 ppm max -- -- Na 1 ppm max -- -- Ca 1 ppm max -- -- Fe 1 ppm max -- -- Pb 1 ppm max -- -- 包装、储运 镀锌铁桶或烤漆桶包装,每桶净重250±0.5千克,亦可采用ISO TANK 或按照客户的要求进行包装。

丙烯酰胺生产废水的处理工艺

丙烯酰胺生产废水的处理工艺 摘要丙烯酰胺之聚合物和衍生物广泛用于石油、医药、造纸、纺织、采矿、水处理、沙化土壤改良、种子包衣、养殖业、食品加工等行业,号称百业助剂,它是以石化产品丙烯腈为原料加工而成的。废水主要由发酵液膜分离工序与丙烯酰胺精制工序产生,目前采用的处理方案还是传统一般的废水处理技术,整个系统主要由厌氧和好氧两个步骤组成。但废水中含有大量的染菌体悬浮物,这部分悬浮物如果不去除,将会对后续的工艺造成很大的影响。另外废水中的氨氮量高,常规处理达不到排水要求。 关键词丙烯酰胺;生产废水;处理工艺 1 丙烯酰胺废水处理背景 丙烯酰胺之聚合物和衍生物广泛用于石油、医药、造纸、纺织、采矿、水处理、沙化土壤改良、种子包衣、养殖业、食品加工等行业,号称百业助剂,它是以石化产品丙烯腈为原料加工而成的。 废水主要由发酵液膜分离工序与丙烯酰胺精制工序产生,目前采用的处理方案还是传统一般的废水处理技术,整个系统主要由厌氧和好氧两个步骤组成。但废水中含有大量的染菌体悬浮物,这部分悬浮物如果不去除,将会对后续的工艺造成很大的影响。另外废水中的氨氮量高,常规处理达不到排水要求。 2 丙烯酰胺废水处理方法 丙烯酰胺生产废水的处理方法,包括调节池、高效混凝沉淀器和生化处理,其特征在于:调节池中安装一套在线pH计,连续检测进水pH值;高效混凝沉淀器适用于废水快速混凝处理的高效水质净水装置。废水通过高效混凝沉淀器处理后,去除废水中大部分的悬浮物;所述的生化处理是对预处理后的废水进行A2/O生化处理,A2/O工艺的生物反应器池分为厌氧段、缺氧段、好氧段。A2/O 脱氮工艺是通过厌氧、缺氧和好氧交替变化的生物环境完成脱氮反应的。 采用国内领先的高效混凝沉淀技术,去除废水中大部分的悬浮物。后序采用A2/O工艺,它是在A—O工艺的基础上开发,旨在能够脱氮的工艺。 A2/O工艺的生物反应器池分为厌氧段、缺氧段、好氧段,A2/O脱氮工艺是通过厌氧、缺氧和好氧交替变化的生物环境完成脱氮反应的。在厌氧条件下,通过水解酸化反应,将有机氮转换为氨氮。在缺氧条件下,反硝化菌利用污水中的有机碳作为电子工供体,以硝酸盐作为电子受体“无氧呼吸”,将回流液中硝态氮还原成氮气释放出来。完成反硝化过程。而在好氧条件下,硝化菌把污水中的氨氮氧化成硝酸盐,再向缺氧池回流,为脱氮做好必要的准备。 2.1丙烯酰胺废水处理工艺流程示意图(如图1) 2.2工艺简要说明 丙烯酰胺生产及生活废水混合进入中和调节池,用液碱或稀盐酸进行pH调节,当有染菌废水流入时,进水切入事故池,事故池的废水按比例进入中和调节池。调节池出水泵入高效混凝沉淀器,本工艺采用一步提升后均为自流,通过加药在高效混凝沉淀器内去除掉水中大部分悬浮物。出水进入二级UASB反应器,将水中主要有机污染物分解成小分子中间产物,同时加入特殊菌种,将废水中的COD分解转化。UASB的出水进入A/O反应池,经过硝化和反硝化,在降低COD 的同时达到降低氨氮的目的。泥水混合液经二沉池分离后,废水达到排水标准排入管网,污泥回流至A/O反应池。

