文档库 最新最全的文档下载
当前位置:文档库 › 安徽工业大学有限元大作业

安徽工业大学有限元大作业

安徽工业大学有限元大作业
安徽工业大学有限元大作业

安徽工业大学ANSYS及其应用考核大作业

姓名:宋井科

学院:机械工程学院

学号:149054085

指导老师:于秀娟

成绩:

ANSYS 及其应用考核大作业

学号:149054085 姓名:宋井科

1、按图1尺寸建立轴承座的装配模型,具体尺寸参考讲义第9章内容(因结构和载荷的对称性,只建立了一半模型),一半模型中在轴两端作用垂直向下的载荷P 1,轴向载荷

124.0P P =,各螺栓预紧力12P T =。1P 取值:

(学号最后3位数字)?10N ,小于1000N 时再加上1000N ,各摩擦因数1.0=μ(若轴承座和垫板有相对滑动,造成计算不收敛,可将摩擦因数加大并说明摩擦因数大小)。

要求:

(1) 为何采用Ansys 计算此结构;

(2) 建模过程。简单叙述;

(3) 网格划分。请尽量采用六面体网格划分,简单叙述,列出分割后的实体图

和网格图,并说明单元和节点数;

(4) 加载过程(注意一半模型的载荷为整体模型的1/2)。详细叙述加载部位和

加载过程;

(5) 计算结果与分析。列出米塞斯等效应力、第一主应力和变形图,并进行强

度分析,若结构需加强,如何改进?

(6) 学习体会;

(7) 每人必须自己完成,若数据和结果相同按不及格处理。

一、 原始数据

1. 模型尺寸

2.载荷大小

解:因轴向载荷124.0P P =,各螺栓预紧力12P T =。1P 取值:

(学号最后3位数字)?10N ,小于1000N 时再加上1000N ,各摩擦因数1.0=μ(若轴承座和垫板有相对滑动,造成计算不收敛,可将摩擦因数加大并说明摩擦因数大小)。

我的学号后三位为085,所以1P =85*10+1000=1850N ;P2 = 0.4*1850=740N 12P T ==1850*2=3700N 。

基于ANSYS的轴承座的有限元分析

摘要:本文利用ANSYS14.0对轴承座的强度进行有限元分析。通过三维实体

建模,设置单元类型,设置材料参数,网格划分控制,施加载荷约束建立轴承座的有限元模型,然后对轴承座进行求解,得出应力,位移分布图和变形图,继而对其进行强度分析,找出结构最易破坏的地方。最后的计算结果表明该轴承座符合强度设计要求。

关键词:有限元分析、轴承座

引言:轴承座可以为轴提供支撑,并且承受轴传递的各种载荷。一个可靠的轴承座对于减轻轴的偏心振动,保证设备的正常性能具有重要作用。但由于轴承座形状复杂,传统的解析法无法较为精确地计算其性能。所以使用有限元分析软件ANSYS,对汽车上的某轴承座的承载特性进行有限元分析。

一.采用Ansys计算的原因

随着现代工业的不断发展,人们对产品质量的要求逐步提高,传统的产品设计技术目前已远远不能满足产品的功能和市场的要求。而现代设计技术是以电子计算机为手段,以网络为基础,建立在现在管理之上,运用工程设计的新理论、新方法,实现计算机结果最优化,设计过程高效化的设计技术,它是传统设计技术的延伸和发展,它使传统设计技术发生了质的飞跃。ANSYS程序是一个功能强大的设计分析及优化软件包。与其它有限元分析软件如SAP或NAS2TRAN等相比,它有以下特点:(1)ANSYS是完全的WINDOWS程序,从而使应用更加方便;(2)产品系列由一整套可扩展的、灵活集成的各模块组成,因而能满足各行各业的工程需要;(3)它不仅可以进行线性分析,还可以进行各类非线性分析;(4)它是一个综合的多物理场耦合分析软件,用户不但可用其进行诸如结构、热、流体流动、电磁等的单独研究,还可以进行这些分析的相互影响研究,例如:热—结构耦合,磁—结构耦合以及电—磁—流体—热耦合等。

有限元法已成为非常普及的数字化分析方法,国际上已发布了众多的有限元分析软件,因此,甚至可以说只要你能够进行工程设计和画图,就可以进行有限元分析。因此采用Ansys计算,很方便,很实用。

优势一:协同

优势二:多物理场仿真

优势三:双向参数互动

优势四:自动探测装配

优势五:变分优化

二. 建模过程

ANSYS也可以直接建模,但由于直接采用ANSYS建模功能并不特别方便,较复杂的模型基本在其它三维CAD软件里建立,通过直接关联的接口或中间文件格式导入。通常,经常采用导入的文件格式后缀有sat和x_t两种形式,这2种形式导入的模型完整,且可导入装配体模型,导入的模型基本不存在面的破碎等现象,这也是不建议采用igs格式导入模型文件的原因。

首先在三维CAD软件中将模型保存或输出后缀为sat的文件,注意保存的路径和文件名中不要出现中文字符。

如,这里我们可以利用solidworks直接进行建模

1、启动solidworks软件,点击新建按钮

2、选择零件,确定

3、选择任意基准面,进行草图绘制

4、拉伸矩形草图,形成轴承座底座

6、建立如下草图

7、拉伸后如图所示

8、更改基准面,绘制草图,然后拉伸切除,结果如下图所示。

9、在轴承座上底面绘制螺栓孔草图如下图所示,并拉伸切除

10、绘制筋草图

11、拉伸筋,建模完成

12、将模型保存为x_t形式

四、导入模型

选取应用菜单File→Import→Parasolid,出现图8-2所示的ANSYS Connection for PARASOLID对话框,在指定路径下选择前面保存的x_t文件“songansis.x_t”,注意Geometry Type的下拉选项中根据需要选择导入的是实体、面还是线框,单击对话框中的“OK”确认并退出。

图8-2 sat格式文件导入

步骤2:实体模型显示

导入实体模型中,在ANSYS图形窗口中,模型仍以线框形式显示(图8-3)。选取应用菜单PlotCtrls→Style→Solid Model Facets,弹出图8-4所示的Solid Model Facets对话框,在下拉选择框中选择“Normal Faceting”,单击对话框中的“OK”确认并退出。

选取应用菜单Plot→Replot,图形窗口中模型如图8-5所示,以面的形式显示

图8-3 导入实体模型线框显示

图8-4 实体模型面显示设置

图8-5 导入实体模型面显示

步骤3:选择单元类型

选取主菜单Preprocessor→Element Type→Add/Edit/Delete,在弹出的Element Type对话框中,单击“Add”按钮;在弹出的Library of Element Types对话框左边的列表中,选“Structural Solid”,然后在右边的列表中选“Brick 8 node 185”(选择8节点的Solid185单元),单击对话框中的“OK”按钮;在返回的Element Type对话框中,单击对话框中的“Close”按钮退出。

