文档库 最新最全的文档下载
当前位置:文档库 › 已知应力状态如图所示

已知应力状态如图所示

已知应力状态如图所示
已知应力状态如图所示

关于应力集中的概念及其避免措施的讨论

关于应力集中的概念及其避免措施的讨论 一.摘要 材料构件的应力集中现象危害很大,应力集中会引起脆性材料断裂;使物体产生疲劳裂纹,严重影响结构的安全性。因此,研究应力集中的避免措施具有重要的意义。生活中各种各样的例子也证明了其研究的重要性。为避免应力集中造成构件破坏,可采取消除尖角、改善构件外形、局部加强孔边以及提高材料表面光洁度等措施;另外还可对材料表面作喷丸、辊压、氧化等处理,以提高材料表面的疲劳强度。 二、关键词 应力应力集中措施 三、引言 现今社会,由于应力集中造成构件断裂,产生疲劳,对结构安全危害大。了解应力集中,并找出其避免措施,对人们的生活具有重大的意义。 四、正文 首先,先让我们了解一下应力与应力集中的概念,应力即受力物体截面上内力的集度,即单位面积上的内力。公式记为σ=f/s (其中,σ表示应力;δfj 表示在j 方向的施力;δai 表示在i 方向的受力面积)。材料在交变应力作用下产生的破坏称为疲劳破坏。通常材料承受的交变应力远小于其静载下的强度极限时,破坏可能发生。另外材料会由于截面尺寸改变而引起应力的局部增大,这种

现象称为应力集中。对于由脆性材料制成的构件,应力集中现象将一直保持到最大局部应力到达强度极限之前。因此,在设计脆性材料构件时,应考虑应力集中的影响。对于由塑性材料制成的构件,应力集中对其在静载荷作用下的强度则几乎无影响。所以,在研究塑性材料构件的静强度问题时,通常不考虑应力集中的影响。 承受轴向拉伸、压缩的构件,只有在寓加力区域稍远且横截面尺寸又无剧烈变化的区域内,横截面上的应力才是均匀分布的。然而实际工程构件中,有些零件常存在切口、切槽、油孔、螺纹等,致使这些部位上的截面尺寸发生突然变化。如开有圆孔和带有切口的板条,当其受轴向拉伸时,在圆孔和切口附近的局部区域内,应力的数值剧烈增加,而在离开这一区域稍远的地方,应力迅速降低而趋于均匀。这时,横截面上的应力不再均匀分布,这已为理论和实验证实。 图2-31 图2-32 在静荷载作用下,各种材料对应力集中的敏感程度是不同的。像低碳钢那样的塑性材料具有屈服阶段,当孔边附近的最大应力达到屈服极限时,该处材料首先屈服,应力暂时不再增大。如外力继续增加,增加的应力就由截面上尚未屈服的材料所承担,是截面上其

一点应力状态概念及其表示方法

一点应力状态概念及其表示方法 凡提到“应力”,必须指明作用在哪一点,哪个(方向)截面上。因为受力构件内同一截面上不同点的应力一般是不同的,通过同一点不同(方向)截面上应力也是不同的。例如,图8-1弯曲梁横截面上各点具有不同的正应力与剪应力; 图8-2通过轴向拉伸杆件同一点的不同(方向)截面上具有不同的应力。

2.一点处的应力状态是指通过一点不同截面上的应力情况,或指所有方位截面上应力的集合。应力分析就是研究这些不同方位截面上应力随截面方向的变化规律。如图8-3是通过轴向拉伸杆件内点不同(方向)截面上 的应力情况(集合) 3.一点处的应力状态可用围绕该点截取的微单元体(微正六面体)上三对互相垂直微面上的应力情况来表示。如图8-4(a,b)为轴向拉伸杆件内围绕点截取的两种微元体。 特点:根据材料的均匀连续假设,微元体(代表一个材料点)各微面上的应力均匀分布,相互平行的两个侧面上应力大小相等、方向相反;互相垂直的两个侧面上剪应力服从剪切互等关系。

§8-2平面应力状态的工程实例1.薄壁圆筒压力容器

为平均直径,为壁厚 由平衡条件 得轴向应力:(8-1a) 图8-5c(Ⅰ-Ⅰ,Ⅱ-Ⅱ为相距为的横截面,H-H为水平径向面) 由平衡条件或, 得环向应力:(8-1b) 2.球形贮气罐(图8-6) 由球对称知径向应力与纬向应力相同,设为 对半球写平衡条件:

得(8-2) 3.弯曲与扭转组合作用下的圆轴 4.受横向载荷作用的深梁         §8-3平面一般应力状态分析——解析法 空间一般应力状态

如图8-9a所示,共有9个应力分量:面上的,,;面上的,,;面上的,,。 1)应力分量的下标记法:第一个下标指作用面(以其外法线方向表示),第二个下标指作用方向。由剪应力互等定理,有: , , 。2)平面一般应力状态如图8-9b所示,即空间应力状态中,方向的应力分量全部为零();或只存在作用于x-y平面内的应力分量,,,,其中,分别为,的简写,而= 。 3)正负号规定:正应力以拉应力为正,压为负;剪应力以对微元体内任意一点取矩为顺时针者为正,反之为负。 2.平面一般应力状态斜截面上应力 如图8-10所示,斜截面平行于轴且与面成倾角,由力的平衡条件: 和 可求得斜截面上应力,:

材料力学习题第六章应力状态分析答案详解

第6章 应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是(A )。 20 (MPa ) 20 d (A )a 点;(B )b 点;(C )c 点;(D )d 点 。 2、在平面应力状态下,对于任意两斜截面上的正应力αβσσ=成立的充分必要条件,有下列四种答案,正确答案是( B )。 (A ),0x y xy σστ=≠;(B ),0x y xy σστ==;(C ),0x y xy σστ≠=;(D )x y xy σστ==。 3、已知单元体AB 、BC 面上只作用有切应力τ,现关于AC 面上应力有下列四种答案,正确答案是( C )。 (A )AC AC /2,0 ττσ==; (B )AC AC /2,/2ττ σ==; (C )AC AC /2,/2 ττσ==;(D )AC AC /2,/2ττσ=-=。 4、矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b )所示。关于它们的正确性,现有四种答案,正确答案是( D )。

(b) (a) (A)点1、2的应力状态是正确的;(B)点2、3的应力状态是正确的; (C)点3、4的应力状态是正确的;(D)点1、5的应力状态是正确的。 5、对于图示三种应力状态(a)、(b)、(c)之间的关系,有下列四种答案,正确答案是( D )。 τ (a) (b) (c) (A)三种应力状态均相同;(B)三种应力状态均不同; (C)(b)和(c)相同;(D)(a )和(c)相同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。 (A) (B) (D) (C) 解答: max τ发生在 1 σ成45的斜截面上 7、广义胡克定律适用范围,有下列四种答案,正确答案是( C )。 (A)脆性材料;(B)塑性材料; (C)材料为各向同性,且处于线弹性范围内;(D)任何材料; 8、三个弹性常数之间的关系:/[2(1)] G E v =+适用于( C )。 (A)任何材料在任何变形阶级;(B)各向同性材料在任何变形阶级;

计算题18分图示为某构件内危险点的应力状态图中应力单位为

计算题: 1、(8分)图示为某构件内危险点的应力状态(图中应力单位为MPa ),试分别求其第二、第四强度理论的相当应力2r σ、4r σ(3.0=μ)。 2、.如图直径为d 的圆截面钢杆处于水平面内,AB 垂直与CD ,铅垂作用 力P1=2kN ,P2=6kN,。已知d=70mm ,材料的许用应力[σ]=110MPa 。试用第三强度理论校核AB 杆的强度。 解:(1)变形分析 取AB 杆研究,将P 2进行力的平移到AB 杆上,则杆AC 段扭转同时AB 段弯曲。 扭转由M C 、M A 产生,AC 段扭矩: T =M C =M A = P 2×300= 6×300=1800 kN .mm 弯曲由P 1、P 2产生,最大弯矩在A 截面: M max = P 1×600+ P 2×300=2×600+ 6×300=3000 kN .mm (2)强度校核

由内力图可知,A 截面为危险截面 ] [)(18)(30σπσ<=??+?=+=MPa 1043270100010003 2 323z 22r3W T M 故AB 杆满足 强度要求。

3.如图所示砂轮轴传递的功率P=1.5kW ,转速n=500r/min ,砂轮直径D=250mm ,砂轮重量Q=275N ,磨削力Fy :Fz=3:1。砂轮轴材料许用应力[σ]=60MPa 。试用第四强度理论确定砂轮轴直径。 解:(1)变形分析 取砂轮轴研究,得到力学模型。 轴在M e 作用下扭转; 在F Az 、F Bz 和F z 作用下,在xz 平面内弯曲; 在F Ay 、F By 和F y 作用下,在xy 平面内弯 曲。 m N 65.28500 5.195509550 e ?=?==n P M 有M e =F z D/2得到:F z =2×28.65×1000/250=229N F y =3F z =3×229= 687N (2)由内力图确定危险截面 xz 平面内的最大弯矩在A 截面 M xzA = F z ×130=229×130=29770N .mm xy 平面内的最大弯矩在A 截面 M xyA =(F y -Q )×130=(687-275)×130=53560N .mm mm N 612275356029770222 xyA 2xzA Amax ?=+=+=M M M 扭矩T =28650 N .mm 显然,A 截面为危险截面。

区分应力与应变的概念

区分应力与应变的概念 应力 所谓“应力”,是在施加的外力的影响下物体内部产生的力。如图1 所示: 在圆柱体的项部向其垂直施加外力P的时候,物体为了保持原形 在内部产生抵抗外力的力——内力。该内力被物体(这里是单位 圆柱体)的截面积所除后得到的值即是“应力”,或者简单地可概 括为单位截面积上的内力,单位为Pa(帕斯卡)或N/m2。例如, 圆柱体截面积为A(m2),所受外力为P(N牛顿),由外力=内力可得, 应力: (Pa或者N/m2) 这里的截面积A与外力的方向垂直,所以得到的应力叫做垂直应 力。 图1 应变 当单位圆柱体被拉伸的时候会产生伸长变形ΔL,那么圆柱 体的长度则变为L+ΔL。这里,由伸长量ΔL和原长L的比 值所表示的伸长率(或压缩率)就叫做“应变”,记为ε。 与外力同方向的伸长(或压缩)方向上的应变称为“轴向应变”。应变表示的是伸长率(或压缩率),属于无量纲数,没有单位。由于量值很小(1×10-6百万分之一),通常单位用“微应变”表示,或简单地用μE表示。 而单位圆柱体在被拉伸的状态下,变长的同时也会变细。直径为d0的棒产生Δd的变形时,直径方向的应变如下式所示: 这种与外力成直角方向上的应变称为“横向应变”。轴向应变与横向应变的比称为泊松比,记为υ。每种材料都有其固定的泊松比,且大部分材料的泊松比都在0.3左右。 应力与应变的关系 各种材料的应变与应力的关系已经通过实验进行 了测定。图2所示为一种普通钢材(软铁)的应力 与应变关系图。根据胡克定律,在一定的比例极限 范围内应力与应变成线性比例关系。对应的最大应 力称为比例极限。