碳酸丙烯酯法脱碳工艺工程设计DOC 66页.doc

河南城建学院本科毕业设计设计说明 设计说明 脱碳工段是合成氨工程中必不可少的工段之一,二氧化碳吸收塔和溶液再生塔是脱碳过程中不可缺少的塔设备。 本文权衡众多合成氨脱碳方法之利弊,最终选择碳酸丙烯酯脱碳法。首先进行工艺流程分析并根据工艺参数及有关标准进行二氧化碳吸收塔和解析塔内的物、热量衡算;其次就二氧化碳吸收塔、溶液再生塔等设备利用物理吸收机理、传质传热方程、溶液物性数据等方面的知识进行塔体的总体结构设计和计算,设计出二氧化碳吸收塔的塔径为3.4m,塔高为30m,由于解吸塔塔径过粗,使用两塔进行解吸,两塔各操作条件相同,塔径为2.4m,填料层高度为16m,然后对二氧化碳吸收和解吸塔进行了必要的强度校核;最后对脱碳工段车间结构布置进行合理的设计。 本设计作为理论上的准备工作,为分析工艺流程、设备设计上存在的问题、确定问题的根源、提出解决问题的合理方案准备了充分的理论依据。 关键词:碳酸丙烯酯法;脱碳工艺;工程设计

Design elucidation Decarbonizing section is one of the absolutely necessary sections in the Synthetic Ammonia, and the Carbon dioxide absorption tower and the solution regeneration tower are indispensable tower equipment in the Synthetic Ammonia. This paper tradeoff advantages and disadvantages of much approach to decarbonization, propylene carbonate (PC) decarboniza-tion are selected finally. The technological process was analyzed, and the material and heat was balanced according to parameters and relevant standards firstly. The tower body general structure was designed calculation by using physical absorption Mechanism, mass transfer and heat transfer equation, solution -physical data stc secondly.The diameter of absorption tower is 3.4m, the height of tower is 30m, And then the strength of the Carbon dioxide absorption tower is ecked. The decarbonizing section structural arrangement was reasonable design finally. As the theoretical preparation work, this designing prepare sufficient theoretical basis for people to analysis the problems of technological process, equipment design, determined root of problems, posing reasonable plan to solve problems. Keywords:Decarbonization process; Carbon dioxide removal with PC method; Proeess design

甲醇制丙烯工艺

甲醇制丙烯工艺 与甲醇制烯经同时生产乙烯和丙烯不同,甲醇制丙烯工艺主要生产丙烯,副产LPG和汽油;反应中生成的乙烯和丁烯返回系统再生产,作为歧化制备丙烯的原料。 1、鲁奇公司(Lurgi)的MTP工艺 1996年鲁奇公司使用南方化学公司的高选择性沸石基改性ZSM-5催化剂,开始研发MTP工艺。1999年,鲁奇公司在德国法兰克福研发中心建立了一套单管绝热固定床反应装置,装置设计规模为数百克/时甲醇处理能力,主要完成了催化剂性能测试,并验证了MTP设计理念、优化了反应条件。2000年,鲁奇公司在法兰克福研发中心建立了三管(3x50%能力)绝热固定床反应装置,装置处理甲醇能力为1千克/小时,该装置打通了MTP总工艺流程,模拟了系统循环操作,进一步优化了反应条件,并为MTP示范厂的建立积累了大量基础数据。2002年1月,鲁奇公司在挪威Tjeldbergodden地区的Statoil甲醇厂建成甲醇处理能力为360千克/天的MTP示范厂。2004年5月,示范工作结束。通过测试,催化剂在线使用寿命满足8000小时的商业使用目标;产物丙烯纯度达到聚合级水平,并副产高品质汽油。 鲁奇公司MTP技术特点是甲醇经两个连续的固定床反应器,第一个反应器中甲醇首先转化为二甲醚,第二个反应器中二甲醚转化为丙烯。该技术生成丙烯的选择性高,结焦少,丙烷产率低。整个MTP工艺流程对丙烯的总碳收率约为71%。催化剂由德国南方化学公司生产。 鲁奇公司MTP反应器有两种形式:即固定床反应嚣(只生产丙烯)和流化床反应器(可联产乙烯/丙烯)。

