文档库 最新最全的文档下载
当前位置:文档库 › 遗传学答案第二章 遗传学的细胞学基础

遗传学答案第二章 遗传学的细胞学基础

遗传学答案第二章    遗传学的细胞学基础
遗传学答案第二章    遗传学的细胞学基础

第二章遗传学的细胞学基础

1.小鼠在下述几种情况下分别能产生多少配子?(1)5个初级精母细胞; (2)5个次级精母细胞;(3)5个初级卵母细胞;(4)5个次级卵母细胞。

答:(1)20 (2)10 (3)5 (4)5

[解析](1)每个初级精母细胞产生2个次级精母细胞,继续分裂产生4个精子即雄配子,所以5个产生5×4=20;

(2)每个次级精母细胞产生2个雄配子,所以5个产生5×2=10;

(3)每个初级卵母细胞产生1个次级卵母细胞,继续分裂产生1个卵细胞即雌配子,所以5个产生5×1=5;

(4)每个次级卵母细胞分裂产生1个卵细胞即雌配子,所以5个产生5×1=5.

2.果蝇的基因组总共约有1.6×108个碱基对。DNA合成的数率为每秒30个碱基对。在早期的胚胎中,全部基因组在5min内复制完成。如果要完成这个复制过程需要多少个复制起点?

答:需要约1.77×105起始点。

[解析]在只有一个复制起始点的情况下,果蝇基因组复制一次需要的时间为:

1.6×108个碱基对/(30个碱基对/s)=5.3×107s;

如果该基因组在5min内复制完成,则需要的复制起始点为:

5.3×107/5×60≈1.77×105(个起始点)

3.如果某个生物的二倍体个体染色体数目为16,在有丝分裂的前期可以看到多少个染色体单体?在有丝分裂后期,有多少染色体被拉向细胞的每一极?

答:32条染色体单体16条染色体被拉向每一极

[解析]从细胞周期来讲,一个细胞周期包括物质合成的细胞间期和染色体形态发生快速变化的分裂期,染色体的复制发生在细胞分裂间期。所以,在细胞分裂前期,每一条染色体都包括两条单体。因为该二倍体生物2n=16,所以在有丝分裂的前期可以见到16×2=32条单体。

在有丝分裂后期,着丝粒复制完成,此时,每条染色体上的两条单体彼此分离,分别移向细胞两极,即每一极都有16条染色体分布,且每条染色体都只包含一条单体。

(第三章孟德尔式遗传)

1.真实遗传的紫茎缺刻叶(AACC)与真实遗传的绿茎马铃薯叶(aacc)杂交,F2代结果如下:紫茎缺刻叶247,紫茎马铃薯叶90,绿茎缺刻叶83,绿茎马铃薯叶34.(1)分别写出亲本和F2 4种表型的基因型;(2)在总数454株的F2中,计算4种表型的预期数;(3)进行X2检验,说明这两对基因是否为自由组合。

[解析](1)由于亲本为真实遗传,说明皆为纯合体,从F2表型可以看出,紫茎:绿=3:1说明紫茎为完全显性;缺刻叶:马铃薯叶=3:1,缺刻叶对马铃薯叶为完全显性。显设A、a决定紫茎、绿茎,C,c决定缺刻叶、马铃薯叶。

则依题意,亲本基因型分别是:紫茎缺刻叶AACC,绿茎马铃薯叶aacc;F2 4种表型的基因型分别是:紫茎缺刻叶A C ;紫茎马铃薯叶A cc;绿茎缺刻aaC ,绿茎马铃薯叶aacc。

(2)根据F2表型比例分析,该性状的遗传表型可按9:3:3:1比例来预测。

紫茎缺刻叶454×9/16=255

绿茎缺刻叶454×3/16=85

紫茎马铃薯叶454×3/16=85

绿茎马铃薯叶454×1/16=28

(3)X2检验:

X2=∑(A-T)2/T=(247-255)2/255+(90-85)2/85+(83-85)2/85+(34-28)2/28 =1.88

Df=3,查表求得:0.50

可见该杂交组合符合F2的预期分离比,说明这两对基因符合自由组合。

2.如果有一个植株对4个显性基因是纯合的,另一植株对相应的4个隐性基因是纯合的,两植株杂交,问F2中基因型及表现型像亲代父母本的各有多少?

[解析]假如4对显性基因为AABBCCDD,对应的4对隐性基因为aabbccdd,则F2中基因型为AABBCCDD的比例为(1/4)4=1/256,基因型为

aabbccdd的比例为(1/4)4=1/256,表现型为A B C D 的比例为(3/4)

4=81/256,表现型为aabbccdd的比例为(1/4)4=1/256.

3.在某项番茄杂交实验中,F2中有3629株是紫茎,1175株是绿茎,3:1的比值是所预期的。试问实际观察数与理论期望数之间差异显著吗?(n=1时,X20.05=3.84; n=2时,X20.05=5.99; n=3时,X20.05=7.81)

解析:理论值分别为(3629+1175)×3/4=3603;(3629+1175)×1/4=1201 X2=(3629-3603)2/3603+(1175-1201)2/1201=0.7505

X2< X20.05(3.84,n=1) 故实际观察数与理论期望数之间差异不显著。

4.A对a为显性,B对b为显性,若:

AaBb×aabb

A B aabb A bb aaB ,杂交后代四种表现型分别为400、400、100、100,那么在AABB×aabb杂交中,F2群体中aabb占的比例是多少?

