文档库 最新最全的文档下载
当前位置:文档库 › 专题训练(一) 添加辅助线小盘点

专题训练(一) 添加辅助线小盘点

专题训练(一) 添加辅助线小盘点
专题训练(一) 添加辅助线小盘点

专题训练(一)添加辅助线小盘点

当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略.类型之一求证线段和差类

1.如图1-ZT-1,在△ABC中,AD平分∠BAC,∠B=2∠C,求证:AB+BD=AC.

图1-ZT-1

证明:

2.如图1-ZT-3所示,在等边三角形ABC中,∠ABC,∠ACB的平分线交于点O,OB和OC的垂直平分线分别交BC于点E,F,试用你所学的知识说明BE=EF=FC的道理.

图1-ZT-3

类型之二角平分线类

3.已知:如图1-ZT-4,在四边形ABCD中,BC>AB,BD平分∠ABC,∠A+∠C =180°,求证:AD=CD.

图1-ZT-4

[解析] 在边BC上截取BE=BA,连接DE

4.如图1-ZT-6,在△ABC中,AB=2AC,∠1=∠2,DA=DB,你能说明DC⊥AC吗?

类型之三化四边形为三角形

5.如图1-ZT-8,已知AC=BD,∠DAC=∠CBD,求证:AD=BC.

图1-ZT-8

6.如图1-ZT-9,AB∥CD,AD∥BC.

求证:AB=CD.

图1-ZT-9

类型之四化不规则图形为规则图形

7.已知:如图1-ZT-11,AC,BD相交于点O,且AB=DC,AC=BD,求证:∠A =∠D.

图1-ZT-11

8.如图1-ZT-12,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD 交BD的延长线于点E.求证:BD=2CE.

图1-ZT-12

证明:

数学常见辅助线做法与小结

几何最难的地方就是辅助线的添加了,但是对于添加辅助线,还是有规律可循的,下面可小编给大家整理了一些常见的添加辅助线的方法,掌握了对你一定有帮助! 1 三角形中常见辅助线的添加 1. 与角平分线有关的?? (1)可向两边作垂线。?? (2)可作平行线,构造等腰三角形?? (3)在角的两边截取相等的线段,构造全等三角形?? 2. 与线段长度相关的?? (1)截长:证明某两条线段的和或差等于第三条线段时,经常在较长的线段上截取一段,使得它和其中的一条相等,再利用全等或相似证明余下的等于另一条线段即可?? (2)补短:证明某两条线段的和或差等于第三条线段时,也可以在较短的线段上延长一段,使得延长的部分等于另外一条较短的线段,再利用全等或相似证明延长后的线段等于那一条长线段即可?? (3)倍长中线:题目中如果出现了三角形的中线,方法是将中线延长一倍,再将端点连结,便可得到全等三角形。?? (4)遇到中点,考虑中位线或等腰等边中的三线合一。? 3. 与等腰等边三角形相关的??

(1)考虑三线合一?? (2)旋转一定的度数,构造全都三角形,等腰一般旋转顶角的度数,等边旋转60?° 2 四边形中常见辅助线的添加 特殊四边形主要包括平行四边形、矩形、菱形、正方形和梯形.在解决一些和四边形有关的问题时往往需要添加辅助线。下面介绍一些辅助线的添加方法。 1. 和平行四边形有关的辅助线作法? ???? 平行四边形是最常见的特殊四边形之一,它有许多可以利用性质,为了利用这些性质往往需要添加辅助线构造平行四边形。? (1)利用一组对边平行且相等构造平行四边形? (2)利用两组对边平行构造平行四边形? (3)利用对角线互相平分构造平行四边形?? 2. 与矩形有辅助线作法? ? (1)计算型题,一般通过作辅助线构造直角三角形借助勾股定理解决问题? (2)证明或探索题,一般连结矩形的对角线借助对角线相等这一性质解决问题.和矩形有关的试题的辅助线的作法较少. 3. 和菱形有关的辅助线的作法? ??? ? ?

梯形中的常用辅助线总结与对应练习题

例谈梯形中的常用辅助线 最重要;平移两腰作出高,延长两腰也是关键;记着平移对角线,上下底和差就出现;如果出现腰中点,就把中位线细心连;上述方法不奏效,过中点旋转成全等;灵活添加辅助线,帮你度过梯形难关;想要易解梯形题,还得注意特题特解;注意梯形割与补,巧变成为□和△.基本图形如下: 一、平移 1、平移一腰:从梯形的一个顶点作一腰的平行线,把梯形转化为一个三角形和一个平行四边形。[例1]如图,梯形ABCD的上底AD=3,下底BC=8 ,腰 CD=4,求另一腰AB的取值范围。 A B C D E

【变式1】已知:如图,在梯形ABCD中,.求证:. 【变式2】已知:如图,在梯形中, .求证:梯形是等腰梯形. 2、平移两腰:利用梯形中的某个特殊点,过此点作两腰的平行线,把两腰转化到同一个三角形中。 [例2]如图,在梯形ABCD中,AB//CD,∠D+∠C=90°,BC=1,AD=3,E、F分别是AB、CD的中点,连接EF,求EF的长。 【变式】如图,在梯形中,,,、为、的中点。求 证:EF=1 2 (CD-AB) 3、平移对角线:一般是过上底的一个端点作一条对角线的平行线,与另一底的延长线相交,得到一 个平行四边形和三角形,把梯形问题转化为平行四边形和三角形问题解决. 【例3】.如图,等腰梯形中, , ,且 ,是高,是中位线,求证:.

