文档库 最新最全的文档下载
当前位置:文档库 › 单轴压缩下破裂岩样强度及变形特征_牛双建_靖洪文_杨大方_郭佳奇

单轴压缩下破裂岩样强度及变形特征_牛双建_靖洪文_杨大方_郭佳奇

单轴压缩下破裂岩样强度及变形特征_牛双建_靖洪文_杨大方_郭佳奇
单轴压缩下破裂岩样强度及变形特征_牛双建_靖洪文_杨大方_郭佳奇

压缩永久变形中文版

编号:D 395-03 橡胶性能的标准试验方法----------压缩永久变形1 此项标准在固定编号B 117下发布,紧随编号的数字表示标准采纳的年度,如果是修正,数字表示最后一次修正的年度。在括号内的数字表示最后一次重申批准的年度。上标 表示自最后一次修正或重申批准以来的编辑改动。 此项标准已被批准供美国国防部下属机构使用。 1范围 1.1本测试方法测试应用中会在气体或液体媒介中承受压力的橡胶。本测试方法特别适用于在机械固定器件, 1.2测试方法可以选择,但是应考虑用于与测试结果关联的实际情况下使用的橡胶的性质。除非在具体的规范 中有其他规定,应使用测试方法B。 1.3测试方法B不适用于硬度大于90IRHD的硫化橡胶。 1.4以国际单位(SI)为单位的数值应被认为是标准。在括号内的数值起参照作用。 1.5此项标准不包括与其应用有关的所有的安全隐患。此项标准的使用者有责任在使用前建立合适的安全健康规范以及决定法规限制是否适用 2 参考文件 2.1 ASTM标准2: D1349 橡胶规范---测试的标准温度 D 3182 D 3183 D 3767 D 4483 E 145 --------------------------------------- 1此测试方法属于ASTM D 11橡胶委员会的工作范围,是其下属D11.10物理测试子委员会的直接责任。 目前的版本在2008.3.1批准,2008.07出版。原始的版本在1934年批准。上一个版本在2003年批准,编号为D395-03. 2如需参照ASTM 标准,访问ASTM网站,. 如需要《ASTM标准年鉴》的内容信息,浏览ASTM网站的标准索引页。 3 测试方法概要 3.1 用挠力或规定的力压缩试样,并在规定的温度下保持规定的时间。 3.2 在试样在合适的装置内,在规定的条件下经过特定时间的压缩变形后,取出试样,等待30分钟,测量试样的残留变形。 3.3 在测量残留变形后,根据Eq1和Eq2计算压缩永久变形。 4. 意义和用途 4.1 压缩永久变形测试用于测量在长时间受压后,橡胶化合物保持弹性的能力。实际情况下的压力可能包括持续的挠力,持续的已知力,时短时续的压力产生的交替变形和恢复。虽然后者也产生压力永久变形,它的效果更接近于压缩挠曲和滞后测试。因此,压力永久变形测试主要适用于静态力的使用环境。测试经常在高温下进行。 5 试样 5.1 可以使用来自相同样品的2个(选项1)或3个(选项2)相同的试样。选项1的压力永久变形应为两个试样的平均值,表示为百分比;选项2的压力永久变形应为三个试样的中间值,表示为百分比。 5.2 标准测试试样应从实验室准备的平面上切割,形状为圆形。

轴向拉伸与压缩

第七章 轴向拉伸和压缩 一、内容提要 轴向拉伸与压缩是杆件变形的基本形式之一,是建筑工程中常见的一种变形。 (一)、基本概念 1. 内力 由于外力的作用,而在构件相邻两部分之间产生的相互作用力。这里要注意产生内力的前提条件是构件受到外力的作用。 2. 轴力 轴向拉(压)时,杆件横截面上的内力。它通过截面形心,与横截面相垂直。拉力为正,压力为负。 3. 应力 截面上任一点处的分布内力集度称为该点的应力。与截面相垂直的分量σ称为正应力,与截面相切的分量τ称为切应力。轴拉(压)杆横截面上只有正应力。 4. 应变 单位尺寸上构件的变形量。 5. 轴向拉(压) 杆件受到与轴线相重合的合外力作用,产生沿着轴线方向的伸长或缩短的变形,称为轴向拉(压)。 6. 极限应力 材料固有的能承受应力的上限,用σ0表示。 7. 许用应力与安全系数 材料正常工作时容许采用的最大应力,称为许用应力。极限应力与许用应力的比值称为安全系数。 8. 应力集中 由于杆件截面的突然变化而引起局部应力急剧增大的现象,称为应力集中。 (二)、基本计算 1. 轴向拉(压)杆的轴力计算 求轴力的基本方法是截面法。用截面法求轴力的三个步骤:截开、代替和平衡。 求出轴力后要能准确地画出杆件的轴力图。 画轴向拉(压)杆的轴力图是本章的重点之一,要特别熟悉这一内容。 2. 轴向拉(压)杆横截面上应力的计算 任一截面的应力计算公式 A F N =σ 等直杆的最大应力计算公式 A F max N max = σ 3. 轴向拉(压)杆的变形计算 虎克定律 A E l F l N = ?εσE =或 虎克定律的适用范围为弹性范围。 泊松比 εε=μ' 4. 轴向拉(压)杆的强度计算 强度条件 塑性材料: σma x ≤[σ] 脆性材料: σt ma x ≤[σt ] σ c ma x ≤[σc ] 强度条件在工程中的三类应用