2008年3月,鲁奇公司与伊朗Fanavaran石化公司正式签署MTP技术转让合同,装置规模为10万吨/年。 2008年9月,LyondeIIBasell,特立尼达多巴哥政府,特立尼达多巴哥国家气体公司(NGC),特立尼达多巴哥国家能源公司(NEC)和鲁奇(Lurgi)公司联合宣布,已经签署了一项项目发展协议,共同建设和运营在特立尼达多巴哥的一体化甲醇制丙烯(MTP)和聚丙烯(PP)项目。通过三条世界级的工厂,包括大规模天然气制甲醇和MTP以及PP工厂,该项目最终将实现49万吨PP产能。其中,大规模甲醇和MTP的工艺分别由鲁奇公司提供,而丙烯聚合将利用巴塞尔公司的Spherizone工艺。 采用鲁奇MTP技术的神华宁煤50万吨/年煤基聚丙烯项目于2010年12月打通全流程,2011年4月底产出终端合格聚丙烯产品,由试车阶段全面进入试生产阶段,并于5月实现首批产品外运销售。 2、中国化学工程集团、清华大学和淮化集团联合开发的FMTP工艺 流化床甲醇制烯烃(FMTP)技术由中国化学工程集团公司、清华大学和淮化集团联合开发,三方在安徽淮南建设甲醇处理量3万吨/年的流化床甲醇制丙烯(FMTP)中试装置,于2008年底建成,截至2009年8月,该装置己完成11吨催化剂生产任务,进行了二次流态化试车,全面打通了系统工艺流程。 该技术采用SAPO-18/34分子筛催化剂和流化床反应器,与MTO工艺一样。但是通过把生成物中的丙烯分离出之后,使C2组分和C4以上组分进入一个独立的烯烃转化反应器使其转化成丙烯。 该技术可调节丙烯/乙烯比例,从1.2:1到1:0(全丙烯产出)均可实现。据称,利用该技术生产以丙烯为目标产物的烯烃产品,丙烯总收率可达77%,原料甲醇

聚丙烯酰胺合成工艺

聚丙烯酰胺聚合工艺 (1)理论基础丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: C H O NH2 H2C 引发剂 CH2 H C C O NH2 n 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 C H O NH2 H2C 碱 阴离子聚合反应 CH2 CH2CONH n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 丙烯酰胺水溶液聚合为聚丙烯酰胺水溶液时,聚合热为82.8 kJ/mol。相对来说放出的热量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之一。其次一个问题是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。第三个问题是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。第四个问题是如何自由控制产品分子量。 丙烯酰胺于25 o C, pH=1时链增长速率常数k p与链终止速率常数k t分别为(1.72±0.3)×104和(16.3±0.7)×106Lmol-1s-1,与动力学链长成正比的k p/k t1/2=4.2±0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

×107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱NH 3生成酰亚胺基团所致。 C C 22O O C C O O H NH 3 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范围,须加有链转移剂,链转移常数如表所示。

碳酸二乙酯工艺流程

一、碳酸二乙酯合成 1、来自萃取塔的碳酸丙烯酯、乙醇及来自装置外的的催化剂经静态混合器X201送入反应精馏塔T201中部,工艺物料在T201塔中进行反应,生成碳酸丙烯酯。塔顶出来的气相粗碳酸二乙酯和乙醇共沸物,经E201冷凝器进入V201回流罐,开启P202反应精馏塔回流泵,打全回流。当T201塔内达到一定条件,分析合格,开启P202出口阀门去T202塔的进料管线。T201塔底粗丙二醇经P201精馏塔出料泵送至脱轻塔。 2、来自PC合成工段的PC和来自T201塔的碳酸二乙酯、乙醇进入T202塔EMC萃取精馏塔,塔顶气相乙醇,经E202冷凝器进入V202,开启P204回流泵,打全回流。当T202塔内达到一定条件,开启P204乙醇去反应精馏塔T201.塔斧粗品碳酸二乙酯经P203出料泵打入T203。 3、来自T202的粗品碳酸二乙酯进入T203进行精制,塔顶气相碳酸二乙酯经E203冷凝器进入V203回流槽,开启P206回流泵,打全回流。当塔内达到一定条件,开启P206精品碳酸二乙酯去罐区。塔斧催化剂经P205送至T201 二、丙二醇合成 来自反应精馏塔图T201塔斧的粗丙二醇和来自T302塔斧的丙二醇精馏塔的粗丙二醇一起送入丙二醇脱轻塔T301中上部进行精馏分离,塔顶气相丙二醇物经E301冷却器进入V301回流槽,经P302回流泵打入T301循环利用。当V301达到一定条件时,开启P302阀口