【变式1】在等腰梯形ABCD中,AD//BC,AD=3,BC=7,BD=2 5,求证:AC⊥BD。 【变式2】(平移对角线)已知梯形ABCD的面积是32,两底与高的和为16,如果其中一条对角线与两底垂直,则另一条对角线长为_____________ [例4]在梯形ABCD中,AD//BC,AC=15cm,BD=20cm,高DH=12cm,求梯形ABCD的面积。 二、延长:即延长两腰相交于一点,可使梯形转化为三角形。 [例5]在梯形ABCD中,AD//BC,∠B=50°,∠C=80°,AD=2,BC=5,求CD的长。 【变式1】.如图,在梯形中, , ,梯形的面积与梯形的面积相等.求证: . 【变式2】所示,四边形ABCD中,AD不平行于BC,AC=BD,AD=BC. 判断四边形ABCD的形状,并证明你的结论. 三、作对角线:即通过作对角线,使梯形转化为三角形。 [例6]在直角梯形ABCD中,AD//BC,AB⊥AD,BC=CD,BE⊥CD于点E,求证:AD=DE。 A B C D

培优专题7-菱形、矩形、正方形和梯形(含答案)

培优专题和梯形 菱形、矩形、正方形都是特殊的平行四边形,它们除了具有平行四边形的性质外,各自都有相应的特性,如菱形四边相等、对角线互相垂直,且平分对角;矩形四个角都是直角且对角线相等;正方形是最特殊的平行四边形,它具有菱形和矩形的所有特性,可以说是菱形、矩形的完美结合体,也是最基本的正多边形之一.梯形是现实生活中比较常见的图形之一,也是考查平行四边形和直角三角形非常好的载体,因此在中考数学测试和初中数学竞赛中这些特殊的四边形都是考查的重要内容. 例1 如果将长方形纸片ABCD,沿EF折叠,如图,延长C′E交AD于H,连结GH,那么EF与GH互相垂直平分吗? 分析要说明EF与GH互相垂直平分,只须说明四边形FGEH是菱形即可. 解:∵FH`∥GE,FG∥EH, ∴四边形FGEH为平行四边形,由题意知: △GEF≌△HFE. ∴FG=FH,EG=EH. ∴四边形GEHF为菱形. ∴EF、GH互相垂直平分. 练习1 1.如图1,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60°,?∠BAE=18°,则∠CEF=________. (1) (2) (3) 2.如图2,四边形ABCD是正方形,对角线AC、BD相交于O,四边形BEFD是菱形,若正方形的边长为6,则菱形的面积为________. 3.如图3,ABCD是正方形,E为BF上一点,四边形AFEC?恰是一个菱形,?则∠EAB=________.

例2 矩形一边长为5,另一边长小于4,将矩形折起来,使两对角顶点重合,?如图, 若折痕EF 长为6,求另一边长. 分析关键弄清“折痕”特点,即在对角线的中垂线上.此问题转化为就矩形ABCD中,已知AD=5,过对角线AC的中点O作AC的垂线EF,分别交AD于F,BC于E,若EF=6,求AB的长的问题. 解:设AB=x,BE=y,连结AE.则AE=CE=5-y. 在Rt△ABE中,AB2+BE2=AE2,即x2+y2=(5-y)2. 得y= 2 25 10 x - ,AE=5-y= 2 25 10 x + . 又在Rt△AOE中,AO=1 2 AC= 2 25 2 x + ,EO= 1 2 EF= 6 2 . 代入AE2=AO2+OE2得, ( 2 25 10 x + )2=( 2 25 2 x + )2+( 6 2 )2. 即x4+25x2-150=0.解之得,x2=5,x2=-30(舍去) ∴x=5. 练习2 1.如图4,矩形纸片ABCD中,AB=3cm,BC=4cm,现将A、C重合,使纸片折叠压平,?设折痕为EF,试确定重叠部分的△AEF的面积是__________. (4) (5) 2.如图5所示,把一张长方形的纸条ABCD沿对角线BD将△BCD折成△BDF,DF?交AB于E,若已知AE=2cm,∠BDC=30°,求纸条的长和宽各是________.

梯形中添加辅助线的六种常用技巧

梯形中添加辅助线的六种常用技巧 浙江唐伟锋 梯形是不同于平行四边形的一类特殊四边形, 解决梯形问题的基本思路是通过添加辅助 线,将梯形进行割补、拼接转化为三角形、平行四边形问题进行解决。一般而言,梯形中添 加辅助线的常用技巧主要有以下几种—— 一、平移一腰 从梯形的一个顶点作一腰的平行线, 将梯形转化为平行四边形和三角形, 从而利用平行 四边形的性质,将分散的条件集中到三角形中去,使问题顺利得解。 例1、如图①,梯形 ABCD 中AD // BC , AD=2cm , BC=7cm , AB=4cm ,求CD 的取值范围。 解:过点D 作DE // AB 交BC 于E , ?/ AD // BC , DE // AB ???四边形ABED 是平行四边形(两组对边分别平行的四边形是平行四边形) /? DE=AB=4cm , BE=AD=2cm ? EC=BC — BE=7 — 2=5cm 在厶DEC 中,EC — DE v CD v EC + DE (三角形两边之和大于第三边,两边之差小于 第三边) ? 1cm v CD v 9cm 。 、延长两腰 将梯形的两腰延长,使之交于一点,把梯形转化为大、小两个 三角形,从而利用特殊三角形的有关性质解决梯形问题。 例2、如图②,已知梯形 ABCD 中,AD // BC , / B= / C ,求证: 图② 梯形ABCD 是等腰梯形。 图① E