解析:重组值20%

F2群体中aabb占16%

5.生物基因型AaBbCc个体与aabbcc个体交配后有10个后代时,10个后代中有8个都是AaBb的概率是多少?有6个是aabbcc的概率是多少?(前提:3对基因都是独立遗传的)

解析:(1)C108(1/4)8(3/4)2

(2)C106(1/8)6(7/8)4

6.香豌豆的花冠有紫色的和红色的,这是由一对等位基因决定的,花粉的形状有长形的和圆形的,这也是由一对等位基因决定的。贝特森和潘耐特把紫色圆形的植株与红色长形的植株杂交,得到的子一代全是紫色长形的,把子一代植株自花授粉,得到子二代,共计519株,其中紫色长形226,紫色圆形95,红色长形97,红色圆形1,问子二代分离比是否符合9:3:3:1?

附X2表

n

P

0.99 0.95 0.50 0.10 0.05 0.02 0.01

1 2 3 0.00016

0.0201

0.115

0.0039

0.103

0.352

0.15

1.39

2.37

2.71

4.61

6.25

3.84

5.99

7.82

5.41

7.82

9.84

6.64

9.21

11.35

4 0.297 0.711 3.36 7.78 9.49 11.67 13.28

解析:(1)假设子二代分离比符合9:3:3:1,则紫色长形:紫色圆形:红色长形:红色圆形的理论比应为:

519×9/16:519×3/16:519×3/16:519×1/16=291.9:97.3:97.3:32.4

所以X2=(226-291.9)2/291.9+(95-97.3)2/97.3

+(97-97.3)2/97.3+(1-32.4)2/32.4=14.88+0.05+0.00+30.43=45.36

(2)查X2表,判断

df=3,45.36远大于11.35,所以P远小于1%,说明实得数与理论比差异极显著,因此子二代分离比不符合9:3:3:1。(10分)

7.单冠白羽的莱杭鸡与豌豆冠黑羽的印第安斗鸡杂交,F1是白羽豌豆冠,F1×F1杂交得F2,有:111只白羽豌豆冠;37只白羽单冠;34只白羽豌豆冠,8只黑羽单冠。试问:(1)你预料每一类型的理论数是多少?(2)用X2法测定你的解释。

X2表:

P 0.80 0.70 0.50 0.10 0.05

n=1 0.064 0.148 0.455 2.706 3.841

n=2 0.446 0.713 1.386 4.605 5.991

n=3 1.005 1.424 2.366 6.251 7.815

n=4 1.649 2.195 3.357 7.779 9.488

解答:(1)两对基因为独立遗传,F2理论预期值为:白羽豌豆冠,190×1/16=106.9;白羽单冠,190×3/16=35.6;黑羽豌豆冠,190×3/16=35.6;黑羽单冠,190×1/16=11.9。(2)X2=1.55;自由度为4-1=3;0.70>P>0.50;理论与实际结果相符,假设成立。

8. 玉米种子的有色(C)与无色(c),非蜡质(Wx)与蜡质(wx)胚乳,饱满(Sh)与皱粒(sh)是3对等位基因,这3个基因杂合的支柱用三隐性亲本测交后得到下面的结果:

无色,非蜡质,皱粒84 有色,蜡质,皱粒951

无色,非蜡质,饱满974 有色,蜡质,饱满99

无色,蜡质,皱粒2349 有色,非蜡质,皱粒2216

无色,蜡质,饱满20 有色,非蜡质,饱满15

总数6708

(1)确定这3个基因是否连锁?

(2)假设杂合体来自纯系亲本的杂交,写出亲本的基因型。

(3)如果存在着连锁,绘出连锁遗传图。

(4)是否存在着干扰?如果存在,干扰值是多少?