步骤4:定义材料特性

选取主菜单Preprocessor→Material Props→Material Models,在弹出的Define Material Mode Behavior对话框的右边选项框中,依次单击Structural→Linear→Elastic→Isotropic按钮(表示定义的材料为各向同性的线弹性结构材料类型);在弹出的Linear Isotropic Properties for Material Number 1对话框的EX文本框中,输入“2.06e5”,在PRXY文本框中,输入“0.3”,单击此对话框的“OK”按钮退出;再关闭Define Material Mode Behavior对话框。

步骤5:轴承座体的分割

导入的轴承座可以采用自由网格划分,但这是Solid186单元大多退化为4面体单元和5面体单元,其计算精度大为降低,若采用自由网格,则不如选择10节点的Solid187单元。

在Hypmesh以及ICEM-CFD、Gambit等软件中,可以对复杂结构划分出高

质量的6面体单元。对于不太复杂的结构,在Ansys中,可以通过体的分割等操作,使各体满足体的映射网格划分和体的扫略网格划分的要求,划分得到6面体单元时,其中体的映射网格划分得到的是6面体,而体的扫略网格划分大多划分得到的是6面体,少量是5面体的楔形单元。

三维体映射网格划分的要求和措施:

a)体由6个面、5个面、4个面围成的6面体、楔形或棱形或4面体构成;

b)各面划分符合二维映射网格划分的要求,即面若是4条线,面中相对的

线必须划分相同的份数,若面是3条线,则各线划分的份数相等且为偶

数;

c)当需要减少围成体的面数以进行映射网格划分时,可以采用面连接,一

次只能连接2个面;

d)采用布尔操作中的体分割,将体分割为2块或2块以上的体,每个体满

足映射网格前面的3个要求。

三维体扫略网格划分的要求和措施:

a)体由五个以上的面构成;

b)源面与目标面必须拓扑结构相同;

c)侧面和体内线最好从源面贯穿到目标面;

d)可确定体的哪一个边界面作为源面或目标面(可自动确定),也可有选择

地对源面、目标面和边界面划分网格并确定扫略操作中生成的单元层的

数目;

e)采用布尔操作中的体分割,使分割后的体满足映射或扫略网格划分的要

求。

因此,对较复杂的体,不可能直接采用映射或体扫略网格划分的方式,得到六面体单元,必须采用体分割,将复杂的体分割成满足映射或体扫略网格划分的要求。

(1)轴承座上下分割,得到底板和上部结构

工作平面平移到点。选取应用菜单WorkPlane→Offset WP to Keypoints,在图形窗口拾取图8-6所示位置的点35(由于建模过程不同,导入后点号不一定相同,所列出的点号只是表明在图8-6中的位置),在出现的鼠标拾取对话框中单击“OK”确认,则将工作坐标系平移到了点35。

图8-6 工作平面平移到点17

工作平面旋转。选取应用菜单WorkPlane→Offset WP by Increments,在出现的Offset WP对话框中,将Degrees上部的拖拉工具条拖到最右端,此时拖拉工具条上部数值显示为90,再单击对话框中的,使得工作坐标系的工作平面(WX和WY平面所组成的平面)与底板上表明平行(图8-7)。

图8-7 工作平面旋转后效果

采用工作平面分割轴承。选取主菜单Preprocessor→Modeling→Operate→Booleans →Divide→V olu by WrkPlane,在图形窗口选取轴承座(1号体),在出现的鼠标

拾取对话框中单击“OK”确认并退出。此时,底板体号为2,上部结构为体3,在布尔操作后,两个体之间仍有公共面,仍是一个零件。

选取应用菜单PlotCtrls→Numbering,出现图8-8所示的Plot Numbering Controls对话框,点击VOLU V olume numbers后的选择项,使其显示为“On”,注意[/NUM] Numbering shown with后的下拉选择框为“Colors & numbers”,单击对话框的“OK”按钮退出。选取应用菜单Plot→V olumes,得到图8-9所示分割后的效果(体2和体3共2个体),其中体1分割后分成体2和体3,原体号没有立即采用。

图8-8 显示的元素代号控制

图8-9 轴承座分割成底板和上部结构

同理,改变工作平面位置,分割其它体,最终,把轴承座分隔成如下图

所示:

四、网格划分

由于有的体仍不满足体映射网格的要求,若进一步切割虽然能够采用映射网格划分,但会造成相邻的体不满足映射网格的要求,因此,对这些体采用面连接的方式进行处理,使其满足体映射网格的需求,实在不能采用映射网格划分的体,采用体扫略网格划分。由于映射网格对线的划分网格的份数有要求,所以首先中心开花,划分中心位置的体,再多点扩散,划分周围的体。

(1)体7和体19网格划分

选择图8-20中的体7、体19。选取应用菜单Select→Entities,出现Select Enitties对话框,第一行的选择的元素下拉选择框中选择“V olumes”,第二行选择标准下拉选择框中选择“By Num/Pick”,第三组选择功能设置下拉选择框中选择“From Full”,单击“Apply”执行按钮键;在图形窗口体7和体19的形心位置单击2次,选中体7和体19,在出现的鼠标拾取对话框中单击“OK”确认(选择体19和体7)。

选择图8-20中的体19、体7所包含的元素(面、线和点,若划分网格后,还包括单元和节点)。在刚操作的Select Enitties对话框中,单击选择功能执行按钮“Sele Belo”(选择体7和体19所包含的元素)。单击应用菜单Plot→Areas,可看出,此时图形窗口中只有体19和体7下包含的面,只有这些面在选择集中。同样,可查看体19和体7下包含的线及点。

面的显示。选取应用菜单PlotCtrls→Numbering,在出现的Plot Numbering Controls对话框,点击AREA Area numbers后的选择项,使其显示为“On”,注意[/NUM] Numbering shown with后的下拉选择框为“Colors & numbers”,单击对话框的“OK”按钮退出。再调整视角(按住键盘Ctrl键,同时在图形窗口按住鼠标右键移动),使图形窗口如图8-21所示。

图8-21 体包含的面显示

体的面连接。选取主菜单Preprocessor→Meshing→Concatenate→Areas,在图形窗口面46和面13位置单击2次,在出现的鼠标拾取对话框中单击“Apply”确认;再在图形窗口面117和面118位置单击2次,在出现的鼠标拾取对话框中单击“OK”确认。则面46和13、面117和118中间出现了面连接操作产生的

连接面。

线划分网格尺寸控制。选取主菜单Preprocessor→Meshing→MeshTool,在出现的MeshTool对话框中,单击Size Controls下的Lines后的Set按钮,在图形窗口单击图8-22所示“L83”位置的线,在出现的鼠标拾取对话框中单击“OK”确认并退出,出现Element Sizes on Picked Lines对话框,在NDIV No. of element divisions后的文本框中输入“18”(将选中的线分为18等份),单击对话框中的“Apply”确认;采取同样操作,将图8-22中“L188”位置的线分为10等份,将“29”位置的线分为8等份,将“L51”位置的线分为4等份,将“L21”位置的线分为2等份,将“L161”位置的线分为6等份。