浅析岩石单轴压缩变形试验的影响因素

浅析岩石单轴压缩变形试验的影响因素 在实际工作中,由于对岩石力学性质评论是公路、铁路等工程地质勘察不可或缺的要素,因此采取岩石单轴压缩试验这种最通用的试验方法,研究岩石变形,成为岩石力学问题的重要内容之一,这也对实际工程施工原料选择起到一定的参考作用。这个问题的研究由于操作起來比较方便,理论基础比较明显,所以被广泛应用于工程实践和各种科研工作中。作者试图按照这个理论的思路,简单分析岩石单轴压缩变形试验的影响因素,进而为相关科研和实际工程施工提供一些有参考价值的东西。 标签:岩石;单轴压缩变形;影响 引言 岩石单轴压缩变形试验是检验岩石抗压承载力的一种试验,属于物理试验的范畴。文章中提出的试验模型主要是用花岗岩、泥岩两种规则形状的岩石作为试样,用单轴荷载来进行压力作用,来测定其纵向和横向的变形量,进而形成相应的应力—应变曲线,得出弹性模量及泊松比。作者以花岗岩和泥岩两种岩石为试验样本,采取弹性模量试验对两种岩石的受力变形等情况进行对比和分析,来具体总结影响岩石压缩变形试验的主要因素有哪些。 1 弹性模量的概念及其取值方法 1.1 弹性模量的概念 弹性理论是以应力、应变的线性关系为基础的一种理论,其中应力与应变之比就是弹性模量,从力学角度来看它表示岩石材料的坚硬程度,更具体地来说是指岩石材料在压缩或拉伸时,材料对弹性变形的抵抗能力,这是在本类试验中应用的重要基础理论和概念。 1.2 岩石弹性模量的取值方法 根据国际岩石力学学会实验室和现场试验标准化委员会的《岩石力学试验建议方法》,岩石弹性模量的取值方法主要是割线弹性模量及泊松比的取值方法,以抗压强度50%时的变形量为基础,在纵向应力—应变曲线上的原点与应力相应于极限抗压强度50%处的应力点的连线,其斜率为割线模量,横向应变与纵向应变的比值就是泊松比。一般来说,在实际工作中,大多数岩石这个应力水平下仍处于弹性范围内,很少出现细微裂缝扩展乃至断裂破碎等现象。 2 影响岩石弹性模量的主要因素 2.1 构成岩石的矿物及岩石物理性质的影响

岩石单轴压缩实验

实验名称:岩石单轴压缩实验 一实验目的: 1.了解RFPA软件,熟悉软件界面,了解软件用途。 2.掌握软件RFPA的原理及使用方法。 3.了解岩石在外界压力的作用下的破碎情况。 4.掌握RFPA软件模拟岩石单轴压缩的过程。 二实验步骤: 1、熟悉RFPA软件界面,了解软件个部分的作用。见图1-1: 图1-1 2、运用软件进行相关试验 (1)试验模型 试样模型尺寸100mm×50mm ,网个划分为100×100个基元。采用平面应力问题,整个加载过程通过位移加载方式。力学性质参数如下表: 表2-1

(2)网格划分和参数赋值 网格的划分以及其他参数的赋值见下图2-1,2-2: 图2-1 岩石试件及参数设定值 图2-2 岩石试件参数设定 (3)边界条件和控制条件的选定 点击主面板上的控制键Boundary conditions,进行设置边界条件,其具体数据如

图2-3: 图2-3 加载力的数值设置 打开主面板上的Built,选择Control Information进行完成这个实验的步骤设置,具体数据如图2-4: 图2-4 加载步数设定 (4)计算过程以及结果分析 压缩破裂过程见图2-5:

图2-5压缩破裂过程

结果曲线分析,N-S曲线见图2-6 图2-6N-S曲线 从数值试验得到的载荷-位移全过程曲线再现了如下基本的岩石力学性质 ○1.线性变形阶段。在加载的初期,载荷-位移曲线几乎是线性的。 ○2.非线性变形阶段。当载荷达到试件最大承载能力的50%左右时,试件的变形开始偏离线性,部分基元破坏。 ○3.软化阶段。当达到最大载荷之后,使试件进一步变形的载荷越来越小,进入弱化阶段,直至试件产生宏观破坏。 三实验结论及体会 试验数值表明,试件在破坏过程中,开始出现许多小裂纹,再进一步加载的条件下,试件中突发性地出现了由一系列小张裂纹汇集成的一个剪切带。载荷的宏观破裂带是由宏观剪切应力带中的大量细观拉伸微破裂汇聚形成的。同时,试件的宏观破坏并非发生在试件达到峰值应力的瞬间,而是在试件所受的载荷达到峰值应力以后的某个应力降之后。这个结果表明,岩石介质在达到最大承载能力之后,仍具有一定的承载能力。

测定岩石的单轴抗压强度

实验5 测定岩石的单轴抗压强度 一、基本原理 岩石的单轴抗压强度是指岩石试样在单向受压至破坏时,单位面积上所承受的最大压应力: (MPa) 一般简称抗压强度。根据岩石的含水状态不同,又有干抗压强度和饱和抗压强度之分。 岩石的单轴抗压强度,常采用在压力机上直接压坏标准试样测得,也可与岩石单轴压缩变形试验同时进行,或用其它方法间接求得。 二、仪器设备 1、制样设备:钻岩机、切石机及磨片机; 2、测量平台、卡尺、放大镜等; 3、烘箱、干燥箱; 4、水槽、煮沸设备或真空抽气设备; 5、压力机。 三、操作步骤 1、试样制备 试样规格:一般采用直径5cm、高10cm的园柱体,以及断面边长为5厘米,高为10厘米的方柱体,每组试样必须制备3块。 试样制备精度要求同实验四: 2、试样描述 试验前应对试样进行描述,内容同实验四。 3、试样烘干或饱和处理 根据试验要求需对试样进行烘干或饱和处理。 烘干试样:在105~110℃温度下烘干24h。