解答:(1)这三个基因都连锁。

(2)如果杂合子来自纯系亲本的杂交,则亲本的基因型是CCshshWxWx 和ccShShwxwx。

(3)基因C和Sh之间的重组率是Rf=(84+20+99+15)/6708=3.25%。

基因Wx和Sh之间的重组率是Rf=(974+20+951+15)/6708=29.2%。

基因Wx和C之间的重组率是Rf=(974+84+951+99)/6708=31.4%.所

以连锁图为

C 3.25 Sh 29.2 Wx

数量遗传学知识点总结

第一章绪论 一、基本概念 遗传学:生物学中研究遗传和变异,即研究亲子间异同的分支学科。数量遗传学:采用生物统计学和数学分析方法研究数量性状遗传规律的遗传学分支学科。 二、数量遗传学的研究对象 数量遗传学的研究对象是数量性状的遗传变异。 1.性状的分类 性状:生物体的形态、结构和生理生化特征与特性的统称。如毛色、角型、产奶量、日增重等。 根据性状的表型变异、遗传机制和受环境影响的程度可将性状分为数量性状、质量性状和阈性状3类。 数量性状:遗传上受许多微效基因控制,性状变异连续,表型易受环境因素影响的性状,如生长速度、产肉量、产奶量等。 质量性状:遗传上受一对或少数几对基因控制,性状变异不连续,表型不易受环境因素影响的性状,如毛色、角的有无、血型、某些遗传疾病等。 阈性状:遗传上受许多微效基因控制,性状变异不连续,表型易受或不易受环境因素影响的性状。有或无性状:也称为二分类性状(Binary traits)。如抗病与不抗病、生存与死亡等。分类性状:如产羔数、产仔数、乳头数、肉质评分等。 必须进行度量,要用数值表示,而不是简单地用文字区分; 要用生物统计的方法进行分析和归纳; 要以群体为研究对象; 组成群体某一性状的表型值呈正态分布。 3.决定数量性状的基因不一定都是为数众多的微效基因。有许多数量性状受主基因(major gene)或大效基因(genes with large effect)控制。 果蝇的巨型突变体基因(gt);小鼠的突变型侏儒基因(dwarf, df);鸡的矮脚基因(dw);美利奴绵羊中的Booroola基因(FecB);牛的双肌(double muscling)基因(MSTN);猪的氟烷敏感基因(RYR1)三、数量遗传学的研究内容

细胞遗传学复习资料

细胞遗传学复习资料 第二章染色体的形态结构 Chromosome: A molecular of DNA, and associated protein bound together. Each chromosome contains: Centromere, Kinetochore, Telomere, Euchromatin and Heterochromatin. 染色质(Chromatin):在尚未分裂的细胞核中,显微镜下可见的可被碱性染料染色较 深的、纤细的网状物。 染色体(Chromosome): 细胞分裂时,由染色质卷缩(螺旋化)而形成的呈现为一定数目 和形态的细胞结构,是遗传物质的最主要的载体。 研究染色体形态最适合的时期: ?有丝分裂中期 ?减数分裂第一次分裂前期I的粗线期 第一节有丝分裂中期染色体 大小:不同物种间染色体的大小差异很大,长度的变幅为(0.20-50 μm),宽度的变幅为(0.20-2.00 μm)。(显微镜的最小分辨率δ=0.61λ/ NA ,λ=0.55 μm NA=1.4,δ约为0.25 μm。NA为物镜的数值孔径) 同一物种不同染色体宽度大致相同,其染色体大小主要对长度而言。 小麦:染色体平均长度11.2 μm,总长235.4 μm。 在细胞周期中,染色体处于动态的收缩过程中。 绝对长度:实际测量值。 相对长度:特定染色体的长度在单倍染色体组总长度中所占的比例。 染色体大、数目少的物种是细胞遗传学研究的优良实验材料,如果蝇(2n=8)、玉米、蚕豆、洋葱、麦类。 着丝粒(Centromere):A specialized chromosome region to which spindle fibers attach during cell division. 着丝粒是细胞分裂时,纺锤丝附着(attachment)的区域,又称为着丝点。 着丝粒不会被染料染色,所以在光学显微镜下表现为染色体上一缢缩部位(无色间隔点),所以又称为主缢痕(primary constriction)。 着丝粒所连接的两部分称为染色体臂(arm)。 着丝点:具有聚合微管蛋白的作用,是微管组织中心(microtubule organized center, MTOC),因而与细胞分裂过程中牵引染色体移动的驱动力有关系。 1.按着丝粒位置将染色体分为几种类型: 1)中着丝粒染色体 2)近中着丝粒染色体 3)亚中着丝粒染色体 4)亚端着丝粒染色体 5)近端着丝粒染色体 6)端着丝粒染色体 臂比(arm ratio,A)=长臂/短臂(q/p或L/S) 着丝粒指数(Centromeric Index,C)=短臂长度(p)/染色体长度(p+q)×100% 动粒(Kinetochore): 为着丝粒的外层结构,是细胞分裂时纺锤体微管附着部位。 动粒的类型: ?固定位置动粒( localized kinetochore)