图8-22 体9和22中各线位置

体7和体19映射网格划分。在MeshTool对话框中,由于本例只有一种材料,现阶段只添加了Solid185这一种单元类型,所以不需单击MeshTool对话框中Element Atrributes下、Global后的Set按钮,设置单元划分时的单元类型、材料等属性。保证Mesh:后的下拉选择框中选择的是“V olumes”,选择Shape下网格划分方式选择的是“Mapped”选项,单击“Mesh”按钮,在图形窗口单击2次,在出现的鼠标拾取对话框中单击“OK”确认并退出。得到体7和体19映射划分的网格。

(2)体15和体16网格划分

选取应用菜单Select→Everything,再选取应用菜单Plot→V olumes,显示所有体。

将图8-23中所指“L52”位置的线分为2等份,“L8”位置的线分为18等份。

在MeshTool对话框中,保证Mesh:后的下拉选择框中选择的是“V olumes”,选择Shape后网格划分方式“Mapped”选项,单击“Mesh”按钮,在图形窗口体15和体16形心位置单击,在出现的鼠标拾取对话框中单击“OK”确认并退出(体15和16映射网格划分)。图8-23为已划分的的网格。

图8-23 已划分网格

(3)其他体的映射网格划分

同理,进行体22和体21网格划分、体4和体8网格划分

(4)8个包括螺栓孔体的网格划分

首先选取8个包括螺栓孔的体。选择图8-17中的体6、体10-14和体17-18。

其次连接面。连接各体圆弧面相对的两个面。

再次线等份数控制。设置各圆弧线(1/4圆)的等份数为16,圆弧线相对的线8等份,各圆弧线相邻的线4等份。

最后将各体采用映射网格划分。

(5)划分剩下体的网格

选择所有已划分网格的体。选取应用菜单Select→Entities,出现Select Enitties 对话框,第一行的选择的元素下拉选择框中选择“V olumes”,第二行选择标准下拉选择框中选择“By Attributes”,在出现的属性中点选“Elem type num”选项,

有限元实例分析大作业一

受均匀内压作用的厚壁圆筒: 问题描述: 受均匀内压p=12.5N/mm 2作用的厚壁圆筒。其几何参数为:内径R i =100mm , 外径R e =200mm ,桶壁后h=100mm ,材料参数为:E=8666.67Mpa ,v=0.3, s σ=17.32Mpa ,材料符合Mise 屈服条件。 (a)求理想塑性材料的解,给出应力r σ和θσ沿径向r 的分布曲线,并求完全卸载 后圆筒内的残余应力分布。 (b)求线性强化材料(E 1=0.6E 或E 1=0.6E)的解,即应力r σ和θσ沿径向r 的分布 曲线。 (c)求幂硬化材料的解并绘出当弹塑性比例系数为m=0,1/4,1/2,2/3和m=1.0时, 即应力r σ和θσ沿径向r 的分布曲线。 求解分析: 由于该厚壁筒模型是轴对称模型,所以在求解过程中,我们选取了1/4模型进行了进行建模分析,具体如下图: 建模时取了柱坐标系下厚壁筒从0。~90。范围内的部分,高度取为100mm ,模型完成后进行网格的划分,这里利用了Patran 的Mesh Seed 功能,通过在径向、周向,高度方向撒种生成Mesh 网格,网格划分如上图。 考虑到实体的变形情况,关于模型的边界条件,定义如下: (1)模型的上、下表面为两个平面,在该两平面上限制z 方向的位移为0; (2)对于模型的内外两圆弧面,为了方便定义边界条件,建立了柱坐标,该两平

是延径向变形的,所以ρ坐标是放开的,为了限制模型的刚体移动,这里限制角坐标θ为0。 (3)对于模型两个侧平面,是属于模型的对称面,所以该两平面的单元在垂直于平面的方向上位移为零,这里利用柱坐标,即沿周向的位移为零,所以同样要限制角坐标θ为0。 由于厚壁筒受到均匀内压,所以在施加载荷时选择均布载荷Pressure,大小为p=12.5N/mm2,作用在内圆弧表面上。 对于材料塑性的定义,首先定义样式模量和泊松比,然后在弹塑性对话框里定义屈服载荷和硬化系数或通过在Stress/Strain Curve栏中添加事先定义的材料属性场来表征弹塑性比例系数m。 对于求解分析,求解器选择Nastran进行计算分析,单元属性选择3D Solid 属性,分析类型定义为非线性并设置大变形和跟随力及载荷增量步等,以此来进行弹塑性的非线性求解。 结果分析: (a)对于理性塑性材料,即硬化系数为0,求解结果如下: 该图为100%载荷作用下模型的应力云图及变形情况。观察可知,筒内壁应力较高且首先达到屈服应力发生塑性变形,沿径向方向向外,各层应力逐渐递减,且外层部分属于弹性变形的范畴,模型某一层为弹塑性变形的分界面。

有限元分析大作业报告

有限元分析大作业报告 试题1: 一、问题描述及数学建模 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: (1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; (2)分别采用不同数量的三节点常应变单元计算; (3)当选常应变三角单元时,分别采用不同划分方案计算。 该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图所示。 二、采用相同单元数目的三节点常应变单元和六节点三角形单元计算 1、有限元建模 (1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences 为Structural (2)选择单元类型:三节点常应变单元选择的类型是Solid Quad 4 node182;六节点三角形单元选择的类型是Solid Quad 8 node183。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 (3)定义材料参数:弹性模量E=2.1e11,泊松比σ=0.3 (4)建几何模型:生成特征点;生成坝体截面 (5)网格化分:划分网格时,拾取lineAB和lineBC,设定input NDIV 为15;拾取lineAC,设定input NDIV 为20,选择网格划分方式为Tri+Mapped,最后得到600个单元。

(6)模型施加约束:约束采用的是对底面BC 全约束。大坝所受载荷形式为Pressure ,作用在AB 面上,分析时施加在L AB 上,方向水平向右,载荷大小沿L AB 由小到大均匀分布。以B 为坐标原点,BA 方向为纵轴y ,则沿着y 方向的受力大小可表示为: }{*980098000)10(Y y g gh P -=-==ρρ 2、 计算结果及结果分析 (1) 三节点常应变单元 三节点常应变单元的位移分布图 三节点常应变单元的应力分布图

单片机毕业设计完整版

安徽工业大学继续学院《单片机原理》期末课程设计 题目:单片机计时时钟设计与制作 专业:电气工程及其自动化 班级:14 电升 姓名:夏云飞 学号:1410102003035 指导老师:贺容波 成绩: ( 2015.12 )