证明:延长BA 、CD ,使它们交于 E 点, ?/ AD // BC ???/ EAD= / B ,/ EDA= / C (两直线平行,同位角相等) 又??? B= / C ???/ EAD= / EDA ? EA=ED , EB=EC (等角对等边) ? AB=DC ?梯形ABCD 是等腰梯形(两腰相等的梯形是等腰梯形) 三、平移对角线 从梯形上底的一个顶点向梯形外作一对角线的平行线, 与下底延长线相交构成平行四边 形和一特殊三角形(直角三角形、等腰三角形等) 。 例3、如图③,已知梯形 ABCD 中,AD=1. 5cm, BC=3.5cm,对角线 AC 丄BD ,且BD=3cm , AC=4cm ,求梯形 ABCD 的面积。 解:过点D 作DE // AC 交BC 延长线于E ?/ AD // BC , DE // AC ?四边形 ACED 是平行四边形(两组对边分别平行的四 边形是平行四边形) ? CE=AD=1 . 5cm, DE=AC=4cm ???AC 丄 BD ? DE 丄 BD BC ) h 2(CE BC ) h -BE h (h 为梯形的高) 1 1 6cm 2 BD DE 3 4 2 2 四、作高线 梯形 ABCD = -(AD 2

初二上梯形辅助线专题训练(非常经典)

梯形辅助线专题训练 口诀:梯形问题巧转换,变为△和□。平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。 通常情况下,通过做辅助线,把梯形转化为三角形、平行四边形,是解梯形问题的基本思路。至于选取哪种方法,要结合题目图形和已知条件。常见的几种辅助线的作法如下: 作法 图形 平移腰,转化为三角形、平行四边形。 A B C D E 平移对角线。转化为三角形、平行四边形。 A B C D E 延长两腰,转化为三角形。 A B C D E 作高,转化为直角三角形和矩形。 A B C D E F 中位线与腰中点连线。 A B C D E F

(一)、平移 1、平移一腰: 例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC =17. 求CD 的长. 解:过点D 作DE ∥BC 交AB 于点E. 又AB ∥CD ,所以四边形BCDE 是平行四边形. 所以DE =BC =17,CD =BE. 在R t △DAE 中,由勾股定理,得 AE 2=DE 2-AD 2,即AE 2=172-152=64. 所以AE =8. 所以BE =AB -AE =16-8=8. 即CD =8. 例2如图,梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。 解:过点B 作BM//AD 交CD 于点M , 在△BCM 中,BM=AD=4, CM=CD -DM=CD -AB=8-3=5, 所以BC 的取值范围是: 5-4

平行线分线段成比例专题培优提高训练

平行线分线段成比例专题训练 平行线分线段成比例定理及其推论 1. 平行线分线段成比例定理 如下图,如果1l ∥2l ∥3l ,则BC EF AC DF =,AB DE AC DF =,AB AC DE DF = . 2. 平行线分线段成比例定理的推论:如图,在三角形中,如果 DE BC ∥,则 AD AE DE AB AC BC == 3. 平行的判定定理:如上图,如果有BC DE AC AE AB AD = =,那么DE ∥BC 。 专题一、平行线分线段成比例定理及其推论基本应用 【例1】 如图,DE BC ∥,且DB AE =,若510AB AC ==,,求AE 的长。 【例2】 如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求 证:111 c a b =+. 【巩固】如图,AB BD ⊥,CD BD ⊥,垂足分别为B 、D ,AC 和 BD 相交于点E ,EF BD ⊥,垂足为F .证明: 111 AB CD EF += . 【例3】 如图,在梯形ABCD 中,AB CD ∥, 129AB CD ==,, 过对角线交点O 作 EF CD ∥交AD BC ,于E F ,,求EF 的长。 O F E D C B A 【巩固】(上海市数学竞赛题)如图,在梯形ABCD 中,AD BC ∥, AD a BC b E F ==,,,分别是AD BC ,的中点,AF 交BE 于P ,CE 交DF 于Q ,求 l 3 l 2l 1F E D C B A A B C D E E D C B A E D C B A F E D C B A F E D C B A

圆辅助线的常用做法

浅谈圆的辅助线作法 在平面几何中,与圆有关的许多题目需要添加辅助线来解决。百思不得其解的题目,添上合适的辅助线,问题就会迎刃而解,思路畅通,从而有效地培养学生的创造性思维。添加辅助线的方法有很多,本文只通过分析探索归纳几种圆中常见的辅助线的作法。下面以几道题目为例加以说明。 1.有弦,可作弦心距 在解决与弦、弧有关的问题时,常常需要作出弦心距、半径等辅助线,以便应用于垂径定理和勾股定理解决问题。 例1 如图1, ⊙O 的弦AB 、CD 相交于点P , 且AC=BD 。求证:PO 平分∠APD 。 分析1:由等弦AC=BD 可得出等弧 = 进一步得出 = ,从而可证等弦AB=CD ,由同圆中 等弦上的弦心距相等且分别垂直于它们所对应的弦,因此可作辅助线OE ⊥AB ,OF ⊥CD ,易证△OPE≌△OPF,得出PO 平分∠APD 。 证法1:作OE ⊥AB 于E ,OF ⊥CD 于F AC=BD => = => = => AB=CD => OE=OF ∠OEP=∠OFP=90 ° => △OPE≌△OPF 0OP=OP =>∠OPE=∠OPF => PO 平分∠APD 分析2:如图1-1,欲证 PO 平分∠APD ,即证 ∠OPA=∠OPD ,可把∠OPA 与∠OPD 构造在两个 三角形中,证三角形全等,于是不妨作辅助线 即半径OA ,OD ,因此易证△ACP ≌△DBP ,得AP=DP ,从而易证△OP A ≌△OP D 。 证法2:连结OA ,OD 。 ∠CAP=∠BDP ∠APC=∠DPB =>△ACP ≌△DBP AB ( BD , ( CD ( D 图 1 AC ( AC ( BD ( AB ( CD ( D 图1-1