去T303管线。T301塔底粗丙二醇经P301打入T302丙二醇精馏塔。塔顶气相产物经E302冷却器进入V302回流槽,开启P304打全回流。当塔内达到一定条件开启P304去T301的管线。 精品丙二醇经测线出料泵P305去丙二醇产品灌区。 来自T301的乙醇进入T303乙醇回收塔,塔顶乙醇经E303 冷却器进入V303回流槽,经回流泵进入T303打全回流。当塔内达到一定条件,开启回流泵乙醇至反应精馏塔。塔底乙醇混合物经P306回流泵至锅炉。

丙烯及合成工艺发展

丙烯及合成工艺发展 物性简介 丙烯(propylene,CH2=CHCH3)常温下为无色、无臭、稍带有甜味的气体。分子量42.08,密度0.5139g/cm(20/4℃),冰点-185.3℃,沸点-47.4℃。易燃,爆炸极限为2%~11%。不溶于水,溶于有机溶剂,是一种属低毒类物质。丙烯是三大合成材料的基本原料,主要用于生产丙烯腈、异丙烯、丙酮和环氧丙烷等。用于制丙烯腈、环氧丙烷、丙酮等。用以生产多种重要有机化工原料、生成合成树脂、合成橡胶及多种精细化学品等。 合成工艺发展 天然气 首先由天然气制合成气,然后利用合成气制得甲醇,即利用鲁奇的MegaMethanol甲醇合成工艺。鲁奇新开发的MTP制丙烯工艺采用稳定沸石催化剂在固定床反应器中进行,工艺催化剂为Sudchemie(南方化学)提供的低生焦率和低丙烷产率且丙烯选择性好的转化催化剂。由Meg习Nlethanol工艺制得的甲醇进料先经过一个二甲醚(I ME)绝热预反应器,使甲醇转化为二甲醚和水,接着甲醇/二甲醚/水混合液流进人一级MTP反应器,经过二、三级MTP反应器继续反应,产品经冷却分离即得气体产品、有机液体和水。气体产品经压缩除去痕量水、CO:和二甲醚即可得到纯度97%的化学级丙烯,此外还副产燃料气、LPG和汽油。 煤 以煤为能源进行化工产业技术创新战略联盟组织开发的流化床甲醇制丙烯(FMTP)工业技术取得重大突破。这项具有完全自主知识产权、达到世界领先水平的煤化工关键技术,填补了我国煤制丙烯技术空白,FMTP工业技术的开发成功,实现了煤制丙烯技术的重大突破。FMTP工业试验装置甲醇年处理量达3万吨,截至目前,该装置已经过470小时全流程的连续、稳定、安全运行,主要指标达到世界领先水平。继续对FMTP工业技术进行系统优化,可尽快将其应用到工业装置中。

碳酸丙烯酯

碳酸丙烯酯 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

碳酸丙烯酯 目录 基本信息 化学名称:丙二醇碳酸酯, 碳酸丙烯酯 英文化学名:Propylene carbonate 其实,Propylene Carbonate所对应的中文规范名称并非“碳酸丙烯酯”,从结构上我们可知,其中并没有“烯”的不饱和键(只有酯的碳氧双键),且其为环状结构,而“碳酸丙烯酯”的叫法并未反映出这种结构。究其原因在于“Propylene ”一词具有“丙烯”和“亚丙基”这两种意思,“碳酸丙烯酯”恐怕是在对其结构并不了解的情况下仅根据词义进行的汉化,后来在网络上反而逐渐演变成将错就错的主流叫法了……规范地说,Propylene Carbonate可以翻译成碳酸亚丙基酯、碳酸丙二醇酯后者,或者4-甲基-2,5-二氧戊环-1-酮等。

性质与用途 分子式:C4H6O3 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。特别是用来吸收天然气、石化厂原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂等。 特性分子量:102.09 物理性质:外观无色透明液体 熔点-48.8 ℃ 沸点242℃ 闪点132℃ 相对密度1.2069 饱和蒸汽压0.004kpa 溶解性:溶于水,可混溶于丙酮、醇,乙醚、苯、乙酸乙酯等有机溶剂. 折光率1.4189 比重1.189 粘度2.5mPa.s 介电常数69c/v.m 毒理数据:动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg.