目录 一、绪论 (1) 1.1单片机简介 (1) 二、硬件系统设计方案 (3) 2.1 时钟电路的设计 (3) 2.2复位电路的设计 (4) 2.3 数码显示电路的设计 (5) 2.4按键电路的设计 (7) 2.5 蜂鸣器电路的设计 (8) 2.6接线图 (9) 三、软件系统设计方案 3.1 模块化设计方案 (10) 3.2 主程序的设计 (11) 3.3 LED动态显示程序的设计 (14) 3.4 计时程序模块的设计 (17) 3.5 键盘程序的设计 (19) 3.6 蜂鸣器程序的设计 (22) 3.7整个程序 (23) 四、总结 总结与致谢 (28) 参考文献 (29) 使用说明 (29)

安徽工业大学继续教育学院《单片机原理》期末课程设计——单片机计时时钟设计与制作 一绪论 1.1单片机简介 1.1.1单片机的产生 计算机的发展经历了从电子管到大规模集成电路等几个发展阶段,随着大规模集成电路技术的发展,使计算机向性能稳定可靠、微型化、廉价方向发展,从而出现了单片微型计算机。 所谓单片微型计算机,是指将组成微型计算机的基本功能部件,如中央处理器CPU、存储器ROM和RAM、输入/输出(I/O)接口电路等集成在一块集成电路芯片上的微型计算机,简称单片机。总体来讲,单片机可以用以下“表达式”来表示:单片机=CPU+ROM+RAM+I/O+功能部件 1.1.2单片机的特点 随着现代科技的发展,单片机的集成度越来越高,CPU的位数也越来越高,已能将所有主要部件都集成在一块芯片上,使其应用模式多、范围广,并具有以下特点: ①体积小,功耗低,价格便宜,重量轻,易于产品化。 ②控制功能强,运行速度快,能针对性地解决从简单到复杂的各类控制问题,满足工业控制要求,并有很强的位处理和接口逻辑操作等多种功能。 ③抗干扰能力强,适用温度范围宽。由于许多功能部件集成在芯片内部,受外界影响小,故可靠性高。 ④虽然单片机内存储器的容量不可能很大,但存储器和I/O接口都易于扩展。 ⑤可以方便的实现多机和分布式控制。 1.1.3单片机的应用 单片机的应用具有面广量大的特点,目前它广泛的应用于国民经济各个领域,对技术改造和产品的更新起着重要作用。主要表现在以下几个方面: ①单片机在智能化仪器、仪表中的应用:由于单片机有计算机的功能,它不仅能完成测量,还既有数据处理、温度控制等功能,易于实现仪器、仪表的数字化和智能化。 ②单片机在实时控制中的应用:单片机可以用于各种不太复杂的实时控制系统中, 第1页

华科大有限元分析题及大作业题答案——船海专业(DOC)

姓名:学号:班级:

有限元分析及应用作业报告 一、问题描述 图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算; 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。

二、几何建模与分析 图1-2力学模型 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况及方向如图1-2所示,建立几何模型,进行求解。 假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3 三、第1问的有限元建模 本题将分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算。 1)设置计算类型:两者因几何条件和载荷条件均满足平面应变问题,故均取Preferences为Structural 2)选择单元类型:三节点常应变单元选择的类型是PLANE42(Quad 4node42),该单元属于是四节点单元类型,在网格划分时可以对节点数目控制使其蜕化为三节点单元;六节点三角形单元选择的类型是PLANE183(Quad 8node183),该单元属于是八节点单元类型,在网格划分时可以对节点数目控制使其蜕化为六节点单元。因研究的问题为平面应变问题,故对Element behavior(K3)设置为plane strain。 3)定义材料参数 4)生成几何模 a. 生成特征点 b.生成坝体截面 5)网格化分:划分网格时,拾取所有线段设定input NDIV 为10,选择网格划分方式为Tri+Mapped,最后得到200个单元。 6)模型施加约束: 约束采用的是对底面BC全约束。 大坝所受载荷形式为Pressure,作用在AB面上,分析时施加在L AB上,方向水平向右,载荷大小沿L AB由小到大均匀分布(见图1-2)。以B为坐标原点,BA方向为纵轴y,则沿着y方向的受力大小可表示为: ρ(1) = gh P- =ρ g = - 10 {* } 98000 98000 (Y ) y

(完整版)有限元大作业matlab---课程设计例子

有限元大作业程序设计 学校:天津大学 院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\ 指导老师:

连续体平面问题的有限元程序分析 [题目]: 如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界 上受正向分布压力, m kN p 1=,同时在沿对角线y 轴上受一对集中压 力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。 [分析过程]: 由于连续平板的对称性,只需要取其在第一象限的四分之一部分参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。

[程序原理及实现]: 用FORTRAN程序的实现。由节点信息文件NODE.IN和单元信息文件ELEMENT.IN,经过计算分析后输出一个一般性的文件DATA.OUT。模型基本信息由文件为BASIC.IN生成。 该程序的特点如下: 问题类型:可用于计算弹性力学平面问题和平面应变问题 单元类型:采用常应变三角形单元 位移模式:用用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束 方程求解:针对半带宽刚度方程的Gauss消元法

输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN 结果文件:输出一般的结果文件DATA.OUT 程序的原理如框图:

有限元分析报告大作业

有限元分析》大作业基本要求: 1.以小组为单位完成有限元分析计算,并将计算结果上交; 2.以小组为单位撰写计算分析报告; 3.按下列模板格式完成分析报告; 4.计算结果要求提交电子版,一个算例对应一个文件夹,报告要求提交电子版和纸质版。 有限元分析》大作业 小组成 员: 储成峰李凡张晓东朱臻极高彬月 Job name :banshou 完成日 期: 2016-11-22 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况 和约束情况。图应清楚、明晰,且有必要的尺寸数据。)如图所示,为一内六角螺栓扳手,其轴线形状和尺寸如图,横截面为一外 接圆半径为0.01m的正六边形,拧紧力F为600N,计算扳手拧紧时的应力分布 图1 扳手的几何结构 数学模型

要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;

图 2 数学模型 如图二所示,扳手结构简单,直接按其结构进行有限元分析。 三、有限元建模 3.1 单元选择 要求:给出单元类型, 并结合图对单元类型进行必要阐述, 包括节点、自由度、 实常数等。) 图 3 单元类型 如进行了简化等处理,此处还应给出文字说

扳手截面为六边形,采用4 节点182单元,182 单元可用来对固体结构进行

二维建模。182单元可以当作一个平面单元,或者一个轴对称单元。它由4 个结点组成,每个结点有2 个自由度,分别在x,y 方向。 扳手为规则三维实体,选择8 节点185单元,它由8 个节点组成,每个节点有3 个自由度,分别在x,y,z 方向。 3.2 实常数 (要求:给出实常数的具体数值,如无需定义实常数,需明确指出对于本问题选择的单元类型,无需定义实常数。) 因为该单元类型无实常数,所以无需定义实常数 3.3材料模型 (要求:指出选择的材料模型,包括必要的参数数据。) 对于三维结构静力学,应力主要满足广义虎克定律,因此对应ANSYS中的线性,弹性,各项同性,弹性模量EX:2e11 Pa, 泊松比PRXY=0.3 3.4几何建模由于扳手结构比较简单,所以可以直接在ANSYS软件上直接建模,在ANSYS建 立正六 边形,再创立直线,面沿线挤出体,得到扳手几何模型 图4 几何建模