自由浸水法饱和试样:将试样放入水槽,先注水至试样高度的1/4处,以后每隔2h分别注水至试样高度的1/2和3/4处,6h后全部浸没试样,试样在水中自由吸水48h。 煮沸法饱和试样:煮沸容器内的水面始终高于试样,煮沸时间不少于6h。 真空抽气法饱和试样:饱和容器内的水面始终高于试样,真空压力表读数宜为100kPa,直至无气泡逸出为止,但总抽气时间不应少于4h。 4、测量试样尺寸 按试验二量积法中的要求,量测试样断面的边长,求取其断面面积(A)。 5、安装试样、加荷 将试样置于试验机承压板中心,调整有球形座,使之均匀受载,然后以每秒0.5~1.0MPa的加载速度加荷,直至试样破坏,记下破坏荷载(P)。 6、描述试样破坏后的形态,并记录有关情况。 7、按下式计算岩石的单轴抗压强度 式中:σC――岩石的单轴抗压强度(MPa); P――破坏荷载(N); A――垂直于加荷方向试样断面积(mm2)。 计算值取3位有效数字。 四、试验报告内容 1、整理记录表(格式如下表) 月日 2、试样描述资料。 3、思考题:

实验五__岩石单轴压缩实验

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。 2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显

缝隙。 3.试样数量: 每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d ,以保持一定的湿度,但试样不得接触水面。 四.电阻应变片的粘贴 1.阻值检查:要求电阻丝平直,间距均匀,无黄斑,电阻值一般选用120欧姆,测量片和补偿片的电阻差值不超过0.5Ω。 2.位置确定:纵向、横向电阻应变片粘贴在试样中部,纵向、横向应变片排列采用“┫”形,尽可能避开裂隙,节理等弱面。 3.粘贴工艺:试样表面清洗处理→涂胶→贴电阻应变片→固化处理→焊接导线→防潮处理。 五.实验步骤 1. 测定前核对岩石名称和试样编号,并对岩石试样的颜色、颗粒、层理、 裂隙、风化程度、含水状态等进行描述。 2. 检查试样加工精度。并测量试样尺寸,一般在试样中部两个互相垂直方向测量直径计算平均值。 3. 电阻应变仪接通电源并预热数分钟后, 连接测试导线,接线方式采用公 1—百分表 2-百分表架 3-试样 4水平检测台 图5-1 试样平行度检测示意图 1—直角尺 2-试样 3- 水平检测台 图5-2 试样轴向偏差度检测示意图 图5-3 电阻应变片粘贴

轴向拉伸与压缩习题及解答

轴向拉伸与压缩习题及解 答 Prepared on 22 November 2020

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A >。如图所示。两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,即max max N Al l A A νσν= == 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2 max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 A 1 (a) (b)

4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x εενε'==-。 二、填空题 1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积 2200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ=,强度极限 460b MPa σ=,试填写下列空格。

三元乙丙橡胶力学及压缩永久变形性能研究

三元乙丙橡胶力学及压缩永久变形性能研究三元乙丙橡胶力学及压缩永久变形性能研究三元乙丙橡胶力学及压缩永久变 形性能研究 首先,本文对EPDM常用硫化体系进行对比考察,并对过氧化物硫化体系中助交 联剂的单用及并用、常用防老剂的单用及并用对EPDM硫化特性、力学性能、耐老化性能及耐压缩永久变形性能的影响进行系统研究,以探索助交联剂的交联反应对DCP主交联作用的影响及防老剂的合理选用。研究表明:1)、有效硫化体系及复合 硫化体系力学性能较好,但耐老化及压缩永久性能差,DCP硫化体系综合性能较好。 2)、PDM、TAIC和S,可增大硫化胶的硫化速度和交联密度,并改善耐老化性能,且TAIC可改善加工性能;PDM、TAIC及适量S分别与DCP并用,可较好改善硫化胶压缩永久变形。3)、采用单一防老剂,MB的综合性能及抗老化效果最好,硫化胶压缩永 久变形最小;采用两种防老剂同份量并用,MB与NBC并用抗老化效果最好,而RD与MB并用压缩永久变形性能最好;MB与NBC不同份量并用时,其份量比为1/1时硫化胶综合性能较好,而份量比为0.5/ 1.5时压缩永久变形最小。其次,本文分别从硫化温度、硫化时间、硫化工艺考察对EPDM硫化特性、力学性能、耐老化性能及耐压缩永久变形性能的影响。研究表明:随硫化温度增大,填料间相互作用、交联密度减小,T10和T90明显缩短,压缩永久变形增大。合理选择硫化温度和硫化时间,可使得硫化胶具有较好的综合性能,采用二段硫化能提高硫化胶的力学性能,二段硫化时间为2h时综合性能较佳。随硫化时间和二段硫化时间增大,其压缩永久变形降低。再次,本文研究了炭黑(N23 4、N330、N550及N774)、蒙脱土(DK2-OMMT、DK3-OMMT)、纳米重晶石(BaSO_4)及和纳米凹凸棒(AT)对EPDM的硫化特性、力学性能、耐老化性能及压缩永久变形性能的影响,并从粒径、结构性、微观形貌等因素考察,从而为配方筛选、新型填料

轴向拉伸与压缩习题及解答1

轴向拉伸与压缩习题及解答1

轴向拉伸与压缩习题及解答 一、判断改错 1、构件内力的大小不但与外力大小有关,还与材料的截面形状有关。 答:错。 静定构件内力的大小之与外力的大小有关,与材料的截面无关。 2、杆件的某横截面上,若各点的正应力均为零,则该截面上的轴力为零。 答:对。 3、两根材料、长度都相同的等直柱子,一根的横截面积为1A ,另一根为2A ,且21A A 。如图所示。 两杆都受自重作用。则两杆最大压应力相等,最大压缩量也相等。 答:对。 自重作用时,最大压应力在两杆底端,l A 2 A 1 (a (b