专题二平行四边形常用辅助线的作法精排版

专题讲义 平行四边形+几何辅助线的作法 一、知识点 1.四边形的内角和与外角和定理: (1)四边形的内角和等于360°; (2)四边形的外角和等于360°. 2.多边形的内角和与外角和定理: (1)n 边形的内角和等于(n-2)180°; (2)任意多边形的外角和等于360°. 3.平行四边形的性质: 四边形ABCD 是平行四边形 ?????????. 54321)邻角互补()对角线互相平分;()两组对角分别相等; ()两组对边分别相等;()两组对边分别平行;( 4、平行四边形判定方法的选择 5、和平行四边形有关的辅助线作法 (1)利用一组对边平行且相等构造平行四边形 例1、如图,已知点O 是平行四边形ABCD 的对角线AC 的中点,四边形OCDE 是平行四边形 求证: OE 与AD 互相平分. (2)利用两组对边平行构造平行四边形 例2、如图,在△ABC 中,E 、F 为AB 上两点,AE=BF ,ED//AC ,FG//AC 交BC 分别为D ,G. 求证: ED+FG=AC. (3)利用对角线互相平分构造平行四边形 例3、如图,已知AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且AE=EF.求证BF=AC. A B C D 1234A B C D A B D O C 性质 判定 说明:当已知条件中涉及到平行,且要求证的结论中和平行四边形的性质有关,可说明:当图形中涉及到一组对边平 行时,可通过作平行线构造另一组说明:本题通过利用对角线互相平分构造平行 四边形,实际上是采用了平移法构造平行四边 形.当已知中点或中线应思考这种方法.

(4)连结对角线,把平行四边形转化成两个全等三角形。 例4、如图,在平行四边形ABCD 中,点F E ,在对角线AC 上,且CF AE =,请你以F 为一个端点, 和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一条线段即可) (5)平移对角线,把平行四边形转化为梯形。 例5、如右图2,在平行四边形ABCD 中,对角线AC 和BD 相交于点O ,如果12=AC , 10=BD ,m AB =,那么m 的取值范围是( ) A 、111<

梯形辅助线专题练习

梯形辅助线专题练习 1、等腰梯形上、下底差等于一腰的长,那么腰长与下底的夹角是( ).A.5° B.60° .45° D.30° 2、腰梯形两底之差的一半等于它的高,那么此梯形的一个底角是( )A .30° B .45° C .60° D .75° 3、直角梯形两底之差等于高,则其最大角等于_______. 4、梯形两底长分别为14cm 和24cm ,下底与腰的夹角分别是60°和30°,求较短腰长。 5、梯形ABCD 的上底AB=3,下底CD=8,腰AD=4,求另一腰BC 的取值范围。 6、已知梯形ABCD 中,AD//BC ,AB=DC ,对角线AC 、BD 互相垂直,梯形的两底之和为8。求梯形的高与面积。 7、在等腰梯形ABCD 中,AD//BC ,AD=3,BC=7,BD=25,求证:AC ⊥BD 。 8、在梯形ABCD 中,AD//BC ,AC=15cm ,BD=20cm ,高BH=12cm ,求梯形ABCD 的面积。 9、如图,梯形ABCD 中,AB//CD ,E 为腰AD 的中点,且AB+CD=BC 。求证:BE ⊥CE 。 C D 10、在梯形ABCD 中,AD ∥BC ,∠B =50°,∠C =80°,AD =8,BC =11,则CD =_______. 11、等腰梯形的腰长为5cm ,上、下底的长分别为6cm 和12cm ,则它的面积为_______. 12、如图,在梯形A B C D 中,A D B C ∥,对角线A C B D ⊥,且8A C =cm ,6B D =cm ,则此梯形的高为 _______________cm . 13、在梯形ABCD 中,AD ∥BC ,AB =8,DC =6,∠B =45°,BC =10,求梯形上底AD 的长. 14、如图,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。 F B A 15、如图所示,已知等腰梯形ABCD 中,AD ∥BC ,∠B =60°,AD =2,BC =8,求等腰梯形的周长。 A B C D 16、. 在等腰梯形ABCD 中,AD//BC ,AB=CD ,∠ABC=60°,AD=3cm ,BC=5cm ,求:(1)腰AB 的长;(2)梯形ABCD 的面积.