或者 图2 应力与应变的比例常数 E 被称为弹性系数或扬氏 模量,不同的材料有其固定的扬氏模量。 综上所述,虽然无法对应力进行直接的测量,但是通过测量由外力影响产生的应变可以计算出应力的大小。

内力及应力的概念

第1章绪论 1.1 材料力学的任务 任何建筑物或机器设备都是由若干构件或零件组成的。建筑物和机器设备在正常工作的情况下,组成它们的各个构件通常都受到各种外力的作用。例如,房屋中的梁要承受楼板传给它的重量,轧钢机受到钢坯变形时的阻力等,这些力统称为作用在构件上的荷载。 要想使建筑物和机器设备正常工作,就必须保证组成它们的每一个构件在荷载作用下都能正常工作,这样才能保证整个建筑物或机械的正常工作。为了保证构件正常安全地工作,对所设计的构件在力学上有一定的要求,这里归纳如下。 1. 强度要求 强度是指材料或构件抵抗破坏的能力。材料强度高,是指这种材料比较坚固,不易被破坏;材料强度低,则是指这种材料不够坚固,较易被破坏。在一定荷载作用下,如果构件的尺寸、材料的性能与所受的荷载不相适应,如机器中传动轴的直径太小、起吊货物的绳索过细,当传递的功率较大、货物过重时,就可能因强度不够而发生断裂,使机器无法正常工作,甚至造成灾难性的事故。显然这是工程上绝不允许的。 2. 刚度要求 刚度是指构件抵抗变形的能力。构件的刚度大,是指构件在荷载作用下不易变形,即抵抗变形的能力大;构件的刚度小,是指构件在荷载作用下,较易变形,即抵抗变形的能力小。任何物体在外力作用下,都要产生不同程度的变形。在工程中,即使构件强度足够,如果变形过大,也会影响其正常工作。例如,楼板梁在荷载作用下产生的变形过大,下面的抹灰层就会开裂、脱落;车床主轴变形过大,则影响加工精度,破坏齿轮的正常啮合,引起轴承的不均匀磨损,从而造成机器不能正常工作。因此,在工程中,根据不同的用途,使构件在荷载作用下产生的变形不能超过一定的范围,即要求构件具有一定的刚度。 3. 稳定性要求 受压的细长杆和薄壁构件,当荷载增加时,还可能出现突然失去初始平衡形态的现象,

应力的定义[指南]

应力的定义[指南] 应力的定义 当材料在外力作用下不能产生位移时,它的几何形状和尺寸将发生变化,这种形变称为应变(Strain)。材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力,定义单位面积上的这种反作用力为应力(Stress)。或物体由于外因(受力、湿度变化等)而变形时,在物体内各部分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。在所考察的截面某一点单位面积上的内力称为应力(Stress)。按照应力和应变的方向关系,可以将应力分为正应力σ 和切应力τ,正应力的方向与应变方向平行,而切应力的方向与应变垂直。按照载荷(Load)作用的形式不同,应力又可以分为拉伸压缩应力、弯曲应力和扭转应力。 应力的分类 同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。极限应力值要通过材料的力学试验来测定。将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。 有些材料在工作时,其所受的外力不随时间而变化,这时其内部的应力大小不变,称为静应力;还有一些材料,其所受的外力随时间呈周期性变化,这时内部的应力也随时间呈周期性变化,称为交变应力。材料在交变应力作用下发生的破坏称为疲劳破坏。通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集

材料力学基本概念

材料力学 第一章 a 绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节 材料力学的任务与研究对象 1、 变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的变形,称为塑性变形或 残余变形。 第二节 材料力学的基本假设 1、 连续性假设:材料无空隙地充满整个构件。 2、 均匀性假设:构件内每一处的力学性能都相同 3、 各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节 内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节 应力 1、 切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方向均指向或离开交线。 胡克定律 2、 E σε=,E 为(杨氏)弹性模量 3、 G τγ=,剪切胡克定律,G 为切变模量 第二章 轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节 拉压杆的内力、应力分析 1、 拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应 变沿横截面均匀分布N F A σ= 2、 材料力学应力分析的基本方法:①几何方程:const ε=即变形关系②物理方程:E σε=即应力应变 关系③静力学方程:N A F σ?=即内力构成关系 3、 N F A σ= 适用范围:①等截面直杆受轴向载荷(一般也适用于锥角小于5度的变截面杆)②若轴向载荷沿横截面非均匀分布,则所取截面应远离载荷作用区域 4、 圣维南原理(局部效应原理):力作用于杆端的分布方式,只影响杆端局部范围的应力分布,影响区的 轴向范围约离杆端1—2个杆的横向尺寸 5、 拉压杆斜截面上的应力:0c o s /c o s N N F F p A A αασαα= ==;2 0cos cos p αασασα==, sin sin 22 p αασταα==;0o α=, max 0σσ=;45o α=,0 max 2 στ= 第二节 材料拉伸时的力学性能 1、 材料拉伸时经过的四个阶段:线弹性阶段,屈服阶段,硬化阶段,缩颈阶段 2、 线(弹)性阶段:E σε=;变形很小,弹性;p σ为比例极限,e σ为弹 性极限 3、 屈服阶段:应力几乎不变,变形急剧增大,含弹性、塑性形变;现象是出 α p α α τα