即max max N Al l A A νσν=== 也就是说,最大应力与面积无关,只与杆长有关。所以两者的最大压应力相等。 最大压缩量为 2max max 22N Al l l l A EA E νν??=== 即最大压缩量与面积无关,只与杆长有关。所以两杆的最大压缩量也相等。 4、受集中力轴向拉伸的等直杆,在变形中任意两个横截面一定保持平行。所以宗乡纤维的伸长量都相等,从而在横截面上的内力是均匀分布的。 答:错 。在变形中,离开荷载作用处较远的两个横截面才保持平行,在荷载作用处,横截面不再保持平面,纵向纤维伸长不相等,应力分布复杂,不是均匀分布的。 5、若受力物体内某电测得x 和y 方向都有线应变x ε和y ε,则x 和y 方向肯定有正应力x σ和y σ。 答:错, 不一定。由于横向效应作用,轴在x 方向受拉(压),则有x σ;y 方向不受力,但横向效应使y 方向产生线应变,y x ε ενε'==-。 二、填空题

1、轴向拉伸的等直杆,杆内的任一点处最大剪应力的方向与轴线成(45o ) 2、受轴向拉伸的等直杆,在变形后其体积将(增大) 3、低碳钢经过冷做硬化处理后,它的(比例)极限得到了明显的提高。 4、工程上通常把延伸率δ>(5%)的材料成为塑性材料。 5、 一空心圆截面直杆,其内、外径之比为0.8,两端承受力力作用,如将内外径增加一倍,则其抗拉刚度将是原来的(4)倍。 6、两根长度及截面面积相同的等直杆,一根为钢杆,一根为铝杆,承受相同的轴向拉力,则钢杆的正应力(等于)铝杆的正应力,钢杆的伸长量(小于)铝杆的伸长量。 7、 结构受力如图(a )所示,已知各杆的材料和横截面面积均相同,面积2 200A mm =,材料的弹性模量E=200GPa ,屈服极限280s MPa σ =,强度极限460b MPa σ=,试填写下列空格。 当F=50kN ,各杆中的线应变分别为1ε= (46.2510-?),2ε=(0),3 ε=(4 6.2510-?),这是节点B 的水平位移Bx δ=(43.6110m -?),竖直位移By δ=

压缩永久变形影响因素

影响硫化橡胶压缩永久变形的因素 字体大小:大| 中| 小2006-09-25 16:15 - 阅读:4193 - 评论:15 压缩永久变形是橡胶制品的重要性能指标之一。硫化橡胶压缩永久变形的大小,涉及到硫化橡胶的弹性与恢复。有些人往往简单地认为橡胶的弹性好,其恢复就快,永久变形就小。这种理解是不够的,弹性与恢复是相互关联的两种性质。但有时候,橡胶的本质没有发生根本的变化,永久变形的大小主要是受橡胶恢复能力的变化所支配。影响恢复能力的因素有分子之问的作用力(粘性)、网络结构的变化或破坏、分子问的位移等。当橡胶的变形是由于分子链的伸张引起的,它的恢复(或永久变形的大小)主要由橡胶的弹性所决定:如果橡胶的变形还伴有网络的破坏和分子链的栩对流动,这部分可以说是不可恢复的,它是与弹性无关的。所以,凡是影响橡胶弹性与恢复的因素,都是影响硫化橡胶压缩永久变形的因素。 有几个概念,如弹性、打击弹性(回弹性)、弹性与模量、压缩永久变形、扯断永久变形等,它们之问的关系,不易表述清楚现把我个人的理解提出与大家讨论。 弹性——橡胶的弹性应是珲论上的一个概念,它表示橡胶分子链段和侧基内旋转的难易程度,或是橡胶分子链柔顺及分子问作用力的大小。对于硫化橡胶,其弹性还与交联网络密度及规整性有关。 弹性与扯断永久变形——我们常说天然橡胶的弹性很好,但它的扯断永久变形往往是很大的,这主要是天然橡胶仲长率很大,仲长过程中造成网络的破坏及分子链的位移很大,断裂后的恢复历程长和不可恢复的部分增加。如果以定仲长的永久变形作比较,天然橡胶的永久变形就不一定很大了。 打击弹性或回弹性是在定负荷(或定能量)条件下测定的,其弹性的大小与硫化胶的交联程度或

轴向拉伸和压缩的变形计算

教学课题 轴向拉伸与压缩的变形、虎克定律 课时 教学目标或要求 1纵向变形与横向变形 2绝对变形与相对变形(应变) 3虎克定律 4 教学重点、难点 教学方法、手段 教学过程及内容 轴向拉伸与压缩的变形计算 一、变形和应变 杆件在轴向拉伸压缩过程中,其轴向尺寸和横向尺寸都要发生变化,设等截面直杆的原长为l ,横向尺寸为b 。发生轴向拉伸后的长度为1l ,横向尺寸为1b 。下面讨论杆件的变形。 1.绝对变形 杆件长度的伸长量称为纵向绝对变形,用l ?表示,则 l l l -=?1 横向绝对变形用b ?表示,其计算为:b b b -=?1 2.相对变形 绝对变形的大小与杆件的长度有关,为消除长度对变形量的影响,引入相对变形的概念。相对变形指单位长度的变形,又称线应变,用ε表示,则纵向的线应变: l l ?=ε 图13.1.1