聚丙烯酰胺合成方法

聚丙烯酰胺合成工艺 ( 1) A 原理:丙烯酰胺在自由基引发剂作用下经自由基聚合反应合成聚丙烯酰胺: O引发剂H H2C C C NH2CH 2C n H C O NH 2 丙烯酰胺在醇或吡啶溶液中,经强碱催化剂如烷氧钠的作用下,经阴离子聚合反应则生成聚β-丙酰胺。 O碱 H2C C C NH2CH2 CH2 CONH H阴离子聚合反应n 工业生产中采用自由基聚合反应以生产聚丙烯酰胺,所用的自由基引发剂或引发剂来源种类甚多,包括过氧化物、过硫酸盐、氧化-还原体系、偶氮化合物、超 声波、紫外线、离子气体、等离子体、高能辐射等。 工业生产中采用的聚合方法,主要是溶液聚合法和反相乳液聚合法,以前者应用最为广泛。此外也有采用γ-射线辐照引发固相聚合的报道。 B.丙烯酰胺水溶液聚合存在的问题:①聚合热为82.8 kJ/mol,相对来说放出的热 量甚大,因此水溶液聚合法中如何及时导出聚合热成为生产中的重要技术问题之 一。②是如何降低残余单体含量。因为丙烯酰胺单体毒性甚大,为了减少其危害性,特别是用于水质处理时对残余单体的含量要求低于0.1%。③是如何将聚合反应得到的高粘度流体或凝胶转变为固体物,即干燥脱水问题。④是如何自由控制产品分子量。 丙烯酰胺于 25 o C, pH=1 时链增长速率常数k p与链终止速率常数k t分别为( 1.72± 0.3)× 104和( 16.3±0.7)× 106-1 -1,与动力学链长成正比的k p t1/2 Lmol s/k=4.2± 0.2,此数值甚高,所以不存在链转移时,聚丙烯酰胺可获得平均分子量超过2

× 107的产品。 丙烯酰胺在水溶液中进行自由基聚合时,可能产生交联生成不溶解的聚合物,当聚合反应温度过高时,此现象更为严重。理论解释认为歧化终止生成的聚合物端 基具有双键,参与聚合反应或发生向聚合物进行链转移所致。此外引发剂过硫酸 盐与聚丙烯酰胺加热时也会导致生成凝胶。 有人研究了工业产品聚丙烯酰胺的含氮量,发现含氮量低于理论值,认为这是由于分子内脱 NH 3生成酰亚胺基团所致。 COCO C C NH3 NH2 NH2O N O H 高纯度丙烯酰胺易聚合为超高分子量的聚丙烯酰胺,为了生产要求的分子量范 围,须加有链转移剂,链转移常数如表所示。 链转移剂温度,o C链转移常数× 104 单体250.0786 ±0.0107 单体400.120 ±0.0328 聚丙烯酰胺<50可忽略 H2O25近于零 H2O2255 K S O 825 4.12 ±2.38 22 K2S2O84026.3 ±7.08 HSO751700 3 CH3OH300.13 (CH3)2CHOH5019

合成氨碳酸丙烯酯(PC)脱碳填料塔设计

合成氨碳酸丙烯酯(PC)脱碳填料塔设计

碳酸丙烯酯(PC)脱碳填料塔的工艺设计 学校上海工程技术大学 专业环境工程

48000t/a合成氨碳酸丙烯酯(PC)脱碳填料塔设计 目录 碳酸丙烯酯(PC)脱碳填料塔设计工艺设计任务书 4 一、设计题目4 二、操作条件4 三、设计内容4 四、基础数据5 设计依据: (6) 一、计算前的准备 (6) 1.CO2在PC中的溶解度关系 (6) 2.PC密度与温度的关系 (7) 3.PC蒸汽压的影响 (8) 4.PC的粘度 (8) 二、物料衡算 (8) 1.各组分在PC中的溶解量 (8) 2.溶剂夹带量Nm3/m3PC (9) 3.溶液带出的气量Nm3/m3PC (9)