应力

应力 1 定义应力定义为“单位面积上所承受的附加内力”。公式记为σ=ΔFj/ΔAi其中,σ表示应力;ΔFj 表示在j 方向的施力;ΔAi 表示在i 方向的受力面积。因为面积与力都是矢量,如果受力面积与施力方向垂直则称正应力,如图1所示的σx 与σy;如果受力面积与施力方向互相平行则称剪应力(shear stress),如图1所示的τxy 与τyx。“内应力”指组成单一构造的不同材质之间,因材质差异而导致变形方式的不同,继而产生的各种应力。当材料在外力作用下而又不产生惯性移动时,它的几何形状和尺寸将发生变化,这种形变就称为应变(Strain)。材料发生形变时内部产生了大小相等但方向相反的反作用力抵抗外力.把分布内力在一点的集度称为应力(Stress),应力与微面积的乘积即微应力内力.或物体由于外因(受力、湿度变化等)而变形时,在物体内各部 分之间产生相互作用的内力,以抵抗这种外因的作用,并力图使物体从变形后的位置回复到变形前的位置。在所考察的截面某一点单位面积上的内力称为应力(Stress)。按照应力和应变的方向关系,可以将应力分为正应力σ 和切应力τ,正应力的方向与应变方向平行,而切应力的方向与应变垂直。按照载荷(Load)作用的形式不同,应力又可以分为拉伸压缩应力、弯曲应力和扭转应力。应力 2 分类正向应

力与剪应力同截面垂直的称为正应力或法向应力,同截面相切的称为剪应力或切应力。应力会随着外力的增加而增长,对于某一种材料,应力的增长是有限度的,超过这一限度,材料就要破坏。对某种材料来说,应力可能达到的这个限度称为该种材料的极限应力。极限应力值要通过材料的力学试验来测定。将测定的极限应力作适当降低,规定出材料能安全工作的应力最大值,这就是许用应力。材料要想安全使用,在使用时其内的应力应低于它的极限应力,否则材料就会在使用时发生破坏。有些材料在工作时,其所受的外力不随时间而变化,这时其内部的应力大小不变,称为静应力;还有一些材料,其所受的外力随时间呈周期性变化,这时内部的应力也随时间呈周期性变化,称为交变应力。材料在交变应力作用下发生的破坏称为疲劳破坏。通常材料承受的交变应力远小于其静载下的强度极限时,破坏就可能发生。另外材料会由于截面尺寸改变而引起应力的局部增大,这种现象称为应力集中。对于组织均匀的脆性材料,应力集中将大大降低构件的强度,这在构件的设计时应特别注意。物体受力产生变形时,体内各点处变形程度一般并不相同。用以描述一点处变形的程度的力学量是该点的应变。为此可在该点处到一单元体,比较变形前后单元体大小和形状的变化。单位:Pa,Psi 3 线应变在直角坐标中所取单元体为正六面体时,三条相互垂直的棱边的长度在变形前后的改变量

材料力学第八章复习题

第八章 应力状态分析 1.矩形截面简支梁受力如图(a )所示,横截面上各点的应力状态如图(b ) 所示。关于他们的正确性,现有种答案: (A )点1、2的应力状态是正确的;(B )点2、3的应力状态是正确的; (C )点3、4的应力状态是正确的;(D )点1、5的应力状态是正确的; 正确答案是 。 2.已知单元体AB 、BC 面上只作用有剪应力 τ ,现关于AC 面上应力有下 列四种答案: (A )2/ττ=AC ,0=AC σ; (B )2/ττ=AC ,2/3τσ=AC ; (C )2/ττ=AC ,2/3τσ-=AC ; (D )2/ττ-=AC ,2/3τσ=AC ; 正确答案是 。 3.在平面应力状态下,对于任意两斜截面上的正应力 βασσ= 成立的充分 必要条件,有下列四种答案: (A )y x σσ=,0≠xy τ; (B )y x σσ=,0=xy τ; (C )y x σσ≠,0=xy τ; (D )xy y x τσσ==; 正确答案是 。 C τ (a) (b)

4.对于图示三种应力状态(a )、(b )、(c )之间有下列四种答案 : (A )三种应力状态均相同; (B )三种应力状态均不同; (C )(b )和(c )相同; (D )(a )和(c )相同; 正确答案是 。 5.直径为d 的圆截面杆,两端受扭转力偶m 作用。设 ?=45α,关于下列结 论(E 、v 分别表示材料的弹性模量和泊松比) 1) 在A 、B 、C 点均有0==y x εε; 2) 在点C 处,() 3 /16d m πσα-=; 3) 在点C 处,)]/(16[]/)1[(3 d m E v πεα?+-=; 现有四种答案: (A )1)、2)正确; (B )2)、3)正确; (C )1)、3)正确; (D ) 全正确; 正确答案是 。 6.广义虎克定律适用范围,有下列四种答案: (A )脆性材料; (B )塑性材料; (C )材料为各向同性,且处于线弹性范围内; (D )任何材料; 正确答案是 。 τ (a) (b) (c) m A C