有限元分析大作业试题

有限元分析习题及大作业试题 要求:1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方 案、载荷及边界条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分 析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单 元改变对精度的影响分析、不同网格划分方案对结果的 影响分析等) E、建议与体会 4)11月1日前必须完成,并递交计算分析报告(报告要求打印)。

习题及上机指南:(试题见上机指南) 例题1 坝体的有限元建模与受力分析 例题2 平板的有限元建模与变形分析 例题1:平板的有限元建模与变形分析 计算分析模型如图1-1 所示, 习题文件名: plane 0.5 m 0.5 m 0.5 m 0.5 m 板承受均布载荷:1.0e 5 P a 图1-1 受均布载荷作用的平板计算分析模型 1.1 进入ANSYS 程序 →ANSYSED 6.1 →Interactive →change the working directory into yours →input Initial jobname: plane →Run 1.2设置计算类型 ANSYS Main Menu : Preferences →select Structural → OK 1.3选择单元类型 ANSYS Main Menu : Preprocessor →Element T ype →Add/Edit/Delete →Add →select Solid Quad 4node 42 →OK (back to Element T ypes window) → Options… →select K3: Plane stress w/thk →OK →Close (the Element T ype window) 1.4定义材料参数 ANSYS Main Menu : Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY :0.3 → OK 1.5定义实常数 ANSYS Main Menu: Preprocessor →Real Constant s… →Add … →select T ype 1→ OK →input THK:1 →OK →Close (the Real Constants Window)

ansys有限元分析大作业

ansys有限元分析大作业

有限元大作业 设计题目: 单车的设计及ansys有限元分析 专业班级: 姓名: 学号: 指导老师: 完成日期: 2016.11.23

单车的设计及ansys模拟分析 一、单车实体设计与建模 1、总体设计 单车的总体设计三维图如下,采用pro-e进行实体建模。 在建模时修改proe默认单位为国际主单位(米千克秒 mks) Proe》文件》属性》修改

2、车架 车架是构成单车的基体,联接着单车的其余各个部件并承受骑者的体重及单车在行驶时经受各种震动和冲击力量,因此除了强度以外还应有足够的刚度,这是为了在各种行驶条件下,使固定在车架上的各机构的相对位置应保持不变,充分发挥各部位的功能。车架分为前部和后部,前部为转向部分,后部为驱动部分,由于受力较大,所有要对后半部分进行加固。

二、单车有限元模型 1、材料的选择 单车的车身选用铝合金(6061-T6)T6标志表示经过热处理、时效。 其属性如下: 弹性模量:) .6+ 90E (2 N/m 10 泊松比:0.33 质量密度:) 3 2.70E+ N/m (2 抗剪模量:) 60E .2+ N/m (2 10 屈服强度:) .2+ (2 75E 8 N/m 2、单车模型的简化 为了方便单车的模拟分析,提高电脑的运算

效率,可对单车进行初步的简化;单车受到的力的主要由车架承受,因此必须保证车架能够有足够的强度、刚度,抗振的能力,故分析的时候主要对车架进行分析。简化后的车架如下图所示。 3、单元体的选择 单车车架为实体故定义车架的单元类型为实体单元(solid)。查资料可以知道3D实体常用结构实体单元有下表。 单元名称说明 Solid45 三维结构实体单元,单元由8个节点定义,具有塑性、蠕变、应力刚化、 大变形、大应变功能,其高阶单元是 solid95

网上购物系统-毕业设计

? 安徽工业大学 毕业设计(论文)说明书 专 业软件工程 班级122班 姓 名周庆梅 学号129074211 指导教师许文方 二〇一六年六月十六日

安徽工业大学 毕业设计(论文)任务书 课题名称网上购物系统 学 院计算机科学与技术学院 专业班级软件工程122班 姓名周庆梅 学 号129074211 毕业设计(论文)的主要内容: 本系统利用JavaEE开发基于B/S结构的网上购物系统,实现管理员对购物商品的实时更新和用户购物信息的提交。 (1)需求分析: 将对购物用户购物流程和卖家对商品的上架流程进行分析,所需的功能模块有哪些。 (2)总体设计:将系统划分成两大功能模块:前台和后台。前台功能模块有:注册、激活、登录、搜索、修改密码等模块。后台功能模块有:管理员登录、分类管理、商品管理、订单管理。每一个功能模块实现的具体功能。 (3)详细设计:整体设计思想,功能模块图,实体对应的属性E-R图设计,数据库表设计。 (4)测试:采用了黑盒测试和白盒测试。 指导教师签 字

摘要 随着现代现代信息网络技术的不断发展,互联网市场正在以无法想象的速度和空前的规模迅猛发展,电子商务成为人们关注的焦点,各企业认识到建立企业级的电子商务平台不仅可以拓宽销售渠道,还能提升形象和品牌效应,对企业的发展有着重要的战略意义。在此背景下,网络购物作为新兴的商业模式逐步浮出水面,并在发展过程中备受瞩目。 网络购物巨大的市场规模和美好的发展前景不容小视。但是网络购物的繁荣需要时间,需要业界的投入,需要网络的发展。相信中国电子商务在一段时间后会达到国际化水平。 网上购物系统,是在网络上建立一个虚拟的购物商场,使您的购物过程变得轻松、快捷、方便,很适合现代人快节奏的生活;同时又有效的控制“商场”运营的成本,开辟了一个新的销售渠道。 本系统利用现代化的电子及网络技术,为消费者和企业搭建一个良好的互动平台。让用户享受快捷的购物方式,为企业提供不同于传统销售的崭新的销售模式。该购物系统是一个中小型的电子商务系统,可以为各类用户提供方便的在线购物环境。用户可以在系统中实现注册、登录、修改个人信息、分类查询商品信息、购物、管理购物车、结账等功能。管理员可以通过后台管理模块实现对商品、物流、订单等后台管理功能。本系统采用servlet和jsp技术,以MySQL为系统数据库开发,整个系统操作简便、界面友好、灵活实用。 关键词:电子商务;网上购物;jsp;servlet