培优专题菱形矩形正方形和梯形含答案

培优专题7 菱形、矩形、正方形和梯形 菱形、矩形、正方形都是特殊的平行四边形,它们除了具有平行四边形的性质外,各自都有相应的特性,如菱形四边相等、对角线互相垂直,且平分对角;矩形四个角都是直角且对角线相等;正方形是最特殊的平行四边形,它具有菱形和矩形的所有特性,可以说是菱形、矩形的完美结合体,也是最基本的正多边形之一.梯形是现实生活中比较常见的图形之一,也是考查平行四边形和直角三角形非常好的载体,因此在中考数学测试和初中数学竞赛中这些特殊的四边形都是考查的重要内容. 例1 如果将长方形纸片ABCD,沿EF折叠,如图,延长C′E交AD于H,连结GH,那么EF与GH互相垂直平分吗? 分析要说明EF与GH互相垂直平分,只须说明四边形FGEH是菱形即可. 解:∵FH`∥GE,FG∥EH, ∴四边形FGEH为平行四边形,由 题意知:

△GEF≌△HFE. ∴FG=FH,EG=EH. ∴四边形GEHF为菱形. ∴EF、GH互相垂直平分. 练习1 1.如图1,菱形ABCD中,E、F分别是BC、CD上的点,且∠B=∠EAF=60°,?∠BAE=18°,则∠CEF=________. (1) (2) (3) 2.如图2,四边形ABCD是正方形,对角线AC、BD相交于O,四边形BEFD是菱形,若正方形的边长为6,则菱形的面积为________. 3.如图3,ABCD是正方形,E为BF上一点,四边形AFEC?恰是一个菱形,?则∠EAB=________.

例2 矩形一边长为5,另一边长小于4,将矩形折起来,使两对角顶点重合,?如图,若折痕EF 长为 6,求另一边长. 分析 关键弄清“折痕”特点,即在对角线的中垂线上.此问题转化为就矩形ABCD 中,已知AD=5,过对角线AC 的中点O 作AC 的垂线EF ,分别交AD 于F ,BC 于E ,若EF=6 , 求AB 的长的问题. 解:设AB=x ,BE=y ,连结AE .则AE=CE=5-y . 在Rt △ABE 中,AB 2+BE 2=AE 2,即x 2+y 2=(5-y )2. 得 y= 2 2510 x -,AE=5-y= 2 2510 x +. 又在Rt △AOE 中,AO=1 2 AC= 225x +,EO=12 EF= 6. 代入AE 2=AO 2+OE 2得, ( 2 2510 x +)2 =( 225x +)2+( 6 )2. 即x 4+25x 2-150=0.解之得,x 2=5,x 2=-30(舍去) ∴x= 5. 练习2

初三圆中常见的辅助线的

圆中常见的辅助线的作法1.遇到弦时(解决有关弦的问题时) 常常添加弦心距,或者作垂直于弦的半径(或直径)或再连结过弦的端点的半径。作用:①利用垂径定理; ②利用圆心角及其所对的弧、弦和弦心距之间的关系; ③利用弦的一半、弦心距和半径组成直角三角形,根据勾股定理求有关量。【例1】如图,已知△ABC内接于⊙O,∠A=45°,BC=2,求⊙O的面积。 【例2】如图,⊙O的直径为10,弦AB=8,P是弦AB上一个动点, 那么OP的长的取值范围是_________. 2.遇到有直径时 常常添加(画)直径所对的圆周角。 作用:利用圆周角的性质,得到直角或直角三角形。 【例3】如图,AB是⊙O的直径,AB=4,弦BC=2, ∠B= 3.遇到90°的圆周角时 常常连结两条弦没有公共点的另一端点。 作用:利用圆周角的性质,可得到直径。 【例4】如图,AB、AC是⊙O的的两条弦,∠BAC=90°, AB=6,AC=8,⊙O的半径是

4.遇到弦时 常常连结圆心和弦的两个端点,构成等腰三角形,还可连结圆周上一点和弦的两个端点。 作用:①可得等腰三角形; ②据圆周角的性质可得相等的圆周角。 【例5】如图,弦AB的长等于⊙O的半径,点C在弧AMB上, 则∠C的度数是________. 5.遇到有切线时 (1)常常添加过切点的半径(连结圆心和切点) 作用:利用切线的性质定理可得OA⊥AB,得到直角或直角三角形。 【例6】如图,AB是⊙O的直径,弦AC与AB成30°角,CD与⊙O切于C,交AB?的延长线于D,求证:AC=CD. (2)常常添加连结圆上一点和切点 作用:可构成弦切角,从而利用弦切角定理。 6.遇到证明某一直线是圆的切线时 (1)若直线和圆的公共点还未确定,则常过圆心作直线的垂线段,再证垂足到圆心的距离等于半径。 【例7】如图所示,已知AB是⊙O的直径,AC⊥L于C,BD⊥L于D,且AC+BD=AB。 求证:直线L与⊙O相切。 (2)若直线过圆上的某一点,则连结这点和圆心(即作半径),再证其与直线垂直。 【例8】如图,△ABO中,OA= OB,以O为圆心的圆经过AB中点C,且分别交OA、OB于点E、F.求证:AB是⊙O切线;