遗传学第一章遗传学细胞基础知识点

第一章遗传的细胞学基础 本章要点 ?真核细胞的结构及功能。 ?染色体的形态特征。 ?染色质的基本结构与染色体的高级结构模型。 ?多线染色体的形成原因。 ?有丝、减数分裂染色体形态、结构、数目变化及遗传学意义。 ?无融合生殖及其类型。 ?高等动植物的生活周期。 ?染色质、染色体、同源染色体、异固缩现象、核型、核型分析、双受精、直感现象、世代交替。 ?真核细胞的结构及功能: 1.细胞壁。植物细胞有细胞壁及穿壁胞间连丝。 成分:纤维素、半纤维素、果胶质。 功能:对细胞的形态和结构起支撑和保护作用。 2.细胞膜 成分:主要由磷脂和蛋白分子组成。 功能:选择性透过某些物质;提供生理生化反应的场所;对细胞内空间进行分隔,形成结构、功能不同又相互协调的区域。 3.细胞质 构成:蛋白分子、脂肪、游离氨基酸和电解质组成的基质。 细胞器:如线粒体、质体、核糖体、内质网等。 线粒体:双膜结构,有氧呼吸的场所,有自身的DNA,和植物的雄性不育有关。 叶绿体:双膜结构,光合作用的场所,有自身的DNA,绿色植物所特有。 核糖体:蛋白质和rRNA,合成蛋白质的主要场所。 内质网:平滑型和粗糙型,后者上附有核糖体。 高尔基体:单膜结构,分泌、聚集、贮存和转运细胞内物质的作用。 中心粒:动物及低等植物,与纺锤体的排列方向和染色体的去向有关。 4.细胞核 功能:遗传物质集聚的场所,控制细胞发育和性状遗传。 组成:1. 核膜;2. 核液;3. 核仁;4. 染色质和染色体。 ?染色体的形态特征: 间期细胞核里能被碱性染料染色的网状结构称为染色质。 在细胞分裂期,染色质卷缩成具有一定形态、结构和碱性染料染色很深的物质,染色体。 二者是同一物质在细胞分裂过程中所表现的不同形态。 ?不知道是什么

细胞遗传学完整版答案讲课教案

《细胞遗传学》复习题 第一章染色体的结构与功能+第三章染色体识别 1.什么是花粉直感?花粉直感是怎样发生的?作物种子的哪些部分会发生花粉直感? 花粉直感又叫胚乳直感,植物在双受精后,在3n胚乳上由于精核的影响而直接表现父本的某些性状。 由雄配子供应的一份显性基因能够超过由母本卵核或两个极核隐形基因的作用,杂交授粉当代母本植株所结的种子表现显性性状。 胚乳和胚性状均具有花粉直感的现象。 2.什么叫基因等位性测验?如何进行基因等位性测验? 确定两个基因是否为等位基因的测验为基因的等位性测验。 将突变性状个体与已知性状的突变种进行杂交,凡是F1表现为已知性状,说明两对基因间发生了互补,属于非等位基因。若F1表现为新性状,表明被测突变基因与已知突变基因属于等位基因。 3.原位杂交的原理是什么?原位杂交所确定的基因位置与遗传学上三点测验所确定的基 因位置有何本质的不同? 根据核酸碱基互补配对原则,将放射性或非放射性标记的外源核酸探针,与染色体经过变性的单链DNA互补配对,探针与染色体上的同源序列杂交在一起,由此确定染色体特定部位的DNA序列的性质;可将特定的基因在染色体上定位。 第一步,制备用来进行原位杂交的染色体制片;第二步,对染色体DNA进行变性处理;第三步,进行杂交;第四步,信号检出和对染色体进行染色;第五步,显微镜检查。 原位杂交是一种物理图谱绘制的方法,它所确定是特定基因在染色体上的物理位置;三点测验是绘制连锁图谱的实验方法,它是利用三对连锁基因杂合体,通过一次杂交和一次测交,确定三对基因在同一染色体上排列顺序以及各个基因的相对距离。 4.什么叫端粒酶(telomerase)?它有什么作用? 端粒酶是参与真核生物染色体末端的端粒DNA复制的一种核糖核蛋白酶,由RNA 和蛋白质组成,其本质是一种逆转录酶。 作用:它以自身的RNA作为端粒DNA复制的模版,合成出富含G的DNA序列后添加到染色体的末端并与端粒蛋白质结合,从而稳定了染色体的结构。 端粒起到细胞分裂计时器的作用,端粒核苷酸复制和基因DNA不同,每复制一次减少50-100 bp,正常体细胞染色体缺乏端粒酶活性,故随细胞分裂而变短,细胞随之衰老。人的生殖细胞和部分干细胞染色体具有端粒酶活性,所以人的生殖细胞染色体末端比体细胞染色体末端长几千个bp。肿瘤细胞和永生细胞系具有端粒酶的活性。端粒酶的活性是癌细胞的一种标誌,可以作为癌症治疗中的一个靶子。 5.染色质修饰和DNA修饰如何影响基因的表达? 染色质修饰包括: (1)组蛋白的化学修饰:组蛋白乙酰化使之对DNA的亲和力降低,降低了核小体之间的相互作用,异染色质中组蛋白一般不被乙酰化,而功能域中组蛋白常被乙酰化;组蛋白去乙酰化抑制基因组活化区域。 (2)核小体重塑:核小体的重塑影响基因的表达,核小体的重新排列,它可以改变核小体在基因启动子区域的排列,从而增加启动子的可接近性,调节基因的表达。基因激活伴随着DNA酶I敏感位点的形成,影响基因的表达。基因激活伴随着DNA酶I敏感位点的形成。DNA修饰包括:(1)DNA甲基化(2)基因组印记 甲基化是指在甲基化酶的作用下,将一个甲基添加在DNA分子的碱基上。DNA甲基化修