有限元大作业

风电主轴承有限元分析 XXX 摘要:基于有限元法在接触问题中的应用,对风电主轴承进行非线性分析。以轴承外圈的内表面和内圈的外表面为目标面,以滚子为接触面创建接触对分析滚子的接触应力情况。最大应力值出现在滚子边缘出,对最大承载滚子环向接触应力分析表明,有限元分析结果与理论计算结果相近,验证了利用有限元法分析风电主轴承应力状态的可行性。 关键词:风电主轴承;接触应力;有限元分析 0 引言 随着传统能源的日益枯竭以及环境污染问题愈发严重,风能作为一种清洁的的可再生能源近些年受到越来越多的关注。风力发电技术已广泛运用于世界各地。一些发达国家风力发电产业已得到了迅猛发展,技术日趋成熟,并开始走向产业化规模化发展阶段[1-3]。 风电主轴承是风力发电机重要的组成部分。其结构形式图下图1所示。据统计,如今安装的所有风力发电机中,采用主轴轴承支撑原理的占总数的75-80%[4],这种支撑是轴承内圈安装在旋转的主轴上,外圈固定在单独的轴承座上,相对于圆锥滚子轴承或圆柱滚子轴承来说,主轴轴承位置处轴产生变形,需要轴承具有一定的调心作用,所以都采用了调心滚子轴承。近年来由于计算机技术的飞速发展,轴承的受力分析计算已经普遍采用有限元分析的方法,能够准确合理地解决轴承复杂的非线性接触问题,为轴承的分析和计算提供了一种新的方法,成为未来的一个发展方向。在机械设备的设计过程中,对受力较大且复杂的零件进行受力分析,校核其整体和局部强度并进行合理的布局设计,是为了防止因应力过大而导致在实际工作中损坏或寿命降低[5]。本文主要运用ANSYS Workbench有限元软件对风电主轴承进行静力学计算,分析轴承内部结构参数对轴承载荷分布和最大接触应力的影响规律。 图1 风电主轴承结构及安装图 1 有限元分析过程 1.1 风电轴承有限元分析基本步骤 不同的物理性质和数学模型的问题,有限元法求解的基本步骤是相同的,只不过 具体公式推导和运算求解不尽相同。有限元分析求解问题的基本计算步骤[6]: 1.问题及求解域定义; 2.求解域离散化; 3.确定状态变量及控制方法; 4.单元推导;

ansys有限元分析工程实例大作业

ansys有限元分析工程实例大作业

————————————————————————————————作者:————————————————————————————————日期:

辽宁工程技术大学 有限元软件工程实例分析 题目基于ANSYS钢桁架桥的静力分析专业班级建工研16-1班(结构工程)学号 471620445 姓名 日期 2017年4月15日

基于ANSYS钢桁架桥的静力分析 摘要:本文采用ANSYS分析程序,对下承式钢桁架桥进行了有限元建模;对桁架桥进行了静力分析,作出了桁架桥在静载下的结构变形图、位移云图、以及各个节点处的结构内力图(轴力图、弯矩图、剪切力图),找出了结构的危险截面。 关键词:ANSYS;钢桁架桥;静力分析;结构分析。 引言:随着现代交通运输的快速发展,桥梁兴建的规模在不断的扩大,尤其是现代铁路行业的快速发展更加促进了铁路桥梁的建设,一些新建的高速铁路桥梁可以达到四线甚至是六线,由于桥面和桥身的材料不同导致其受力情况变得复杂,这就需要桥梁需要有足够的承载力,足够的竖向侧向和扭转刚度,同时还应具有良好的稳定性以及较高的减震降噪性,因此对其应用计算机和求解软件快速进行力学分析了解其受力特性具有重要的意义。 1、工程简介 某一下承式简支钢桁架桥由型钢组成,顶梁及侧梁,桥身弦杆,底梁分别采用3种不同型号的型钢,结构参数见表1,材料属性见表2。桥长32米,桥高5.5米,桥身由8段桁架组成,每个节段4米。该桥梁可以通行卡车,若只考虑卡车位于桥梁中间位置,假设卡车的质量为4000kg,若取一半的模型,可以将卡车对桥梁的作用力简化为P1,P2,和P3,其中P1=P3=5000N,P2=10000N,见图2,钢桥的形式见图1,其结构简图见图3。

重庆大学研究生有限元大作业教学内容

重庆大学研究生有限 元大作业

课程研究报告 科目:有限元分析技术教师:阎春平姓名:色学号: 2 专业:机械工程类别:学术 上课时间: 2015 年 11 月至 2016 年 1 月 考生成绩: 阅卷评语: 阅卷教师 (签名)

有限元分析技术作业 姓名: 色序号: 是学号: 2 一、题目描述及要求 钢结构的主梁为高160宽100厚14的方钢管,次梁为直径60厚10的圆钢管(单位为毫米),材料均为碳素结构钢Q235;该结构固定支撑点位于左右两端主梁和最中间。主梁和次梁之间是固接。试对在垂直于玻璃平面方向的2kPa 的面载荷(包括玻璃自重、钢结构自重、活载荷(人员与演出器械载荷)、风载荷等)作用下的舞台进行有限元分析。 二、题目分析 根据序号为069,换算得钢结构框架为11列13行。由于每个格子的大小为1×1(单位米),因此框架的外边框应为11000×13000(单位毫米)。 三、具体操作及分析求解 1、准备工作 执行Utility Menu:File → Clear&start new 清除当前数据库并开始新的分析,更改文件名和文件标题,如图1.1。选择GUI filter,执行 Main Menu: Preferences → Structural → OK,如图1.2所示

图1.1清除当前数据库并开始新的分析 图1.2 设置GUI filter 2、选择单元类型。 执行Main Menu: Preprocessor →Element Type →Add/Edit/Delete →Add→ select→ BEAM188,如图2.1。之后点击OK(回到Element Types window) →Close

有限元大作业matlab课程设计例子

有 限 元 大 作 业 程 序 设 计 学校:天津大学 院系:建筑工程与力学学院 专业:01级工程力学 姓名:刘秀 学号:\\\\\\\\\\\ 指导老师: 连续体平面问题的有限元程序分析 [题目]: 如图所示的正方形薄板四周受均匀载荷的作用,该结构在边界 上受正向分布压力, m kN p 1=,同时在沿对角线y 轴上受一对集中压 力,载荷为2KN ,若取板厚1=t ,泊松比0=v 。 [分析过程]: 由于连续平板的对称性, 只需要取其在第一象限的四分之一部分

参加分析,然后人为作出一些辅助线将平板“分割”成若干部分,再为每个部分选择分析单元。采用将此模型化分为4个全等的直角三角型单元。利用其对称性,四分之一部分的边界约束,载荷可等效如图所示。 [ 用和单元信息文件DATA.OUT。 位移模式:用用线性位移模式 载荷类型:节点载荷,非节点载荷应先换算为等效节点载荷 材料性质:弹性体由单一的均匀材料组成 约束方式:为“0”位移固定约束,为保证无刚体位移,弹性体至少应有对三个自由度的独立约束 方程求解:针对半带宽刚度方程的Gauss消元法 输入文件:由手工生成节点信息文件NODE.IN,和单元信息文件ELEMENT.IN 结果文件:输出一般的结果文件DATA.OUT 程序的原理如框图:

(1) ID : ID=2时为平面应变问题 (平面问题) ,LJK_ELE(I,1),LJK_ELE(I,2), X(I),Y(I)分别存放节点I 的x ,y 表示第I 个作用有节点载荷的节点x,y 方向的节点载荷数值 存放节点载荷向量,解方程后该矩 (2 READ_IN : 读入数据 BAND_K : 形成半带宽的整体刚度矩阵 FORM_KE : 计算单元刚度矩阵 FORM_P : 计算节点载荷 CAL_AREA :计算单元面积 DO_BC : 处理边界条件 CLA_DD : 计算单元弹性矩阵 SOLVE : 计算节点位移 CLA_BB : 计算单元位移……应变关系矩阵 CAL_STS :计算单元和节点应力 (3)文件管理: 源程序文件: chengxu.for 程序需读入的数据文件:

有限元分析及应用大作业

有限元分析及应用大作业 作业要求: 1)个人按上机指南步骤至少选择习题中3个习题独立完成,并将计算结果上交; 也可根据自己科研工作给出计算实例。 2)以小组为单位完成有限元分析计算; 3)以小组为单位编写计算分析报告; 4)计算分析报告应包括以下部分: A、问题描述及数学建模; B、有限元建模(单元选择、结点布置及规模、网格划分方案、载荷及边界 条件处理、求解控制) C、计算结果及结果分析(位移分析、应力分析、正确性分析评判) D、多方案计算比较(结点规模增减对精度的影响分析、单元改变对精度的 影响分析、不同网格划分方案对结果的影响分析等) 题一:图示无限长刚性地基上的三角形大坝,受齐顶的水压力作用,试用三节点常应变单元和六节点三角形单元对坝体进行有限元分析,并对以下几种计算方案进行比较: 1)分别采用相同单元数目的三节点常应变单元和六节点三角形单元计算;(注意ANSYS中用四边形单元退化为三节点三角形单元) 2)分别采用不同数量的三节点常应变单元计算; 3)当选常应变三角单元时,分别采用不同划分方案计算。 解:1.建模: 由于大坝长度>>横截面尺寸,且横截面沿长度方向保持不变,因此可将大坝看作无限长的实体模型,满足平面应变问题的几何条件;对截面进行受力分析,作

用于大坝上的载荷平行于横截面且沿纵向方向均匀分布,两端面不受力,满足平面应变问题的载荷条件。因此该问题属于平面应变问题,大坝所受的载荷为面载荷,分布情况P=98000-9800*Y;建立几何模型,进行求解;假设大坝的材料为钢,则其材料参数:弹性模量E=2.1e11,泊松比σ=0.3; 2:有限元建模过程: 2.1 进入ANSYS : 程序→ANSYS APDL 15.0 2.2设置计算类型: ANSYS Main Menu: Preferences →select Structural →OK 2.3选择单元类型: ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4node 182(三节点常应变单元选择Solid Quad 4node 182,六节点三角形单元选择Solid Quad 8node 183)→OK (back to Element Types window) →Option →select K3: Plane Strain →OK→Close (the Element Type window) 2.4定义材料参数: ANSYS Main Menu: Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic →input EX:2.1e11, PRXY:0.3 →OK 2.5生成几何模型: 生成特征点: ANSYS Main Menu: Preprocessor →Modeling →Create →Keypoints→In Active CS →依次输入四个点的坐标:input:1(0,0),2(10,0),3(1,5),4(0.45,5) →OK 生成坝体截面: ANSYS Main Menu: Preprocessor →Modeling →Create →Areas →Arbitrary →Through KPS →依次连接四个特征点,1(0,0),2(6,0),3(0,10) →OK 2.6 网格划分: ANSYS Main Menu: Preprocessor →Meshing →Mesh Tool→(Size Controls) lines: Set →依次拾取两条直角边:OK→input NDIV: 15 →Apply→依次拾取斜边:OK →input NDIV: 20 →OK →(back to the mesh tool window)Mesh:Areas, Shape: tri, Mapped →Mesh →Pick All (in Picking Menu) →Close( the Mesh Tool window) 2.7 模型施加约束: 给底边施加x和y方向的约束: ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Displacement →On lines →pick the lines →OK →select Lab2:UX, UY →OK 给竖直边施加y方向的分布载荷: ANSYS 命令菜单栏: Parameters →Functions →Define/Edit →1) 在下方的下拉列表框内选择x ,作为设置的变量;2) 在Result窗口中出现{X},写入所施加的载荷函数: 98000-9800*{Y};3) File>Save(文件扩展名:func) →返回:Parameters →Functions →Read from file:将需要的.func文件打开,参数名取meng,它表示随之将施加的载荷→OK →ANSYS Main Menu: Solution →Define Loads →Apply →Structural →Pressure →On Lines →拾取竖直边;OK →在下拉列表框中,选择:Existing table →OK →选择需要的载荷为meng参数名→OK 2.8 分析计算: ANSYS Main Menu: Solution →Solve →Current LS →OK(to close the solve Current Load

安徽工业大学本科毕业设计(U论文)撰写规范

附件: 安徽工业大学本科毕业设计(论文)撰写规范 为使学生掌握撰写技术报告和科研论文的基本方法,统一毕业设计(论文)的规格要求,制定本规范。 一、毕业设计(论文)的基本结构 一份完整的毕业设计(论文)应包括以下几个部分: A.标题; B.中文摘要; C. 关键词; D. 英文摘要; E. 关键词;F:目录;G. 正文;H. 结论;I. 参考文献;J. 致谢;K. 附录;L. 有关图纸(大于3#图幅时单独装订)。 二、毕业设计(论文)的撰写规则和要求 1、标题 标题应简短、明确,具有概括性。标题字数要适当,不宜超过20字。如确因表达需要而字数过多又无法删减的,可以分成主标题和副标题。 2、摘要和关键词 摘要以浓缩的形式概括研究课题的内容,主要由三部分组成,即:研究的问题、研究的过程和方法、研究的结果等,不含图表,不加注释,具有独立性和完整性。中文摘要300字左右,并翻译成英文。“摘要”字样位置居中。 关键词是反映毕业设计(论文)主题内容的名词,是供检索----------专业最好文档,专业为你服务,急你所急,供你所需-------------