梯形中添加辅助线的六种常用技巧

梯形中添加辅助线的六种常 用技巧 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

梯形中添加辅助线的六种常用技巧 浙江唐伟锋 梯形是不同于平行四边形的一类特殊四边形,解决梯形问题的基本思路是通过添加辅助线,将梯形进行割补、拼接转化为三角形、平行四边形问题进行解决。一般而言,梯形中添加辅助线的常用技巧主要有以下几种—— 一、平移一腰 从梯形的一个顶点作一腰的平行线,将梯形转化为平行四边形和三角形,从而利用平行四边形的性质,将分散的条件集中到三角形中去,使问题顺利得解。 例1、如图①,梯形ABCD中AD∥BC,AD=2cm ,BC=7cm,AB=4cm,求CD的取值范围。 解:过点D作DE∥AB交BC于E, ∵AD∥BC,DE∥AB ∴四边形ABED是平行四边形(两组对边分别平行的四边形是平行四边形) ∴DE=AB=4cm,BE=AD=2cm ∴EC=BC-BE=7-2=5cm 在△DEC中,EC-DE<CD<EC+DE(三角形两边之和大于第三边,两边之差小于第三边) ∴1cm<CD<9cm。 二、延长两腰 将梯形的两腰延长,使之交于一点,把梯形转化为 大、小两个三角形,从而利用特殊三角形的有关性质解决 梯形问题。 例2、如图②,已知梯形ABCD中,AD∥BC,∠B=∠

C ,求证:梯形ABC D 是等腰梯形。 证明:延长BA 、CD ,使它们交于E 点, ∵AD ∥BC ∴∠EAD=∠B ,∠EDA=∠C (两直线平行,同位角相等) 又∵B=∠C ∴∠EAD=∠EDA ∴EA=ED ,EB=EC (等角对等边) ∴AB=DC ∴梯形ABCD 是等腰梯形(两腰相等的梯形是等腰梯形)。 三、平移对角线 从梯形上底的一个顶点向梯形外作一对角线的平行线,与下底延长线相交构成平行四边形和一特殊三角形(直角三角形、等腰三角形等)。 例3、如图③,已知梯形ABCD 中,AD=,BC=,对角线AC ⊥BD ,且BD=3cm ,AC=4cm ,求梯形ABCD 的面积。 解:过点D 作DE ∥AC 交BC 延长线于E ∵AD ∥BC ,DE ∥AC ∴四边形ACED 是平行四边形(两组对边分别平 行的四边形是平行四边形) ∴CE=AD=,DE=AC=4cm ∵AC ⊥BD ∴DE ⊥BD ∴S 梯形ABCD =111()()222 AD BC h CE BC h BE h +?=+?=?(h 为梯形的高) 211346cm 22 BD DE =?=??= 。

梯形辅助线专题训练

教师姓名学生姓名填写时间 学科数学年级八年级教材版本新人教版 课题名称梯形辅助线专题训练本人课时统计 第()课时 共(2)课时 上课时间20:05 教学目标 同步教学知识内容梯形问题巧转换,变为△和□ 个性化学习问题解决方法与技巧的运用 教学重点方法与技巧的运用 教学难点法则:平移腰,移对角,两腰延长作出高。如果出现腰中点,细心连上中位线。上述方法不奏效,过腰中点全等造。 教学过程、课堂设计一、通常情况下,通过做辅助线,把梯形转化为三角形、平行四边形,是解梯形问题的基本思路。至于选取哪种方法,要结合题目图形和已知条件。常见的几种辅助线的作法如下: 二、典型例题分析 (一)、平移 作法图形 平移腰,转化为三角形、平行四边形。 A B C D E 平移对角线。转化为三角形、平行四边形。 A B C D E 延长两腰,转化为三角形。 A B C D E 作高,转化为直角三角形和矩形。 A B C D E F 中位线与腰中点连线。 A B C D E F

1、平移一腰: 例1. 如图所示,在直角梯形ABCD 中,∠A =90°,AB ∥DC ,AD =15,AB =16,BC =17. 求CD 的长. 练习1、如图,5. 如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm 和49cm ,求它的腰长. A B C D 2、平移两腰: 例2如图,在梯形ABCD 中,AD//BC ,∠B +∠C=90°,AD=1,BC=3,E 、F 分别是AD 、BC 的中点,连接EF ,求EF 的长。 3、平移对角线: 例3、 如图所示,AB ∥CD ,AE ⊥DC ,AE =12,BD =20,AC =15,则梯形ABCD 的面积为( ) A B C D E 练习2 如图所示,在等腰梯形ABCD 中,已知AD ∥BC ,对角线AC 与BD 互相垂直,且AD =30,BC =70,求BD 的长和梯形ABCD 的面积. A B C D A B C D