横向线应变用1ε表示,其计算为 : b b ?=1ε 3.泊松比 杆件的横向变形和纵向变形是有一定的联系的,大量的实验证明,对于同一种材料,在弹性变形范围内,其横向相对变形与纵向相对变形的比值为一常数,称为泊松比,用表示。因为横向应变与纵向应变恒为相反数,故比值为负,因此泊松比取其绝对值。即 εεμ1 = 二、虎克定律 实验表明,杆件在轴向拉伸和压缩过程中,当应力不超过一定的限度时,杆件的轴向变形与轴力及长度成正比,与杆件的横截面面积成反比,这一关系称为虎克定律。即A Nl l ∝? 引入比例常数E ,则有 EA Nl l =? εσ?=E 表明在弹性限度内,应力和应变成正比。 E---为弹性模量,表明了材料抵抗拉压变形的能力,其单位与应力的单位相同。 EA---抗拉刚度 应用注意: 1.虎克定律只在弹性范围内成立; 2.应用公式时在杆长l 内,轴力N 、弹性模量E 及截面面积A 都应为常数,如果不满足的话,应分段考虑。具体分析见下面的例子。 例:一阶梯钢杆如图,已知AC 段的截面面积为A=500mm 2,CD 段的截面面积为 A200mm 2,杆的受力情况及各段长度如图13.1.2所示,材料的弹性模量为E=200GPa ,试求杆的总变形量。 解:轴力图----以作用点及截面突变处为分界点---求各段变形量---代数和求总变形量.

橡胶制品压缩永久变形测试

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 橡胶制品压缩永久变形测试 1.定义和方法 橡胶压缩永久变形,是指压缩橡胶试样在完全去掉引起其压缩形变的力之后所剩余的变形。其用于判定橡胶材料的交织密度,受力状况下的物性。试验方法通常有三种: 1)方法A:在恒定压力作用下,空气中作压缩试验 2)方法B:在空气中恒定形变压缩试验 3)方法C:在空气(气体)或液体中,恒定形变压缩试验 在方法的选择中一般选用B,但是方法B、C不适合于IRHD>90℃的硬度胶料中。以上三种方法可以做常温、高温、低温或溶液中的形变测试。 2.简单的测试步骤如下: 1)按照要求制作压缩永久变形的试块或直接用产品或部分产品(如O-ring,Washer,Disc等); 2)用夹具将试块固定并压缩到一定的压缩量(压缩率),在一定试验条件(通常是一定温度和时间,有时会浸泡在溶液中测试)后取出; 3)在2的操作过程中记录相应数据,同时记录取出的产品在室温下放置30分钟后的数值(有些客户要求不松开夹具放置30分钟,后松开30分钟后测量); 4)按照压缩永久变形的公式计算在要求温度时间和变形量的前提下的压缩永久变形。 3.压缩永久变形CS的计算方法: CS=(h0-h2)/(h0-h1) h0:压缩前试样的高度,mm h1:限制器的高度,mm h2:试样恢复后的高度,mm 4.结果判定: 在压缩永久变形中,对于所测的每一个样品,都要在标准内,否则视为不合格。在每一个数据都在标准内时,一般测三个样品的试验,最后数值以平均值记录,如果五个样品,一般去掉最大和最小的数值,其余求平均值一般测试需要4-5样品。

影响硫化橡胶压缩永久变形的因素

影响硫化橡胶压缩永久变形的因素 压缩永久变形是橡胶制品的重要性能指标之一。硫化橡胶压缩永久变形的大小,涉及到硫化橡胶的弹性与恢复。有些人往往简单地认为橡胶的弹性好,其恢复就快,永久变形就小。这种理解是不够的,弹性与恢复是相互关联的两种性质。但有时候,橡胶的本质没有发生根本的变化,永久变形的大小主要是受橡胶恢复能力的变化所支配。影响恢复能力的因素有分子之问的作用力(粘性)、网络结构的变化或破坏、分子问的位移等。当橡胶的变形是由于分子链的伸张引起的,它的恢复(或永久变形的大小)主要由橡胶的弹性所决定:如果橡胶的变形还伴有网络的破坏和分子链的栩对流动,这部分可以说是不可恢复的,它是与弹性无关的。所以,凡是影响橡胶弹性与恢复的因素,都是影响硫化橡胶压缩永久变形的因素。 有几个概念,如弹性、打击弹性(回弹性)、弹性与模量、压缩永久变形、扯断永久变形等,它们之问的关系,不易表述清楚现把我个人的理解提出与大家讨论。 弹性——橡胶的弹性应是珲论上的一个概念,它表示橡胶分子链段和侧基内旋转的难易程度,或是橡胶分子链柔顺及分子问作用力的大小。对于硫化橡胶,其弹性还与交联网络密度及规整性有关。 弹性与扯断永久变形——我们常说天然橡胶的弹性很好,但它的扯断永久变形往往是很大的,这主要是天然橡胶仲长率很大,仲长过程中造成网络的破坏及分子链的位移很大,断裂后的恢复历程长和不可恢复的部分增加。如果以定仲长的永久变形作比较,天然橡胶的永久变形就不一定很大了。 打击弹性或回弹性是在定负荷(或定能量)条件下测定的,其弹性的大小与硫化胶的交联程度或模量有直接的关系,表述的是橡胶弹性和粘性(或吸收)的综合。 压缩永久变形是在定变形条件下测定的,其值的大小与橡胶的弹性及恢复能力有关。下面谈谈有关橡胶弹性与恢复的个人认识 一、橡胶的弹性 1.橡胶的种类 弹性取决于橡胶分子链的内旋转难易,分子问作用力的大小。如天然胶、顺丁胶、丁基胶、硅橡胶等被认为足弹性好的橡胶。 2.分子量的大小 影响分子链的卷曲程度、无用未端的数量。分子量大,弹性较好。 3.共聚橡胶的化学组成及结构 丁苯胶、丁腈胶中随苯乙烯和丙烯腈含量的增加弹性变差。乙丙橡胶中,丙烯的含量为4O~5O%时弹性最好,这时形成的共聚物是无规共聚物,如果乙烯含量超过7O%,形成较长的乙烯嵌段,长乙烯嵌段易形成结品而使乙丙胶失去弹性。 二、补强填充剂对硫化胶弹性的影响 非炭黑补强填充剂会损害橡胶的弹性,增大压缩永久变形。这与在应力作用下,橡胶分子在非活性填充剂表面滑动,除去应力以后,又阻碍分子键的恢复有关。偶联荆的应用可以大大地改善非补强填充剂对硫化胶弹性的影响(改善填充荆的分敝性和表面活性)大多文献资料中都说,随着炭黑粒径的增大,硫化胶的弹性增强,但往往忽略了填充量对硫化橡胶弹性的影响。实际上各种橡胶产品都有一定的硬度和强度要求,如单一地使用低补强性炭黑时,用量需要增大,这样同样会损害橡胶的弹性和恢复。在一定变形量的硫化橡胶中,填充的橡胶分子链的变形量要比实际变形量大,扩大的数值与填充量成比例。变形量的增大同样会影响橡胶分子链的位移位置和恢复,增大永久变形。采用适当地补强剂并用和适当地混合工艺,使混炼胶获得理想的结构形态,可以得到高弹性的硫化橡胶。