《遗传学》朱军版习题与答案

《遗传学(第三版)》 朱军主编 课后习题与答案 目录 第一章绪论 (1) 第二章遗传的细胞学基础 (2) 第三章遗传物质的分子基础 (6) 第四章孟德尔遗传 (8) 第五章连锁遗传和性连锁 (12) 第六章染色体变异 (15) 第七章细菌和病毒的遗传 (20) 第八章基因表达与调控 (26) 第九章基因工程和基因组学 (30) 第十章基因突变 (33) 第十一章细胞质遗传 (35) 第十二章遗传与发育 (37) 第十三章数量性状的遗传 (38) 第十四章群体遗传与进化 (42) 第一章绪论 1.解释下列名词:遗传学、遗传、变异。 答:遗传学:是研究生物遗传和变异的科学,是生物学中一门十分重要的理论科学,直接探索生命起源和进化的机理。同时它又是一门紧密联系生产实际的基础科学,是指导植物、动物和微生物育种工作的理论基础;并与医学和人民保健等方面有着密切的关系。 遗传:是指亲代与子代相似的现象。如种瓜得瓜、种豆得豆。 变异:是指亲代与子代之间、子代个体之间存在着不同程度差异的现象。如高秆植物品种可能产生矮杆植株:一卵双生的兄弟也不可能完全一模一样。 2.简述遗传学研究的对象和研究的任务。 答:遗传学研究的对象主要是微生物、植物、动物和人类等,是研究它们的遗传和变异。 遗传学研究的任务是阐明生物遗传变异的现象及表现的规律;深入探索遗传和变异的原因及物质基础,揭示其内在规律;从而进一步指导动物、植物和微生物的育种实践,提高医学水平,保障人民身体健康。 3.为什么说遗传、变异和选择是生物进化和新品种选育的三大因素? 答:生物的遗传是相对的、保守的,而变异是绝对的、发展的。没有遗传,不可能保持性状和物种的相对稳定性;没有变异就不会产生新的性状,也不可能有物种的进化和新品种的选育。遗传和变异这对矛盾不断地运动,经过自然选择,才形成形形色色的物种。同时经过人工选择,才育成适合人类需要的不同品种。因此,遗传、变异和选择是生物进化和新品种选育的三大因素。 4. 为什么研究生物的遗传和变异必须联系环境? 答:因为任何生物都必须从环境中摄取营养,通过新陈代谢进行生长、发育和繁殖,从而表现出性状的遗传和变异。生物与环境的统一,是生物科学中公认的基本原则。所以,研究生物的遗传和变异,必须密切联系其所处的环境。

医学遗传学知识总结

1.医学遗传学是用遗传学的理论和方法来研究人类病理性状的遗传规律及物质基础的学科 2.遗传病的类型:单基因病多基因病染色体病体细胞遗传病线粒体遗传病 3.遗传因素主导的遗传病单基因病和染色体病 4.遗传和环境因素共同作用的疾病多基因病和体细胞遗传病 5.环境因素主导的疾病非遗传性疾病 6.遗传病由遗传因素参与引起的疾病,生殖细胞或受精卵的遗传物质(染色体或基因)异常所引起的疾病,具有垂直传递的特点 7.染色质和染色体是同一物质在细胞周期不同时期的不同形态结构 8.染色体的化学组成DNA 组蛋白RNA 非组蛋白 9.染色体的基本结构单位是核小体 10.染色质的类型:常染色质异染色质 11.常染色质是间期核纤维折叠盘曲程度小,分散度大,能活跃的进行转录的染色质特点是多位于细胞核中央,不易着色,折光性强12.异染色质是间期核纤维折叠盘曲紧密,呈凝集状态,一般无转录活性的染色质特点:着色较深,位于细胞核边缘和核仁周围。13.结构性异染色质是各类细胞的整个发育过程中都处于凝集状态的染色质 14.兼性异染色质是特定细胞的某一发育阶段由原来的常染色质失去转录活性,转变成凝集状态的异染色质 15.染色体的四级结构:一级结构:核小体;二级结构:螺线管;三

级结构:超螺线管;四级结构:染色单体 16.性别决定基因成为睾丸决定因子;Y染色体上有性别决定基因:SRY 17.基因突变是指基因在结构上发生碱基对组成或排列顺序的改变 18.点突变是基因(DNA链)中一个或一对碱基改变 19.基因突变的分子机制:碱基替换移码突变动态突变 20.碱基替换方式有两种:转换和颠换 21.碱基替换可引起四种不同的效应:同义突变、错义突变、无义突变、终止密码突变 22.移码突变:在DNA编码顺序中插入或缺失一个或几个碱基对从而使自插入或缺失的那一点以下的三联体密码的组合发生改变进而使其编码的氨基酸种类和序列发生改变 23.整码突变:DNA链的密码子之间插入或缺失一个或几个密码子则合成肽链将增加或减少一个或几个氨基酸,但插入或丢失部位的前后氨基酸顺序不变动态突变:DNA分子中碱基重复序列或拷贝数发生扩增而导致的突变(脆性X综合症) 24.系谱是指某种遗传病患者与家庭各成员相互关系的图解 25.系谱分析法是通过对性状在家族后代的分离或传递方式来推断基因的性质和该性状向某些家系成员传递的概率 26.先证者是指家系中被医生或研究者发现的第一个患病个体或具有某种性状的成员 27.单基因遗传病:疾病的发生主要由一对等位基因控制,传递方式