培优易错试卷圆的综合辅导专题训练及答案

一、圆的综合真题与模拟题分类汇编(难题易错题) 1.如图1,直角梯形OABC中,BC∥OA,OA=6,BC=2,∠BAO=45°. (1)OC的长为; (2)D是OA上一点,以BD为直径作⊙M,⊙M交AB于点Q.当⊙M与y轴相切时,sin∠BOQ=; (3)如图2,动点P以每秒1个单位长度的速度,从点O沿线段OA向点A运动;同时动点D以相同的速度,从点B沿折线B﹣C﹣O向点O运动.当点P到达点A时,两点同时停止运动.过点P作直线PE∥OC,与折线O﹣B﹣A交于点E.设点P运动的时间为t (秒).求当以B、D、E为顶点的三角形是直角三角形时点E的坐标. 【答案】(1)4;(2)3 5 ;(3)点E的坐标为(1,2)、( 5 3 , 10 3 )、(4,2). 【解析】 分析:(1)过点B作BH⊥OA于H,如图1(1),易证四边形OCBH是矩形,从而有OC=BH,只需在△AHB中运用三角函数求出BH即可. (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2),则有OH=2,BH=4,MN⊥OC.设圆的半径为r,则 MN=MB=MD=r.在Rt△BHD中运用勾股定理可求出r=2,从而得到点D与点H重合.易证△AFG∽△ADB,从而可求出AF、GF、OF、OG、OB、AB、BG.设OR=x,利用BR2=OB2﹣OR2=BG2﹣RG2可求出x,进而可求出BR.在Rt△ORB中运用三角函数就可解决问题.(3)由于△BDE的直角不确定,故需分情况讨论,可分三种情况(①∠BDE=90°, ②∠BED=90°,③∠DBE=90°)讨论,然后运用相似三角形的性质及三角函数等知识建立关于t的方程就可解决问题. 详解:(1)过点B作BH⊥OA于H,如图1(1),则有∠BHA=90°=∠COA,∴OC∥BH.∵BC∥OA,∴四边形OCBH是矩形,∴OC=BH,BC=OH. ∵OA=6,BC=2,∴AH=0A﹣OH=OA﹣BC=6﹣2=4. ∵∠BHA=90°,∠BAO=45°, ∴tan∠BAH=BH HA =1,∴BH=HA=4,∴OC=BH=4. 故答案为4. (2)过点B作BH⊥OA于H,过点G作GF⊥OA于F,过点B作BR⊥OG于R,连接MN、DG,如图1(2).

专训2 圆中常用的作辅助线的八种方法(3)

专训2 圆中常用的作辅助线的八种方法名师点金:在解决有关圆的计算或证明题时,往往需要添加辅助线,根据题目特点选择恰当的辅助线至关重要.圆中常用的辅助线作法有:作半径,巧用同圆的半径相等;连接圆上两点,巧用同弧所对的圆周角相等;作直径,巧用直径所对的圆周角是直角;证切线时“连半径,证垂直”以及“作垂直,证半径”等. 作半径,巧用同圆的半径相等 1.如图所示,两正方形彼此相邻,且大正方形的顶点A,D在半圆O上,顶点B,C在半圆O的直径上;小正方形的顶点F在半圆O上,E点在半圆O的直径上,点G在大正方形的边上.若小正方形的边长为4 ,求该半圆的半径. (第1题) 连接圆上两点,巧用同弧所对的圆周角相等 2.如图,圆内接三角形的外角∠的平分线与圆交于D点,⊥,垂足是P,⊥,垂足为H .求证:=. (第2题)

作直径,巧用直径所对的圆周角是直角 3.如图,⊙O的半径为R,弦,互相垂直,连接,. (1)求证:2+2=4R2; (2)若弦,的长是方程x2-6x+5=0的两个根(>),求⊙O的半径及点O到的距离. (第3题) 证切线时辅助线作法的应用 4.如图,△内接于⊙O,=,∥且与的延长线交于点D.判断与⊙O的位置关系,并说明理由. (第4题)

遇弦加弦心距或半径 5.如图所示,在半径为5的⊙O中,,是互相垂直的两条弦,垂足为P,且==8,则的长为( ) A.3 B.4 C.3 D.4 (第5题) (第6题) 6.【中考·贵港】如图所示,是⊙O的弦,⊥于点H,点P是优弧上一点,若=2,=1,则∠的度数是.遇直径巧加直径所对的圆周角 7.如图,在△中,==2,以为直径的⊙O分别交,于点D,E,且点D是的中点. (1)求证:△为等边三角形. (2)求的长. (第7题)

初二数学图形辅助线常见做法

八年级数学培优训练题 补形法的应用 班级_________ 姓名_______________________________ 分数_______________________ 一些几何题的证明或求解,由原图形分析探究,有时显得十分繁难,若通过适当的“补形”来进行,即添置适当的辅助线,将原图形填补成一个完整的、特殊的、简单的新图形,则能使原问题的本质得到充分的显示,通过对新图形的分析,使原问题顺利获解。这种方法,我们称之为补形法,它能培养思维能力和解题技巧。我们学过的三角形、特殊四边形、圆等都可以作为“补形”的对象。现就常见的添补的图形举例如下,以供参考。 一、补成三角形 1. 补成三角形 例1.如图1,已知E为梯形ABCD勺腰CD的中点; 证明:△ ABE的面积等于梯形ABCD面积的一半。 分析:过一顶点和一腰中点作直线,交底的延长线于一点,构造等面积的三角形。这也是梯形中常用的辅助线添法之一。 略证: 2. 补成等腰三角形 例2 如图2.已知/ A= 90°,AB= AC, / 1 = / 2, CEL BD 求证:BD= 2CE 分析:因为角是轴对称图形,角平分线是对称轴,故根据对称 性作出辅助线,不难发现CF= 2CE,再证BD= CF即可。 略证: 3. 补成直角三角形 例3.如图3,在梯形ABCD中, AD// BC, / B+Z C= 90° F、G分别是AD BC的中点,若BC= 18, AD= 8,求FG的长 分析:从Z B、Z C互余,考虑将它们变为直角三角形的角, 故延长BA、CD要求FG 需求PF、PG 略解: 4. 补成等边三角形 例4.图4,A ABC是等边三角形,延长BC至D,延长BA至E,使AE= BD 连结CE ED 证明:EC= ED 分析:要证明EC= ED,通常要证Z ECD=Z EDC但难以实现。这样可采用补形法即延长BD到F,使BF= BE,连结EF。 略证:

梯形辅助线专题训练题

梯形辅助线专题训练题 考号______ 姓名___________ 1 如图,已知在梯形ABCD 中,AB // DC,/ D=60 °,/ C=45 ° , AB= 2 , AD=4,求梯形ABCD 的面积. 2、在梯形ABCD 中,AD//BC , AB=DC=AD=2 , BC=4,求/ B 的度数及AC 的长。 3、如图所示,已知等腰梯形ABCD中,AD // BC,/ B= 60°, AD = 2, BC= 8,求等腰梯形的周长。 A n 4、如图所示, AB // CD , AE 丄DC , AE = 12, BD = 20, AC = 15,求梯形ABCD 的面积。 E

5、如图所示,在等腰梯形ABCD中,已知AD // BC,对角线AC与BD互相垂直,且AD =30,BC= 70,求BD 的长. 6、如图所示,已知等腰梯形的锐角等于60°,它的两底分别为15cm和49cm,求它的腰长? A n 7、如图所示,已知等腰梯形ABCD中,AD // BC, AC丄BD , AD + BC= 10, DE丄BC于E , 求DE的长? 8、已知:如图,梯形ABCD 中,AD// BC, AB=DC,/ BAD / CDA 的平分线AE、DF 分别交直线BC 于点E、F. 求证:CE=BF . A D C D C

9、如图,在梯形 ABCD 中,AD // BC , BD CD , BDC 90 ° AD 3, BC 8 .求 10、如图6,在梯形ABCD 中,AD // BC , A 90 , C 45 , DE=EC , AB=4,AD=2 , 求BE 的长. 11、已知:如图,梯形ABCD 中,DC // AB , AD=BC ,对角线 AC 、BD 交于点 O , / COD=60 若 CD=3, AB=8,求梯形 ABCD 的高. AB 的长. D C

培优平行四边形辅导专题训练及答案

一、平行四边形真题与模拟题分类汇编(难题易错题) 1.如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M 沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒. (1)P点的坐标为多少(用含x的代数式表示); (2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值; (3)当x为何值时,△NPC是一个等腰三角形?简要说明理由. 【答案】(1)P点坐标为(x,3﹣x). (2)S的最大值为,此时x=2. (3)x=,或x=,或x=. 【解析】 试题分析:(1)求P点的坐标,也就是求OM和PM的长,已知了OM的长为x,关键是求出PM的长,方法不唯一,①可通过PM∥OC得出的对应成比例线段来求; ②也可延长MP交BC于Q,先在直角三角形CPQ中根据CQ的长和∠ACB的正切值求出PQ的长,然后根据PM=AB﹣PQ来求出PM的长.得出OM和PM的长,即可求出P点的坐标. (2)可按(1)②中的方法经求出PQ的长,而CN的长可根据CN=BC﹣BN来求得,因此根据三角形的面积计算公式即可得出S,x的函数关系式. (3)本题要分类讨论: ①当CP=CN时,可在直角三角形CPQ中,用CQ的长即x和∠ABC的余弦值求出CP的表达式,然后联立CN的表达式即可求出x的值; ②当CP=PN时,那么CQ=QN,先在直角三角形CPQ中求出CQ的长,然后根据QN=CN﹣CQ求出QN的表达式,根据题设的等量条件即可得出x的值. ③当CN=PN时,先求出QP和QN的长,然后在直角三角形PNQ中,用勾股定理求出PN 的长,联立CN的表达式即可求出x的值. 试题解析:(1)过点P作PQ⊥BC于点Q, 有题意可得:PQ∥AB,

初中平面几何常见添加辅助线的方法(完整资料).doc

此文档下载后即可编辑 初中几何辅助线做法 辅助线,如何添?把握定理和概念。还要刻苦加钻研,找出规律凭经验。 三角形 图中有角平分线,可向两边作垂线。也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。三角形中有中线,延长中线等中线。 四边形 平行四边形出现,对称中心等分点。梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。直接证明有困难,等量代换少麻烦。 斜边上面作高线,比例中项一大片。 圆 半径与弦长计算,弦心距来中间站。圆上若有一切线,切点圆心半径连。 切线长度的计算,勾股定理最方便。要想证明是切线,半径垂线仔细辨。 是直径,成半圆,想成直角径连弦。弧有中点圆心连,垂径定理要记全。 圆周角边两条弦,直径和弦端点连。弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。还要作个内接圆,内角平分线梦圆。 如果遇到相交圆,不要忘作公共弦。内外相切的两圆,经过切点公切线。 若是添上连心线,切点肯定在上面。要作等角添个圆,证明题目少困难。 辅助线,是虚线,画图注意勿改变。假如图形较分散,对称旋转去实验。 基本作图很关键,平时掌握要熟练。解题还要多心眼,经常总结方法显。 切勿盲目乱添线,方法灵活应多变。分析综合方法选,困难再多也会减。 一、见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 二、在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 三、对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线 2、过上底的一个端点作一腰的平行线 3、过上底的一个端点作一对角线的平行线 4、过一腰的中点作另一腰的平行线 5、过上底一端点和一腰中点的直线与下底的延长线相交 6、作梯形的中位线 7、延长两腰使之相交 四、在解决圆的问题中 1、两圆相交连公共弦。 2、两圆相切,过切点引公切线。 3、见直径想直角 4、遇切线问题,连结过切点的半径是常用辅助线 5、解决有关弦的问题时,常常作弦心距。

相关文档
相关文档 最新文档