4.出脱碳塔净化气量 (10) 5.计算PC循环量 (10) 6.验算吸收液中CO2残量为0.15 Nm3/m3PC 时净化气中CO2的含量 (11) 7.出塔气体的组成 (11) 三、热量衡算 (12) 1.混合气体的定压比热容pV C (12) 2.液体的比热容pL C (13) 3.CO2的溶解热s (14) 4.出塔溶液的温度 T (14) 1L 5.最终的衡算结果汇总 (15) 四、设备的工艺与结构尺寸的设计计算 (16) (一)确定塔径及相关参数 (16) 五、填料层高度的计算 (18) 六、填料层的压降 (26) 七、附属设备及主要附件的选型 (26) 1.塔壁厚 (26) 2.液体分布器 (26) 3.除沫器 (26) 4.液体再分布器 (27) 5.填料支撑板 (27) 6.塔的顶部空间高度 (27)

八、设计概要表 27 九、对本设计的评价 28 参考文献 (28)

年产5000吨丙烯酰胺单体合成实用工艺设计

第一章概述 1.1 丙烯酰胺的简介 丙烯酰胺是一种有机化合物,别名AM;纯品为白色结晶固体,易溶于水、甲醇、乙醇、丙醇,稍溶于乙酸乙酯、氯仿,微溶于苯,在酸碱环境中可水解成丙烯酸。职业性接触主要见于丙烯酰胺生产和树脂、黏合剂等的合成,在地下建筑、改良土壤、油漆、造纸及服装加工等行业也有接触机会。日常生活中,丙烯酰胺可见于吸烟、经高温加工处理的淀粉食品及饮用水中。 [毒性] 丙烯酰胺属中等毒类,对眼睛和皮肤有一定的刺激作用,可经皮肤、呼吸道和消化道吸收,在体内有蓄积作用,主要影响神经系统,急性中毒十分罕见。密切大量接触可出现亚急性中毒,中毒者表现为嗜睡、小脑功能障碍以及感觉运动型多发性周围神经病。长期低浓度接触可引起慢性中毒,中毒者出现头痛、头晕、疲劳、嗜睡、手指刺痛、麻木感,还可伴有两手掌发红、脱屑,手掌、足心多汗,进一步发展可出现四肢无力、肌肉疼痛以及小脑功能障碍等。 丙烯酰胺慢性毒性作用最引人关注的是它的致癌性。丙烯酰胺具有致突变作用,可引起哺乳动物体细胞和生殖细胞的基因突变和染色体异常。动物试验研究发现,丙烯酰胺可致大鼠多种器官肿瘤,如乳腺、甲状腺、睾丸、肾上腺、中枢神经、口腔、子宫、脑下垂体肿瘤等。但目前还没有充足的人群流行病学证据表明,食物摄入丙烯酰胺与人类某种肿瘤的发生有明显相关性。国际癌症研究机构(IARC)对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A),即人类可能致癌物。其主要依据为,丙烯酰胺在动物和人体均可代谢转化为致癌活性代谢产物环氧丙酰胺。 1.2 丙烯酰胺生产工艺简介 1.2.1传统方法 硫酸水合法先使丙烯腈于100℃以下水解成丙烯酰胺硫酸盐,再中和得丙烯酰胺(AM)。初期通过丙烯酰胺均聚制得了非离子型聚丙烯酰胺,产品比较单一。不久开发了用碱部分水解(后水解法)的阴离子型聚硫酸水合法先使丙烯腈于100℃以下水解成丙烯酰胺硫酸盐,再中和得丙烯酰丙烯酰胺。 铜催化水合法采用丙烯腈在铜基催化剂存在下经水合反应来制备丙烯酰胺,所述方法

碳酸丙烯酯

碳酸丙烯酯 化学名称:丙二醇碳酸酯, 碳酸丙烯酯 英文化学名:Propylene carbonate 分子式:C4H6O3 CAS:108-32-7 EINECS:203-572-1 特性分子量:102.09 物理性质:外观无色透明液体 熔点-48.8 ℃ 沸点242℃ 闪点132℃ 相对密度1.2069 溶解度参数[2]δ=14.5 饱和蒸汽压0.004kpa 溶解性:溶于水,可混溶于丙酮、醇,乙醚、苯、乙酸乙酯等有机溶剂. 折光率1.4189 比重1.189 粘度2.5mPa.s 介电常数69c/v.m 性质与用途 无色无气味,或淡黄色透明液体,溶于水和四氯化碳,与乙醚,丙酮,苯等混溶。是一种优良的极性溶剂。本产品主要用于高分子作业、气体分离工艺及电化学。特别是用来吸收天然气、石化厂合成氨原料其中的二氧化碳,还可用作增塑剂、纺丝溶剂、烯烃和芳烃萃取剂