2013细胞遗传学试题

一、名词解释 细胞遗传学(Cytogenetics)是建立在遗传学(genetics) 和细胞学(cytology) 相结合的一个遗传学的分支学科。它是用细胞学和遗传学的方法阐明生物的遗传和变异现象及其表观规律。是遗传学中最早发展起来的学科,也是最基本的学科。 染色体数目:不同种类的动植物染色体数目是相对恒定的,在动植物的体细胞中,染色体往往是成对存在的,以2n表示;而性细胞中的染色体则为体细胞中的一半,以n表示。 三体(trisomic):是指在双体(2n)染色体中某同源染色体多了一条额外的染色体。2n+1,2m+1+1(双三体)三体一般都能存活、都能繁殖,都会表现与其亲本性状有所不同的变异。 初级三体(primary trisomy)添加的染色体和染色体组中的一对染色体完全同源 次级三体(Secondary trisomy)添加的一条是等臂染色体(两臂组成一样)。 补偿三体(compensating trisomic)一个个体缺少一条染色体,而在遗传上为另外2条分别涉及该染色体2个臂的易位染色体所补偿。用2n-1+c+c表示染色体组成(c代表易位染色体)。 平衡隐性致死:各个复合组内含有一个隐性致死基因。纯合时合子死亡,但v和g组内的致死基因并不是等位的,在杂结合的情况下可以互补,合子得以成活,这种现象叫平衡隐性致死 1、附着X染色体:指两条X染色体在着丝粒一端连在一起的染色体,在减数分裂中部发生分离,像一条染色体一样,其性连锁和性决定行为与一般果蝇不同。 2、交叉一面说:F.A Janssens 等认为在显微镜下观察到的细胞学交叉是遗传学交叉的直接结果,双线期看到的圆环是由姐妹染色单体构成的,二价体中只有一个减数面,因此成为交叉一面说。其要点是:⑴交叉等于交换,认为交叉就表示交换,是非姐妹染色单体间交换的结果。⑵先有交换,后有交叉。⑶双线期所看到的圆环(减数面)都是姐妹染色单体在一起。 3、舒尔兹·雷德菲尔德效应:在倒位杂合体中,倒位二价体自身交换频率的下降,往往会导致其它二价体交换频率的提高,使细胞中整个染色体的交换频率维持不变。 4、B染色体:在有些真核生物中除常染色体(也称为A染色体)外,还存在一些形态较小、类型和数量多样的额外染色体,我们称之为B染色体,也可称之为副染色体、额外的染色体或超数染色体。 5、核仁组织区:在大多数生物中,次缢痕通常出现在核仁所在的区域,在前期与核仁联系在一起,并参与末期核仁的形成,因此此区域被成为核仁组织区。 6、新着丝粒:是一种次级着丝粒(secondary centromere),它是细胞分裂时除了正常的着丝粒外,在染色体上出现的具有类似着丝粒功能的其他区域。 7、G带:是在染色体的全部长度上显示丰富的带纹。现也叫高分辨G带,高分辩带。 8、单端单体:缺失一对同源染色体,但保留由该对同源染色体中的1条染色体臂形成的端着丝粒染色体,染色体组成为2n-2+t。9、染色体消减:指多倍体或混倍体组织回复到二倍体亲本之一原来的染色体数目的趋势。 10、二体异代换系:染色体代换也可以发生在不同的染色体组之间,被代换的个体称为异源染色体代换系或称异代换系,涉及1对外源染色体代换的个体称二体异代换系。 11、灯刷染色体:两栖类卵母细胞减数分裂前期Ⅰ中形成的巨大染色体。由纤细的DNA中轴和许多成对的DNA侧袢组成,形似灯刷状。灯刷染色体是卵母细胞进行第一次减数分裂时, 停留在双线期的染色体。 12、双减数:对于四价体来说,同一区段的分离在减数分离之后,仍然可能发生后减数分离,结果是原来为姐妹染色单体的两个区段,最后同时进入一个子细胞中,这就是双减数。 13、交叉两面说:该学说认为平常所见到的交叉,并不代表一个染色体的实质交换,而是先在交叉处发生断裂,由断裂端重接才产生交换。要点:(1)交叉步等于交换。因为染色体向两极移动时,交叉产生断裂后再重接,如果非姐妹染色单体连在一起,就发生交换。(2)交叉是因,交换是果。(3)均等面与减数面总是交替排列。 二、染色体组分析(genome analysis):是阐明生物的染色体组的构成,特别是指利用染色体配对,了解染色体之间的同源性,分析染色体组的演变以及物种起源和进化的情况。从而为物种起源和进化的研究提供客观根据,为调查异源染色体的附加、代换乃至易位提供细胞学证明。常用的染色体组分析方法:①研究杂种F1减数分裂时染色体的联会行为。②单倍体减数分裂时染色体的联会行为。 ③原位杂交法。 要想对这一植物进行染色体组来源的分析,其方法可为:将此物种(被测种)与可能的物种A、B、C(基本种)分别进行杂交。然后观察杂交子代在减数分裂过程中染色体的配对行为。 ◆如果被测种与基本种的杂交子代减数分裂过程中发现相当于基本种染色体基数的二价体,便说明异源多倍体的一个染色体组来源于这一基本种。 ◆当有几个物种符合时,染色体联会最广泛最紧密的那个物种就被认为是真正的祖先。 ◆分析是否正确,还要做检验:就是把视为祖先的几个基本种进行人工合成多倍体,当合成的和天然的异源多倍体彼此非常相似,并具有可孕的后代时,就可确定分析是正确的。 三多线染色体的形态特征与结构特点? ⑴多线性:染色体(染色单体,DNA)反复进行纵向分裂,数目增加,但不分离,成为平行的一束染色体,这样在间期核内染色体增加了很多倍而形成多线的现象,称为多线性。每条多线染色体的纤丝数目是种特异的,最多可达4000多。 ⑵巨大性:正常的染色体只有在细胞分裂时才能看到,在细胞间期只能看到染色质,而多线染色体在间期唾液腺细胞里就可以看到。 ⑶体细胞联会:即体细胞中的同源染色体进行联会。在果蝇的幼虫唾液腺体细胞中,经过多次DNA的复制形成的染色体通过染色体配对聚合在一起,形成4条多线染色体,此时细胞内染色体的数目为正常体细胞染色体数目的一半,即单倍体数。但每一条多线染色体实际上代表着两条紧密联会的同源染色体,从而使得两条同源染色体从外观上看起来像是独立的一条染色体,4条多线染色体在染色中心通过着丝粒区域结合在一起。植物的多线染色体在形态与动物总的有一些差异。最明显的差异是同源染色体的不配对,除偶尔在泻根中有配对的情况外。