一 一点的应力状态与应力张量

一 一点的应力状态与应力张量 二 主应力与应力不变量 对于一般空间问题,一点的应力状态可以由九个应力分量表示,如P 点处应力状态在直角坐标系可表示为 ij S σ==x xy xz yx y yz zx zy z στττστττσ???? ?????? 如图1-1所示。在固定受力情况下,应力分量大小与坐标轴方向有关,但由弹性力学可知, 新旧坐标的应力分量具有一定变换关系。通常,我们称这种具有特定变换关系的一些量为张量。式(1-1)就是应力张量,它是二阶张量。因为它具有xz τ=zx τ,xy τ=yx τ,yz τ=zy τ。 已知物体内某点P 的九个应力分量,则可求过该点的任意倾斜面上的应力。在P 点处取出一无限小四面体oabc (图1-2) 它的三个面分别与x,y,z 三个轴相垂直。另一方面即任意斜面,它的法线N ,其方向余弦为l,m,n 。分别以dF 、x dF 、y dF 、z dF 代表abc 、obc 、oac 、 oab 三角形面积。 x y z dF ldF dF mdF dF ndF ? =? =?? =? (1.2) 在三个垂直于坐标的平面上有应力分量,在倾斜面abc 上有合应力N P ,它可分解为正应力 N σ及切向剪应力N τ,即222 N N N P στ=+ N P 沿坐标轴方向分量为N x ,N y ,N z ,由平衡条件可得 N x xy xz N yx y yz N zx zy z x l m n y l m n z l m n στττστττσ? =++? =++?? =++? 求出N x ,N y ,N z 在法线上的投影之和,即得正应力N σ 222222N N N N x y z xy yz zx x l y m z n l m n lm mn nl σσσστττ=++=+++++ 1-5

真实应力和真实应变定义塑性

在ABAQUS 中必须用真实应力和真实应变定义塑性.ABAQUS 需要这些值并对应地在输入文件中解释这些数据。 然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将塑性材料的名义应力(变)转为真实应力(变)。 考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为: 00l A lA =, 当前面积与原始面积的关系为: 将A 的定义代入到真实应力的定义式中,得到: 其中0 l l 也可以写为1nom ε+。 这样就给出了真实应力和名义应力、名义应变之间的关系: 真实应变和名义应变间的关系很少用到,名义应变推导如下: 上式各加1,然后求自然对数,就得到了二者的关系: ABAQUS 中的*PLASTIC 选项定义了大部分金属的后屈服特性。ABAQUS 用连接给定数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC 选项中的数据将材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应力,因此,塑性应变值应该为零。 在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为: 其中pl ε是真实塑性应变,t ε是总体真实应变,el ε是真实弹性应变。 总体应变分解为弹性与塑性应变分量 实验数据转换为ABAQUS 输入数据的示例 下图中的应力应变曲线可以作为一个例子,用来示范如何将定义材料塑性特性的实验特性的实验数据转换为ABAQUS 适用的输入格式。名义应力-应变曲线上的6个点将成为*PLASTIC 选项中的数据。 第一步是用公式将名义应力和名义应变转化为真实应力和应变。一旦得到这些值,就可以用公式不确定与屈服应力相关联的塑性应变。下面给出转换后的数据。在小应变时,真实应变和名义应变间的差别很小,而在大应变时,二者间的就会有明显的差别;因此,如果模拟的应变比较大,就一定要向abaqus 提供正确的应力-应变数据。定义这种材料的输入数据格式在图中给出。 (二). 对于受力的大小,受力的方式,还有本构方程参数的选择对于模型是否收敛影响很大. 泊松比的影响:材料的泊松比的大小对于网格的扰动影响很大,在foam 中,由于其泊松比是0,所以它对于单元的扰动不是很大。所以在考虑到经常出现单元节点被翻转过来的现象,可以调整泊松比的大小。 REMESH :对于creep 的,特别是材料呈现非线性的状态下,变形很大,就有必要对其进行重新划分网格,用map solution 来对其旧网格进行映射。这就要决定何时进行重新划分网格,这个就要看应变的增长幅度了,通过观察网格外形的变化曲线来决定是否要进行重新划分区域。 接触表面的remesh 时,网格类型,单元数目等必须和原有的mesh 保持一致,这个对于

材料力学基本概念和公式

第一章绪论第一节材料力学的任务 1、组成机械与结构的各组成部分,统称为构件。 2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。 3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提 第五节变形与应变 1、变形:构件尺寸与形状的变化称为变形。除特别声明的以外,材料力学所研究的对象均为变形体。 2、弹性变形:外力解除后能消失的变形成为弹性变形。 3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。 4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。对构件进行受力分析时可忽略其变形。 5、线应变: l l? = ε。线应变是无量纲量,在同一点不同方向线应变一般不同。

6、切应变:tan γγ≈。切应变为无量纲量,切应变单位为rad 。 第六节 杆件变形的基本形式 1、材料力学的研究对象:等截面直杆。 2、杆件变形的基本形式:拉伸(压缩)、扭转、弯曲 第二章 拉伸、压缩与剪切 第一节 轴向拉伸(压缩)的特点 1、受力特点:外力合力的作用线与杆件轴线重合。 σ。 限100% 7、卸载定律和冷作硬化:在卸载过程中,应力和应变按直线规律变化。预加塑性变形使材料的比例极限或弹性极限提高,但塑性变形和延伸率有所降低。 8、名义屈服极限0.2σ:对于没有明显屈服阶段的材料,工程上常以卸载后产生残余应 变为0.2%的应力作为屈服强度,称为名义屈服极限0.2σ 9、材料压缩时的力学性能:塑性材料的拉压性能相同。脆性材料在压缩时的强度极限远高于拉伸强度极限,脆性材料抗拉性能差,抗压性能好。(如图) 第四节 失效、许用应力与强度条件 低碳钢 铸铁