轴向拉伸与压缩试验

轴向拉伸与压缩试验:(4学时) (点击下载实验报告) 一、实验目的: ①测定低碳钢的两个强度指标:屈服极限σs、强度极限σ b 和两个塑性指标:延伸率δ、断面收缩率ψ。 ②测定铸铁的强度极限σb。 ③观察低碳钢和铸铁压缩时的变形和破坏现象,并进行比较。 二、实验要求: 了解实验设备的构造及工作原理,要求学生亲自动手操作设备;观察低碳钢、铸铁试件的拉伸和压缩的破坏过程;测定低碳钢的屈服极限σs、强度极限σb、延伸率δ、断面收缩率ψ;测定铸铁的强度极限σb;验证虎克定律;认真观察实验过程中出现的各种实验现象,分析实验结果。 三、试件 按GB228—76规定,本实验试件采用圆棒长试件。取d0=10,L=100,如图所示:实验原理及方法

四、实验设备及仪器 1、液压式万能材料实验机; 2、游标卡尺; 3、划线机(铸铁试件不能使用)。 (一)低碳钢的拉伸实验 1屈服极限σs的测定 P—ΔL曲线 实验时,在向试件连续均匀地加载过程中。当测力的指针出现摆动,自动绘图仪绘出的P—ΔL 曲线有锯齿台阶时,说明材料屈服。记录指针摆动时的最小值为屈服载荷P s,屈服极限σs计算公式为 σs=P s/A 2、强度极限σb的测定

实验时,试件承受的最大拉力Pb所对应的应力即为强度极限。试件断裂后指针所指示的载荷读数就是最大载荷Pb,强度极限σb 计算公式为: σb=P b/A0 3、延伸率δ和断面收缩率Ψ的测定 计算公式分别为:δ=(L1-L)/L x 100% Ψ=(A0-A1)/A0 x 100% L:标距(本实验L=100) L1:拉断后的试件标距。将断口密合在一起,用卡尺直接量出。 A0:试件原横截面积。 A1:断裂后颈缩处的横截面积,用卡尺直接量出。 实验步骤 1.试件准备:量出试件直径d0,用划线机划出标距L和量出L; 2.按液压万能实验机操作规程1——8条进行; 3.加载实验,加载至试件断裂,记录Ps 和Pb ,并观察屈服现象和颈缩现象; 4.按操作规程10——14进行; 将断裂的试件对接在一起,用卡尺测量d1和L1 ,并记录。 (二)铸铁与低碳钢的压缩实验 1)测定铸铁的抗压强度极限σb,低碳钢压缩时的屈服极限σs 2)观察铸铁和低碳钢压缩时的破坏现象 3)通过实验,比较塑性材料和脆性材料机械性质的区别

实验五岩石单轴压缩实验DOC

实验五岩石单轴压缩实验 一. 实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600 型液压材料试验机; 5.JN-16 型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三. 试样的规格、加工精度、数量及含水状态 1.试样规格:采用直径为50 mm高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mnrK 50 mnrK 100 mm的立方体,由于岩石松软不能制取标准试样时, 可采用非标准试样,需在实验结果加以说明

2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于 0.1mm 检测方法如图5-1所示,将 试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动 试样百分表指针的摆动幅度小于10格。 b 直径偏差: 试样两端的直径偏差不得大于 0.2 mm,用游标卡尺检查。 c 轴向偏差: 试样的两端面应垂直于试样轴线。检测方法如图 5-2所示,将试样放 在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。 3. 试样数量:每种状态下试样的数量一般不少于 3个。 4. 含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内 1?2 d ,以保持 一定的湿度,但试样不得接触水面。 纵向、横向应变片排列采用“T”形,尽可能避开裂隙,节 理等弱面。 3. 粘贴工艺:试样表面清洗处理一涂胶一贴电阻应变片一固化处理一焊接导线一防潮 四.电阻应变片 1.阻值 检查- 克电 阻丝平 阻值一般选用 120欧姆, 测量片和补偿片的电阻差值不超过 0.5 Q o 1—百分表2-百分表架3-试样4 1—直角尺2-试样 2.位置确定:纵向、横向电阻应变片粘贴在试样中部, 的粘贴 F 直,间距均匀,无黄斑, 3-水平检测台