《遗传学基础》试卷及答案

《遗传学基础》试题 使用教材:遗传学试题范围:全册 出版社:中国农业出版社版次:第3版 学校名称:甘肃省山丹培黎学校 一、名词解释(每个1.5分、共计15分) 1同源染色体: 2翻译: 3等位基因: 4杂种优势: 5遗传: 6转录: 7等位基因: 8测交: 9基因突变: 10密码子: 二、单项目选择题(每小题2分、共计20分) 1、染色体存在于植物细胞的()。 A内质网中 B细胞核中 C核糖体中 D叶绿体中 2、蚕豆正常体细胞内有6 对染色体, 其胚乳中染色体数目为 ( )。 A 3 B 6 C 12 D 18 3、水稻体细胞2n=24条染色体,有丝分裂结果,子细胞染色体数为()。 A 6条 B 12条 C 24条 D 48条 4、在有丝分裂中, 染色体收缩得最为粗短的时期是 ( )。 A .间期 B 早期 C 中期 D 后期 5、减数分裂染色体的减半过程发生于(): A 后期Ⅱ B 末期Ⅰ C 后期Ⅰ D 前期Ⅱ 6、杂合体AaBb所产生的同一花粉中的两个精核,其基因型有一种可能是(3)

A AB和Ab; B Aa和Bb; C AB和AB; D Aa和Aa。 7、一个大孢子母细胞减数分裂后形成四个大孢子,最后形成() A 四个雌配子 B 两个雌配子 C 三个雌配子 D 一个雌配子 8、染色体的复制方式是()。 A 全保留复制 B 1/4保留复制 C 1/2保留复制 D 无保留复制 9、双链DNA中的碱基对有:() A A-U B G-T C C-G D C-A 10、DNA对遗传的功能是(): A 传递和转录遗传信息 B 储存的复制遗传信息 D 翻译和表现遗传信息 D 控制和表达遗传信息 三、填空题(每空1分、共计15分) (1)一次完整的减数分裂包括两次连续的分裂过程,减数的过程发生在 __________,联会的过程发生在__________,鉴定染色体数目最有利的时期为__________ (2)一个完整的染色体的形态主要由___________、__________、 ____________主缢痕、次缢痕、五部分组成 (3)一对基因(Aa)杂合体,在显性作用完全时,其自交产生配子类型的数 目------------------F2代基因型的种类数为-------------,F2代可能的组合数为代表现型的种类数为----------------------- ------------------F2 (4)一对夫妇生了“龙风双胞胎”,其中男孩色盲、女孩正常,而该夫妇两人 的父母亲中,只有一人带有色盲基因,则此夫妇的基因型为-------、------- (5)某生物体,其体细胞内有3对染色体,其中ABC来自父方,A'B'C'来自母方,减数分裂时可产生-------种不同染色体组成的配子,这时配子中同时含有3个父方染色体的比例是--------。同时含父方或母方染色体的配子比例是-------- (6)人的体细胞有46条染色体,一个人从其父亲那里接受-----条染色体,人的卵细胞中有-----条性染色体,人的配子中有-----条染色体。