等。 毒理数据 动物实验经口服或皮肤接触均未发现中毒.大鼠经口LD50=2,9000 mg/kg. 质量标准项目指标优级品一级品外观无色或淡黄色液体无色或淡黄色液体含量, %≥99.5≥99.0 水份, %≤0.3≤0.5 溴化物(以溴离子计), %≤0.01≤0.1 密度20oC(g/cm3)1.200±0.0051.200±0.005 用途·电子工业上可作高能电池及电容器的优良介质·高分子工业上可作聚合物的溶剂和增塑剂。·化工行业是合成碳酸二甲酯的主要原料也可用于脱除天然气、石油裂解气中二氧化碳和硫化氢。·另外:还可用于纺织、印染等工业领域。 包装200公斤镀锌铁桶包装,也可按顾客要求进行包装。储运应储存于阴凉、干燥、通风良好的场所,钢瓶应垂直放置,避免受热和爆晒

丙烯酰胺的一些知识

丙烯酰胺的一些知识 丙烯酰胺是一种白色晶体化学物质,是生产聚丙烯酰胺的原料。2017年10月27日,世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,丙烯酰胺在2类致癌物清单中。国际癌症研究机构(IARC)1994年对其致癌性进行了评价,将丙烯酰胺列为2类致癌物(2A)即人类可能致癌物,其主要依据为丙烯酰胺在动物和人体均可代谢转化为其致癌活性代谢产物环氧丙酰胺。 几乎所有高温(>120℃)烹调过的含淀粉食品都可能含有丙烯酰胺,丙烯酰胺是由“还原糖”(如葡萄糖、果糖等)和某些氨基酸(主要是天冬氨酸)在油炸、烘培和烤制过程中,通过“美拉德反应”产生的。主要是天冬氨酸发生反应,伴随着诱人的颜色和气味,有毒的丙烯酰胺也悄无声息地藏在了食物里。食品中的丙烯酰胺含量受食品原料、加工烹调方式和条件等因素影响差异较大。丙烯酰胺广泛存在于薯条、薯片、饼干、面包,甚至烧炒的菜等常见食物中。丙烯酰胺是可能致癌的一种物质,它危害神经系统、婴儿早期发育和男性生殖健康。 事实上,在日常生活中,食物里基本都有碳水化合物和蛋白质,在加热过程中都不可避免地产生丙烯酰胺。薯片、薯条、油条、油饼、咖啡中都存在丙烯酰胺。 正因如此,世界卫生组织评估后将它定为2A类致癌物,也就是可能使人致癌。 据了解,2005年2月,联合国粮农组织和世界卫生组织联合食品添加剂专家委员会根据已有资料,对食品中的丙烯酰胺进行了系统的风险评估。同年3月,世界卫生组织对发布了总结报告,指出某些食品中含有的丙烯酰胺可能会成为公共卫生问题,因为根据动物实验表明,丙烯酰胺能够致癌,但是从动物实验

推导到人体,以及对丙烯酰胺人体的致癌机理仍存在很多不确定因素,有待进一步研究。 美国食品技术协会高级会员、科普工作者表示,作为一个老生常谈的话题,丙烯酰胺存在于很多食物中。日常生活中食用的各种高淀粉食物在低水分下高温处理,都很容易产生丙烯酰胺,本次被检测的薯片就是其中一类。具体含量受各种因素影响,含量波动很大。丙烯酰胺是2A类致癌物,但是食物中的这些含量能增加多少风险,没有数据。 所以检出丙烯酰胺不必恐慌,但是“致癌”两个字,令不少人感觉恐慌,但抛去剂量谈毒性,都是“耍流氓”。 数据显示,从24个国家和地区获得的数据表明(2002-2004年),丙烯酰胺含量较高的三类食品平均值从高到低是:咖啡及其类似制品,平均含量为0.509mg/kg,最高含量为7.3mg/kg;高温加工的土豆制品(包括薯片、薯条等),平均含量为0.477mg/kg,最高含量为5.312mg/kg;早餐谷物类食品,平均含量为0.313mg/kg,最高含量为7.834mg/kg。 而且由于饮食习惯不同,每个国家和地区的数据也有差异,比如我国香港的数据显示,薯片中的丙烯酰胺含量最高,为每千克1500至1700微克。虽然从数据来看,一些食物中的丙烯酰胺含量还不低,但其实人们总体上吃进去的丙烯酰胺并不多。与其针对薯片中的丙烯酰胺,倒不如重视薯片中油与盐的高含量。 中国人摄入丙烯酰胺最主要的来源是炒菜,根据目前的科学证据,没必要对这些食物中的丙烯酰胺感到特别恐慌,所有物质有没有毒全在于能吃进去多少。有科普作者建议大家做到食物多样化(不偏食)、均衡营养、少吃高温煎炸烘烤的