实验五岩石单轴压缩实验

实验五岩石单轴压缩实 验 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

实验五岩石单轴压缩实验 一.实验目的 岩石单轴压缩是指岩石在单轴压缩条件下的强度、变形和破坏特征。通过该实验掌握岩石单轴压缩实验方法,学会岩石单轴抗压强度、弹性模量、泊松比的计算方法;了解岩石单轴压缩过程的变形特征和破坏类型。 二.实验设备、仪器和材料 1.钻石机、锯石机、磨石机; 2.游标卡尺,精度0.02mm; 3.直角尺、水平检测台、百分表及百分表架; 4.YE-600型液压材料试验机; 5.JN-16型静态电阻应变仪; 6.电阻应变片(BX-120型); 7.胶结剂,清洁剂,脱脂棉,测试导线等。 三.试样的规格、加工精度、数量及含水状态 1. 试样规格:采用直径为50 mm,高为100 mm的标准圆柱体,对于一些裂隙比较发育的试样,可采用50 mm×50 mm×100 mm的立方体,由于岩石松软不能制取标准试样时,可采用非标准试样,需在实验结果加以说明。

2. 加工精度: a 平行度:试样两端面的平行度偏差不得大于0.1mm。检测方法如图5-1所示,将试样放在水平检测台上,调整百分表的位置,使百分表触头紧贴试样表面,然后水平移动试样百分表指针的摆动幅度小于10格。 b 直径偏差:试样两端的直径偏差不得大于0.2 mm,用游标卡尺检查。 c 轴向偏差:试样的两端面应垂直于试样轴线。检测方法如图5-2所示,将试样放在水平检测台上,用直角尺紧贴试样垂直边,转动试样两者之间无明显缝隙。 3.试样数量:每种状态下试样的数量一般不少于3个。 4.含水状态:采用自然状态,即试样制成后放在底部有水的干燥器内1~2 d,以保持一定的湿度,但试样不得接触水面。 四. 超过 1—百分表 2-百分表架 3-试样 4 2. 部,纵向、横向应变片排列采用“┫”形,尽可能避开裂 隙,节理等弱面。

橡胶制品压缩永久变形测试

橡胶制品压缩永久变形测试 1.定义和方法 橡胶压缩永久变形,是指压缩橡胶试样在完全去掉引起其压缩形变的力之后所剩余的变形。其用于判定橡胶材料的交织密度,受力状况下的物性。试验方法通常有三种: 1)方法A:在恒定压力作用下,空气中作压缩试验 2)方法B:在空气中恒定形变压缩试验 3)方法C:在空气(气体)或液体中,恒定形变压缩试验 在方法的选择中一般选用B,但是方法B、C不适合于IRHD>90℃的硬度胶料中。以上三种方法可以做常温、高温、低温或溶液中的形变测试。 2.简单的测试步骤如下: 1)按照要求制作压缩永久变形的试块或直接用产品或部分产品(如O-ring,Washer,Disc等); 2)用夹具将试块固定并压缩到一定的压缩量(压缩率),在一定试验条件(通常是一定温度和时间,有时会浸泡在溶液中测试)后取出; 3)在2的操作过程中记录相应数据,同时记录取出的产品在室温下放置30分钟后的数值(有些客户要求不松开夹具放置30分钟,后松开30分钟后测量); 4)按照压缩永久变形的公式计算在要求温度时间和变形量的前提下的压缩永久变形。3. 压缩永久变形CS的计算方法: CS=(h0-h2)/(h0-h1) h0:压缩前试样的高度,mm h1:限制器的高度,mm h2:试样恢复后的高度,mm 4.结果判定: 在压缩永久变形中,对于所测的每一个样品,都要在标准内,否则视为不合格。在每一个数据都在标准内时,一般测三个样品的试验,最后数值以平均值记录,如果五个样品,一般去掉最大和最小的数值,其余求平均值一般测试需要4-5样品。 5. 压缩永久变形的影响因素: 1)橡胶配方,此决定压缩永久变形好坏的最大关键;如过氧化物硫化的EPDM压缩永久变形比硫磺硫化的小非常多,而且可以通过更高温度的测试; 2)加硫程度,取决于橡胶成型三大因素-温度,时间,压力。正常的橡胶随加硫程度的增加而压缩永久变形变小,到最低值后就开始变大,这时意味着橡胶产品开始过硫化了;特别需要说明的是硫磺硫化的NBR,EPDM等,一次加硫和二次加硫均对此影响非常大(尤其是温度);而过氧化物硫化的NBR,EPDM,一次成型的温度尤其重要,建议在180摄氏度以上,如果一次加硫不足,二次加硫的补足有限;

降低橡胶压缩变形

网友问题 如何控制硫化胶的压缩永久变形 [标签:硫化胶基础知识橡塑] 提问者:opgdghhpxz浏览次数:146 提问时间:2010-08-02 01:59 姓名: 笔名: opgdghhpxz 等级: 列兵 (一级) 回答数: 0 次 通过率: 0%

主营行业: 商业机会 公司: 答案 收藏答案收藏答案分享给好友 最新回答者:damaicha2011 等级: 列兵 (一级) 回答的其他贡献者:damaicha…>> 如何控制硫化胶的压缩永久变形压缩永久变形的决定因素很多,也很复杂,不但取决于生胶,而且还取决于配方和工艺等方面。因此,我们要认真仔细的加以分析和研究,找出其内在因素,才能找出其解决的方法。 首先取决于生胶的品种,因为生胶是橡胶制品的最主要的原材料,如果没有生胶,则就成为”无米之炊“了。生胶的品种不同则其结构也不同,结构不同则其性能就不同。 生胶的分类,有结晶性与非结晶性的;有极性与非极性的;有饱和的与不饱和的;有自补强性的与非自补强性的;有热塑性的与非热塑性的等等,总之,结构不同、组成不同、所含基因不同,其性能就不同。下面是各种生胶的压缩永久变形的大小顺序如下: BR 一般来说,弹性大的、强度高的、结晶自补强性的生胶,它的变形容易恢复,压缩永久变形就较小;而结构中侧链、支链多、基因多的,则内阻大,变形后不易恢复,残留部分变形的则压缩永久变形较大。如BR、NR、CR、FKM的压缩永久变形就较小,而TR、IIR、SBR的压缩永久变形就较大,因为SBR的滞后损失最大,所以它的压缩永久变形就大。其次是含胶率的高低。含胶率高的(60%以上),填料少的,硫化后硫化胶的交联键的空间网状结构中的空隙大,受力后容易塌陷,压缩永久变形就较大。含胶率低(30%以下),填料多,硫化后其硫化胶的空间网状结构的空隙小。受力后挺性大,不易变形,因此其压缩久变形就较小。含胶率中等的则其压缩永久变形居中,介于两者之间以下为胶料的硬度、硫化程度、交联键的类型、炭黑、填料粒子的形状等。