使用的。关键词应为通用术语或技术词汇,不得自造关键词,尽量从《汉语主题词表》中选用。关键词一般为3-5个,按词条外延层次(学科目录分类),由高至低顺序排列。关键词排在摘要正文部分下方。 3、目录 目录按三级标题编写,即1……、1.1……、1.1.1……,并标注页码。目录中内容的顺序一般为:摘要、绪论、正文章节、结论、参考文献、致谢、附录等;目录中的标题要求层次清晰且与正文中的标题和页码一致。 4、正文 毕业设计(论文)正文包括绪论(或前言)、正文主体、结论等。绪论(或前言)应说明本课题的来源、目的、意义、研究范围及要达到的技术要求;说明本课题的指导思想、应解决的主要问题等。 正文主体是对研究工作的详细表述,其主要内容包括:国内外文献综述(本课题国内外发展概况及存在的问题);研究工作的基本前提、假设和条件;技术、经济分析;基本概念和理论基础;模型的建立;方案的确定;设计与计算的主要方法和内容;实验方法、内容及其分析;理论论证、应用结果;对研究结果的讨论等。根据毕业设计(论文)课题性质的不同,专业内涵不同,各有侧重,一般仅涉及上述部分内容。正文中使用的计量单位统一 ----------专业最好文档,专业为你服务,急你所急,供你所需-------------

有限元分析报告大作业

基于ANSYS软件的有限元分析报告 机制1205班杜星宇U201210671 一、概述 本次大作业主要利用ANSYS软件对桌子的应力和应变进行分析,计算出桌子的最大应力和应变。然后与实际情况进行比较,证明分析的正确性,从而为桌子的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。 二、问题分析 已知:桌子几何尺寸如图所示,单位为mm。假设桌子的四只脚同地面完全固定,桌子上存放物品,物品产生的均匀分布压力作用在桌面,压力大小等于300Pa,其中弹性模量E=9.3GPa,泊松比μ=0.35,密度ρ=560kg/m3,分析桌子的变形和应力。

将桌脚固定在地面,然后在桌面施加均匀分布的压力,可以看作对进行平面应力分析,桌脚类似于梁单元。由于所分析的结构比较规整且为实体,所以可以将单元类型设为八节点六面体单元。 操作步骤如下: 1、定义工作文件名和工作标题 (1)定义工作文件名:执行Utility Menu/ File/Change Jobname,在弹出Change Jobname 对话框修改文件名为Table。选择New log and error files复选框。 (2)定义工作标题:Utility Menu/File/ Change Title,将弹出Change Title对话框修改工作标题名为The analysis of table。 (3)点击:Plot/Replot。 2、设置计算类型 (1)点击:Main Menu/Preferences,选择Structural,点击OK。

有限元法大作业

有限元法大作业 一平面刚架的程序 用Visual C++编制的平面刚架的源程序如下: ///////////////////////////////////////////////////////程序开始////////////////////////////////////////////////////////////////// #include"iostream.h" #include"math.h" #include"stdlib.h" #include"conio.h" //***************** //声明必要变量 //***************** #define PI 3.141592654 int NE; //单元数 int NJ; //节点数 int NZ; //支承数 int NPJ; //有节点载荷作用的节点数 int NPF; //非节点载荷数 int HZ; //载荷码 int E; //单元码 int fangchengshu; double F[303]; //各节点等效总载荷数值 int dym_jdm[100][2]; //单元码对应的节点码:dym_jdm[][0], dym_jdm[][1]分为前后节点总码 int zhichengweizhi[300]; //记录支持节点作用点的数组 int fjzhzuoyongdanyuan[100]; //非节点载荷作用单元 int fjzhleixing[100]; //非节点载荷类型:1-均布,2-垂直集中,3-平行集中,4-力偶,5-角度集中 double fjzhzhi[100]; //非节点载荷的值 double fjzhzuoyongdian[100]; //非节点载荷在各竿的作用点 double fjzhjiaodu[100]; //非节点载荷作用角度 int jdzhzuoyongdian[100]; //节点载荷作用的节点数组 double jiedianzaihe[101][3];//节点载荷值,其jiedianzaihe[][0]-- jiedianzaihe[][2]分别为U, V, M double zhengtigangdu[303][303]; //整体刚度数组 double changdu[100]; //各单元竿长数组 double jiaodu[100]; //各单元角度数组 double tanxingmoliang[100]; //各单元弹性模量数组 double J_moliang[100]; //各单元J模量数组 double mianji[100]; //各单元面积数组 double weiyi[303]; //记录各个节点位移的数组 double dy_weiyi[100][6]; //各个单元在局部坐标系中的位移数组dy_weiyi[i][0]-dyweiyi[i][6]分别为第i+1单元的u1,v1,@1,u2,v2,@2 double dy_neili[100][6];//各个单元在局部坐标系中的固端内力dy_weiyi[i][0]-dyweiyi[i][6]分别为第i+1单元的U1,V1,M1,U2,V2,M2 double gan_neili[100][6];//各个单元的竿端内力数组,gan_neili[i][6]表示第i+1单元的6内力. //*******************

安徽工业大学《工程管理专业毕业设计指导书》1-吕忠

安徽工业大学工程管理专业 毕业设计(论文)指导书 安徽工业大学 建筑与工程管理系工程管理教研室 二零一三年十二月

目录 一、毕业设计(论文)的目的、任务与意义 (1) 二、毕业设计(论文)的工作程序与时间安排 (2) 三、毕业设计(论文)的主要内容和基本要求 (4) 四、毕业设计(论文)的选题要求与任务下达 (6) 五、毕业设计(论文)的过程管理与设计、指导要求 (8) 六、毕业设计(论文)的成绩评定 (10) 七、毕业设计(论文)资料的组成、装订 (10) 附件 (11)

安徽工业大学工程管理专业 毕业设计(论文)指导书 一、毕业设计(论文)的目的、任务与意义 (一)毕业设计(论文)的目的、任务 毕业设计(论文)是工程管理本科专业培养计划中最后一个主要教学环节,也是最重要的综合性实践教学的环节,是培养学生工程实践能力、理论研究能力和创新意识的重要途径,是学生毕业及学位资格认定的重要依据。它既是学生在教师指导下运用所学知识和技能解决具体问题的一次尝试,也是学生走向工作岗位前的一次“实战演习”。做好毕业设计(论文)工作对培养具有创新精神和实践能力的高素质人才具有极其重要的意义。其主要目的和任务是: 1.培养学生系统地运用所学的工程管理理论、建筑经济以及工程造价管理知识解决实际工程管理中所出现问题的能力 2.进一步巩固、深化和拓展学生的基础理论,引导学生理论联系实践,进一步培养学生独立分析和处理问题的能力,为即将毕业走上工作岗位打下坚实的基础。 3.引导学生将创新精神与科学态度结合起来,提高学生的创新能力以及工程应用能力。 4.通过毕业设计(论文)使学生受到造价工程师的基本训练,能够完成以下任务: (1)调查研究、搜集资料和文献检索; (2)方案(工程技术与经济指标)论证,确定工程管理方案; (3)理论分析、设计和计算; (4)计算机辅助工程管理(使用工程造价管理软件、工程项目管理软件等); (5)撰写毕业设计说明书和科技论文。 5.养成严肃认真、刻苦钻研、实事求是的工作作风,培养学生创新意识和团队精神。 (二)毕业设计(论文)的意义

相关文档
相关文档 最新文档