材料力学基本概念

材料力学 第一章a绪论 变形固体的基本假设、内力、截面法、应力、位移、变形和应变的概念、杆件变形的基本形式 第一节材料力学的任务与研究对象 1、变形分为两类:外力解除后能消失的变形成为弹性变形;外力解除后不能消失的 变形,称为塑性变形或残余变形。 第二节材料力学的基本假设 1、连续性假设:材料无空隙地充满整个构件。 2、均匀性假设:构件内每一处的力学性能都相同 3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。 第三节内力与外力 截面法求内力的步骤:①用假想截面将杆件切开,得到分离体②对分离体建立平衡方程,求得内力 第四节应力 1、切应力互等定理:在微体的互垂截面上,垂直于截面交线的切应力数值相等,方 向均指向或离开交线。 胡克定律

2、E σε=,E 为(杨氏)弹性模量 3、G τγ=,剪切胡克定律,G 为切变模量 第二章轴向拉压应力与材料的力学性能 轴力和轴力图、直杆横截面上的应力和强度条件、斜截面上的应力、拉伸和压缩时杆件的变形、虎克定律、横向变形系数、应力集中 第一节拉压杆的内力、应力分析 1、拉压杆受力的平面假设:横截面仍保持为平面,且仍垂直于杆件轴线。即,横截面上没有切应变,正应变沿横截面均匀分布N F A σ= 2、材料力学应力分析的基本方法:①几何方程:const ε=即变形关系②物理方程: E σε=即应力应变关系③静力学方程:N A F σ?=即内力构成关系 3、N F A σ= 适用范围:①等截面直杆受轴向载荷(一般也适用于锥角小于5度的变截面杆)②若轴向载荷沿横截面非均匀分布,则所取截面应远离载荷作用区域 4、圣维南原理(局部效应原理):力作用于杆端的分布方式,只影响杆端局部范围的应力分布,影响区的轴向范围约离杆端1—2个杆的横向尺寸

材料力学习题(1)2-6章

材料力学习题 第2章 2-1 试求出图示各杆Ⅰ—Ⅰ截面上的内力。 2-2图示矩形截面杆,横截面上正应力沿截面高度线性分布,截面顶边各点处的正应力均为MPa 100max =σ,底边各点处的正应力均为零。杆件横截面上存在何种内力分量,并确定其大小(C 点为截面形心)。 2-3 试指出图示各单元体表示哪种应力状态。 2-4 已知应力状态如图所示(应力单位为MPa ),试用解析法计算图中指定截面的应力。

2-5 试作应力圆来确定习题2-4图中指定截面的应力。 2-6已知应力状态如图所示(应力单位为MPa ),试用解析法求:(1)主应力及主方向;(2)主切应力及主切平面;(3)最大切应力。 2-7 已知应力状态如习题2-6图所示,试作应力圆来确定:(1)主应力及主方向; (2)主切应力及主切平面;(3)最大切应力。 2-8已知构件内某点处的应力状态为两种应力状态的叠加结果,试求叠加后所得 应力状态的主应力、主切应力。 2-9图示双向拉应力状态, σ σσ==y x 。试证明任一斜截面上的正应力均等 于σ,而切应力为零。 2-10 已知K 点处为二向应力状态,过K 点两个截面上的应力如图所示(应力单位为MPa )。试分别用解析法与图解法确定该点的主应力。 2-11 一点处的应力状态在两种坐标系中的表示方法分别如图 a)和b)所示。 试确定未知的应力分量 y y x xy ' ''σττ、、的大小与方向。

2-12 图示受力板件,试证明尖角A 处各截面的正应力与切应力均为零。 2-13 已知应力状态如图所示(单位为MPa ),试求其主应力及第一、第二、第三不变量321I I I 、、。 2-14 已知应力状态如图所示(单位为MPa ),试画三向应力圆,并求主应力、最大正应力与最大切应力。 第3章 3-1 已知某点的位移分量u = A , v = Bx +Cy +Dz , w = Ex 2+Fy 2+Gz 2+Ixy +Jyz +Kzx 。A 、B 、C 、D 、E 、F 、G 、I 、J 、K 均为常数,求该点处的应变分量。 3-2 已知某点处于平面应变状态,试证明2 222,,Bxy y Ax y Bx Axy xy y x +===γεε(其中, B A 、为任意常数)可作为该点的三个应变分量。 3-3 平面应力状态的点O 处x ε=6×10-4 mm/m ,y ε=4×10 -4 mm/m , xy γ=0;求:1)平面内以y x ' '、方向的线应变;2)以x '与 y '为两垂直线元的切应变;3)该平面内的最大切应变及其与x 轴 的夹角。 3-4 平面应力状态一点处的 x ε= 0,y ε= 0,xy γ=-1×10 -8 rad 。 试求:1)平面内以y x ' ' 、方向的线应 变;2)以x '与 y '为两垂直线元的切应 变;3)该平面内的最大切应变及其与 x 轴的夹角。 3-5 用图解法解习题3-3。 3-6 用图解法解习题3-4。 m/m , y ε=2×10-8 m/m , xy γ=1×10-8 3-7 某点处的 x ε=8×10-8 rad ;分别用图解法和解析法求该点xy 面内的:1)与x 轴夹角为45°方向的线应变和以45°方向为始边的直角的切应变;2)最大线应变的方向和线应变的值。 3-8 设在平面内一点周围任何方向上的线应变都相同,证明以此点为顶点的任意直角的切应变均为零。 3-9 试导出在xy 平面上的正方形微元面,在纯剪状态下切应变 xy γ与对角线方向