2017 - 压缩永久变形

1、目的 参照GB/T 6669软质泡沫聚合材料压缩永久变形的测定标准,规范测试方法,保证软质泡沫压缩永久变形测试的准确性。 2、范围 适用于公司内部软质泡沫压缩永久变形的测定。 3、操作规程 3.1试样的制备 试样制备用公司泡沫切割机制作,规格为5件(50 * 50 *25 )mm且各面无表皮泡沫; 3.2试测的条件 1)在测试前将试样放置在温度为23 ±2℃(73.4 ±3.6℉)的环境中至少16小时; 2)压力永久变形性能受大气湿度影响的试样应在相对湿度控制在50±5%的大气环境下放置至少16小时; 3.3试验步骤 1)接好电源(220V),打开断路器开关确认相序是否正确; 2)打开电源开关–对仪表温度设定–时间继电器设定(总工作时间) –打开鼓风机–打开加热开关; 3)当温度达到设定值后定时器开始工作,当达到设定时间后仪器设备自动切断电源并鸣声报警提示; 4) 温度设定:按Set键SV屏幕闪烁,再用左侧方向键用于调整温度; 5)时间设定:共有四处显示上下 0-9 ,第三显示可以调节时、分、秒,可用“ + ”“ - ”调节; 4、试验结果计算公式 CS = ( dc – d1 ) / d0 * 100 % CS:压缩永久变形,以百分数 % 表示; d0 :试样初始厚度,单位为毫米 mm; d1:试样最终厚度,单位为毫米 mm; 5、注意事项与保养 5.1仪器顶盖上,禁止方式任何物品以免影响仪器散热; 5.2保养时需将仪器总电源关闭; 5.3检测人员应保证仪器内部试验箱清洁; 5.4检查电机转向是否与规定一样; 5.5检车进排风口是否正确,在升温过程中,将进风口关闭,排风口打开,在降温过程中,则可全部打开;

轴向拉伸和压缩教案

《杆件的基本变形》教案 一、教学目标 知识目标 1.了解轴向拉伸与压缩变形的特点; 2.正确理解轴力概念; 3.掌握利用截面法求轴力。 能力目标 1.会分析轴向拉压杆的变形特点; 2.会利用截面法求解轴力。 情感目标 通过对轴向拉伸与压缩特点的研究,结合实际拉压杆问题的分析,提高 学生分析问题和解决实际问题的能力。 二、教学重点、难点 重点:1.轴向拉伸和压缩的概念的理解; 2.轴力的理解; 3.轴力的求解。 难点:轴力如何求解。 三、教学内容 本节教学内容选自柴鹏飞等主编的中等职业教育课程改革国家新规划《机械基础》(少学时)第2章第2节的任务1-2,杆件在外力作用下可能发生四种基本变形,即拉伸或压缩、剪切、扭转和弯曲。今天所讲的《轴向拉伸与压缩》内容,是对杆件进行力学分析的最基础、最重要的内容,并且是后续课程内容的基础,因此本节知识将起到承上启下的作用。 四、教学手段与教学方法 ☆循序渐进、实例入手:采用循序渐进、实例入手的教学模式来引导学生进入新课学习。教学过程中引导学生结合实际生活,采用分组讨论的方法,归纳总结出相关的概念以及规律。这种通过启发引导、深入浅出的教学方法将学生的实际生活经验和本课程中

较为抽象的概念和解决方法能有效的结合起来理解,即符合学生的认知规律,还启迪学生们积极思维的求学和探索精神,再通过教师将讲解示范,讨论交流,归纳反馈这几个环节有效地结合起来,同时利用多媒体和传统教学手段相结合的教学手段,以达到高效的学习目的,和良好的教学效果。 ☆分层教学、针对训练:针对中职学生基础知识与技能差异较大的现状,采用动态分层教学方式:对于基础较薄弱的学生,可以加以启发性引导;对于基础相对较高的、理解能力稍强的学生,可以在引导的基础上加以总结归纳任务,这样使每个学生都有所收获,提高了学生自主学习和自主探究、创造性地运用理论与实际相结合的分析问题的能力。 五、教学准备 ☆教具:多媒体教室、自制课件、学案 六、教学课时 ☆ 1课时(45分钟)教学过程 七、教学过程 教学步骤教学内容设计思路教学活动 教师活动学生活动 复习前课(2’)内力求解方法—截面法:用假象的横截面切 开杆件,从而显示内力的方法与求出内力的 方法。 通过提问的方 式,引导复习前 面内容。 引导学生回 忆,并请学生 回答。 通过教师 引导回忆 回答提 问。 新课引入 (5’) 列举生活中的实例 分析图片中杆件的受力与变形特点 提出问题一:什么是轴向拉伸与压缩? 最终导出上课主题——轴向拉伸与压缩通过引入生活实 例图片,结合生 活经验,引发学 生对新问题的兴 趣,并为归纳总 结出相关规律做 准备。 教师展示图 例图片,教师 提出问题一, 将学生分6 组讨论问题 一。为新课的 引入做铺垫。 一边分组 讨论,一 边思考老 师提出的 问题。

相关文档
相关文档 最新文档