南开大学科技成果——固体催化剂制备碳酸丙烯酯工艺

南开大学科技成果——固体催化剂制备碳酸丙 烯酯工艺 一、产品环状碳酸酯的应用 碳酸丙烯酯高能电池电解液.高效溶剂仅用作高能电池及电容器的优良介质,世界市场所需碳酸丙烯酯200-300万吨。酯交换法生产碳酸二甲酯的所需配套原料碳酸丙烯酯达数十万吨。而目前国内生产量在1000-2000吨,供不应求,市场前景十分广阔。随着社会对绿色环保的重视,许多工艺会被清洁、环境友好工艺所代替,必然进一步加大碳酸丙烯酯的市场需求。因其下游产品如碳酸二甲酯、聚碳酸酯、聚氨酯的不断推广应用,其市场需求量还要不断增加。本产品碳酸丙烯酯是一种高效溶剂和优良抽提剂,性质稳定、无毒、纯的溶剂对碳钢设备没有腐蚀,它对高分子化合物具有良好的溶解能力。目前最受人重视的是用来脱除天然气、石油裂解气、油田气、合成氨变换气中的二氧化碳和硫化氢,效果显著。在电子工业上可作高能电池及电容器的优良介质,在高分子工业上可作聚合物的溶剂和增塑剂等。也可以作油性溶剂以及烯烃和芳烃的萃取剂。在纺织工业上可用作合成纤维的助剂和固定剂、纺丝溶剂或水溶剂染料颜料分散剂;此外,它还是一种用途极其广泛的有机合成原料和中间体,如酯交换法生产碳酸二甲酯的原料。 二、产品市场分析 仅用作高能电池及电容器的优良介质,世界市场所需碳酸丙烯酯200-300万吨。酯交换法生产碳酸二甲酯的所需配套原料:碳酸丙烯

酯达数十万吨。而目前国内生产量在1000-2000吨,供不应求,市场前景十分广阔。随着社会对绿色环保的重视,许多工艺会被清洁、环境友好工艺所代替,必然进一步加大碳酸丙烯酯的市场需求。因其下游产品如碳酸二甲酯、聚碳酸酯、聚氨酯的不断推广应用,其市场需求量还要不断增加。现国内市场价格为7000-8000元/吨。相关原料价格:环氧丙烷7500元/吨和二氧化碳300--700元/吨。 三、现有技术情况 利用二氧化碳与环氧化物加成反应合成环状碳酸酯早已实现了工业化,目前的研究主要集中在寻找高效均相催化剂以及非均相催化剂。现行工艺大多采用均相催化过程,存在着催化剂的回收、循环使用上的困难;且产物必需经过多步蒸馏等过程分离提纯,既耗时、耗能,又增加设备的投资。此外,为制得高质量的产品和提高环氧化物的转化率,许多工艺还得使用挥发性的有机溶剂。这一反应的非均相催化过程尚未实现产业化,主要受非均相催化剂的活性和稳定性(即催化剂的使用寿命)所限。 四、所属技术领域: 碳化学与化工及绿色催化技术,可再生资源的化学转化利用。 五、选题依据: 基于人们对资源和环境问题的关注及实现可持续发展的社会需求,以消除污染、合理利用资源、实现可持续发展为目标的绿色化学已成为当前化学研究的热点和前沿。二氧化碳作为一种典型的可再生资源,具有无毒、无腐蚀性、阻燃、化学惰性,大量存在于自然界中

相关文档