材料力学习题第六章应力状态分析答案详解

第6章应力状态分析 一、选择题 1、对于图示各点应力状态,属于单向应力状态的是( A )。 20 (A ) a 点;(B )b 点;(C ) c 点;(D ) d 点。 F 列四种答案,正确答案是( B )。 正确答案是(C )。 2、在平面应力状态下, 对于任意两斜截面上的正应力 成立的充分必要条件, (A ) y , xy 0 ; ( B ) x y , xy 0 ; ( C ) y , xy 0 ; ( D ) xy 。 3、已知单元体AB 、BC 面上只作用有切应力 ,现关于AC 面上应力有下列四种答案, (A) AC / 2, AC 0 ; (B ) AC /2, AC .3 /2 ; (C) AC / 2 , AC .3/2 ; ( D ) AC /2, AC 3 /2。 20 " --- 20 (MPa )

于它们的正确性,现有四种答案,正确答案是( D )。 4、矩形截面简支梁受力如图(a)所示,横截面上各点的应力状态如图(b)所示。关

5、对于图示三种应力状态(a )、( b )、(c )之间的关系,有下列四种答案,正确答 案是(D )。 (A )三种应力状态均相同;(B )三种应力状态均不同; 6、关于图示主应力单元体的最大切应力作用面有下列四种答案,正确答案是( B )。 解答:max 发生在1成45°的斜截面上 7、广义胡克定律适用范围,有下列四种答案,正确答案是( C ) (A )脆性材料; (B )塑性材料; (C )材料为各向同性,且处于线弹性范围内;( D )任何材料; 1 . *— 2 ~~* 卄 3 (A )点1、2的应力状态是正确的;( (C )点3、4的应力状态是正确的;( B )点2、3的应力状态是正确的; D )点1、5的应力状态是正确的。 (C )( b )和(c )相同; (D )(玄)和(c )相同 ; ⑻ (D

一、从低碳钢零件中某点取出一单元体,其应力状态如图所

一、从低碳钢零件中某点取出一单元体,其应力状态如图所示,试按第三和第四强度理论计算单元体的相当应力。图中应力单位是MPa 。 (1)、40=ασ,40090=+ασ,60=ατ (2)、60=ασ,80090-=+ασ,40-=ατ (1) max min 123r313r41004040MPa 202σ=100MPa,σ=0MPa,σ=-20MPa σσσ120MPa σ111.3MPa σ+= ±=-=-== (2) max min 123r313r470.66080MPa 90.6σ=70.6MPa,σ=0MPa,σ=-90.6MPa σσσ161.2MPa σ140.0MPa σ=-±=-=-== 二、上题中若材料为铸铁,试按第一和第二强度理论计算单元体的相当应力。图中应力单位是MPa ,泊松比3.0=μ。 (1) r11r2123σσ100MPa σσ(σσ)106.0MPa μ===-+= (2) r11r2123σσ70.6MPa σσ(σσ)97.8MPa μ===-+= α σ

三、图示短柱受载荷kN 251=F 和kN 52=F 的作用,试求固定端截面上角点A 、B 、C 及D 的正应力,并确定其中性轴的位置。 121i 33 121260025100150150100101012121.66106.750F F y F z Z y z σ---??=++????=-++ 1.668.0 2.58.84MPa 1.668.0 2.5 3.84MPa 1.668.0 2.512.16MPa 1.668.0 2.57.16MPa A B C D σσσσ=-++==-+-==---=-=--+=- -1.66+106.7y +50z =0 当z =0时,31.66 1015.5mm 106.70y -= ?= 当y =0时,31.66 1033.3mm 50 y -=?=

应力状态的概念

荆楚理工学院教案 第八章 应力状态和强度理论 本章与前几章在研究对象上的不同之处。 回顾:内力图:N F 、n M 、Q F 、M --一根(杆、轴、梁) 强度计算??? ??一面(危险截面)一段—、—、max max max max M F M F Q n N 本章:应力状态— 一点。 第一节 应力状态的概念 一、为什么要研究一点的应力状态? 简单回顾: 拉压: 强度条件:[]?????=≤=n n A F b s N σσσσ 扭转:

强度条件:[]?????=≤=n n W M b s n n ττττmax 弯曲: 强度条 件 : [][]? ???? ????? ??????=≤?=?????=≤=*n n b I S F n n W M b s z z x ma Q x ma b s z x ma ττττσσσσmax 但,到目前为止尚不能对如第4点的应力情况进行校核,因此: 1、为了对某些复杂受力构件中既存在σ又存在τ的点建立强度条件提供依据。 2、为实验应力分析奠定基础 通过实验来研究和了解结构或构件中应力情况的方法,称为实验应力分析。 应力状态、应变状态在实验应力分析等方面的广泛应用: 实验方案的制订:验证理论计算结果:复杂受力结构、构件的应力测试等等。 二、什么叫一点的应力状态? 通过某一点的所有截面上的应力情况,或者说构件内任一点沿不同方向的斜面上应力的变化规律,称为一点的应力状态。 三、怎样研究一点的应力状态? 在构件内取得单元体代替所研究的点:通过截面法研究单元体各个斜截面上的应力情况来研究一点的应力状态。 1、单元体的概念: ⑴正六面微体:边长为无穷小量,dx 、dy 、dz ,故: ⑵任意一对平行平面上的应力均相等; ⑶各个面上的应力都均匀分布; ⑷任意、相互平行方向的应变均相同。 2、怎样取单元体 ⑴取单元体的原则:

铸造应力的定义

一、铸造应力的定义、分类和危害 1、定义: 铸造应力(casting stress):金属在凝固和冷却过程中体积变化受到外界或其本身的制约,变形受阻,而产生的应力。 2、分类: A. 按应力形成的原因分: (1) 热应力(thermal stress):铸件各部分厚薄不同,在凝固和其后的冷却过程中,冷却速度不同,造成同一时刻各部分收缩量不一致,铸件各部分彼此制约,产生的应力。 (2) 相变应力(phase transformation stress):固态发生相变的合金,由于铸件各部分冷却条件不同,它们到达相变温度的时刻不同,且相变的程度也不同而产生的应力。 (3) 机械阻碍应力(mechanism hindered stress):铸件收缩受到铸型、型芯、箱挡和芯骨等机械阻碍所产生的应力。 B. 按应力存在的时间分: (1)临时应力(temporary stress):产生应力的原因消失,应力便消失。 (2)残余应力(residual stress):产生应力的原因消除后,仍然存在的应力。 3、应力的危害: 铸造应力和铸件的变形对铸件质量的危害很大。铸造应力是铸件在生产、存放、加工以及使用过程中产生变形和裂纹的主要原因,它降低铸件的使用性能。例如,当机件工作应力的方向与残余应力的方向相同时,应力叠加,可能超出合金的强度极限,发生断裂。有残余应力的铸件,放置日久或经机械加工后会变形,使机件失去精度。产生变形的铸件可能因加工余量不足而报废,为此需要加大加工余量。在大批量流水生产时,变形的铸件在机械加工时往往因放不进夹具而报废。此外,挠曲变形还降低铸件的尺寸精度,尤其对精度要求较高的铸件,防止产生变形尤为重要。 二、金属凝固和冷却过程中产生的应力 在不考虑机械阻碍时,该合金铸件中的瞬时应力就是热应力。以应力框为例(图9-1),讨论瞬时应力的发展过程。 应力框由杆I,杆Ⅱ以及横梁Ⅲ组成。为便于讨论,作如下假设: 1) 金属液充满铸型后,立即停止流动,杆I和杆Ⅱ从同一温度tL开始冷却,最后冷却到室温t0。 2) 合金线收缩开始温度为ty,材料的收缩系数α不随温度变化。 3) 铸件不产生挠曲变形。 4) 铸件收缩不受铸型阻碍。 5) 横梁Ⅲ是刚性体。 图9-1b为杆I和杆Ⅱ的冷却曲线。开始冷却时,两杆具有相同的温度tL,最后又冷却到同一温度t0。由于杆I较厚,冷却前期杆Ⅱ的冷却速度大于杆I,而后期必然是杆I的冷却速度比杆Ⅱ快。在整个冷却过程中,两杆的温差变化如图9-1c所示。 近期的研究工作表明,合金的温度低于液相线以后,其变形由弹性变形、塑性变形和粘

应力与应变关系

一、应力与应变 1、应力 在连续介质力学里,应力定义为单位面积所承受的作用力。 通常的术语“应力”实际上是一个叫做“应力张量” (stress tensor)的二阶张量。 概略地说,应力描述了连续介质内部之间通过力(而且是通过近距离接触作用力)进行相互作用的强度。 具体说,如果我们把连续介质用一张假想的光滑曲面把它一分为二,那么被分开的这两部分就会透过这张曲面相互施加作用力。 很显然,即使在保持连续介质的物理状态不变的前提下,这种作用力也会因为假想曲面的不同而不同,所以,必须用一个不依赖于假想曲面的物理量来描述连续介质内部的相互作用的状态。 对于连续介质来说,担当此任的就是应力张量,简称为应力。 2、应变 应变在力学中定义为一微小材料元素承受应力时所产生的单位长度变形量。因此是一个无量纲的物理量。 在直杆模型中,除了长度方向由长度改变量除以原长而得“线形变”,另外,还定义了压缩时以截面边长(或直径)改变量除以原边长(或直径)而得的“横向应变”。 对大多数材料,横向应变的绝对值约为线应变的绝对值的三分之一至四分之一,二者之比的绝对值称作“泊松系数”。 3、本构关系 应力与应变的关系我们叫本构关系(物理方程)。E σε=(应力=弹性模量*应变) 4、许用应力(allowable stress ) 机械设计或工程结构设计中允许零件或构件承受的最大应力值。要判定零件或构件受载后的工作应力过高或过低,需要预先确定一个衡量的标准,这个标准就是许用应力。 凡是零件或构件中的工作应力不超过许用应力时,这个零件或构件在运转中是安全的,否则就是不安全的。 许用应力等于考虑各种影响因素后经适当修正的材料的失效应力除以安全系数。 失效应力为:静强度设计中用屈服极限(yield limit )或强度极限(strength limit );疲劳强度设计中用疲劳极限(fatigue limit )。 5、许用应力、失效应力及安全系数之间关系 塑性材料(大多数结构钢和铝合金)以屈服极限为基准,除以安全系数后得许用应力,即[]()/ 1.5~2.5s n n σσ==。 (许用应力=屈服极限/安全系数) 脆性材料(铸铁和高强钢)以强度极限为基准,除以安全系数后得许用应力, 即[]()/2~5b n n σσ==。(许用应力=强度极限/安全系数) 表3机床静力学分析结果总结 机床的位置 应力 应变 位移 油缸 27 5号顶尖 10 固定支撑钉 在分析中发现油缸所受的应力最大,油缸使用的是35钢,5号顶尖使用的材料是45钢,固定支撑钉使用的是T8,查《机械设计》三者都小于其许用应力,故设计满足要求。它们的主要力学性能参数如表,查《机械设计师手册》。

相关文档
相关文档 最新文档