高三生物遗传学知识点总结

高三生物遗传学知识点总结 一仔细审题:明确题中已知的和隐含的条件,不同的条件现象适用不同 规律:1基因的分离规律:a只涉及一对相对性状;b杂合体自交后代的性状 分离比为3∶1;c测交后代性状分离比为1∶1。2基因的自由组合规律:a 有两对(及以上)相对性状(两对等位基因在两对同源染色体上)b两对相 对性状的杂合体自交后代的性状分离比为9∶3∶3∶1c两对相对性状的测交 后代性状分离比为1∶1∶1∶1。3伴性遗传:a已知基因在性染色体上b♀♂ 性状表现有别传递有别c记住一些常见的伴性遗传实例:红绿色盲血友病果 蝇眼色钟摆型眼球震颤(x-显)佝偻病(x-显)等二掌握基本方法:1最基础 的遗传图解必须掌握:一对等位基因的两个个体杂交的遗传图解(包括亲代 产生配子子代基因型表现型比例各项)例:番茄的红果r,黄果r,其可能的 杂交方式共有以下六种,写遗传图解:p①rrrr②rrrr③rrrr④rrrr⑤rrrr⑥rrrr★注意:生物体细胞中染色体和基因都成对存在,配子中染色体和基因成单存在 ▲一个事实必须记住:控制生物每一性状的成对基因都来自亲本,即一个来 自父方,一个来自母方。2关于配子种类及计算:a一对纯合(或多对全部基 因均纯合)的基因的个体只产生一种类型的配子b一对杂合基因的个体产生 两种配子(dddd)且产生二者的几率相等。cn对杂合基因产生2n种配子, 配合分枝法即可写出这2n种配子的基因。例:aabbcc产生22=4种配子:abcabcabcabc。3计算子代基因型种类数目:后代基因类型数目等于亲代各对基因分别独立形成子代基因类型数目的乘积(首先要知道:一对基因杂交, 后代有几种子代基因型?必须熟练掌握二1)例:aaccaacc其子代基因型数目?∵aaaaf是aa和aa共2种[参二1⑤]ccccf是cccccc共3种[参二1④]答案 =23=6种(请写图解验证)4计算表现型种类:子代表现型种类的数目等于

细胞遗传学复习资料

第一章绪论 一、细胞遗传学的研究对象和任务 细胞遗传学是遗传学与细胞学相互交叉与结合的一个遗传学的分支学科。它是用细胞学和遗传学的方法阐明生物的遗传和变异现象及其表观规律的一门基础科学。 细胞遗传学的研究对象、任务和内容: 以高等动植物为主要研究对象。研究任务:揭示染色体与生物遗传、变异和进化的关系。内容包括:染色体的数目、形态、结构、功能与运动等特征以及这些特征的各类变异对遗传传递、重组、表达与调控的作用和影响。 第二章染色体的形态特征和结构 §1.染色体的一般形态特征 一、染色体数目不同种类动植物染色体数目是相对恒定的。 二、染色体大小不同染色体之间大小有很大差异是染色体最明显的形态特征。 ●影响染色体大小变异的因素 1.与物种亲缘关系有关一般是亲缘关系越远,大小变异越明显。 科间﹥属间﹥种间﹥种内 2.与生长发育有关 3.与外界环境条件有关如化学试剂、温度影响 三、着丝粒及其超微结构 ●定义:着丝粒是一个细长的DNA片段(染色体主缢痕部位的染色质),不紧密卷曲,连接两个染色单体,是染色体分离与运动装置。缺少着丝粒的染色体不能分离并导致染色体丢失。 ●功能:着丝粒又称动原体,是染色体的运动器官,也是姐妹染色单体在分开前相互连接的部位。两侧为异染色质区,由短的DNA串联重复序列构成。着丝粒断裂、缺失,会使染色体运动受阻,造成染色体丢失。 ●类型根据着丝粒在染色体上的位置和分布,分为: 1.有固定位置的着丝粒在染色体上着丝粒具有永久性的固定区域。 2.新着丝粒细胞分裂时除了正常着丝粒外,在染色体上出现的具有类似着丝粒功能的其他区域。 3.无固定位置的着丝粒指纺锤体附着点在染色体上没有固定的位置。 (1)多着丝粒在一个染色体上可附着多个纺锤丝,且着丝粒被非着丝粒片段隔开。 (2)全身性着丝粒染色体的每一点都表现有着丝粒的活性,即整个染色体上均有着丝粒分布现象,又称为分散型着丝粒。 四、次缢痕、核仁组织区和随体 ●次缢痕和核仁组织区 在一个染色体组中,除了主缢痕外,任何其他的缢痕都属于次缢痕。次缢痕与末期核仁的形成有关,并在间期和前期与核仁联系在一起,又被称为核仁组织区。 核仁的超显微结构: 1)纤维中心2)致密纤维组分3)颗粒组分 ●随体是指位于染色体末端的球形或圆柱形染色体片段,通过次缢痕区与染色体主体部分相连。 根据随体在染色体上的位置,分为两大类: ?端随体位于染色体末端,被一个次缢痕隔开。 ?中间随体位于两个次缢痕之间。 根据随体形状和大小分为四类:小随体、大随体、线状随体和串联随体。 五、染色粒 染色粒:是指局部染色质在减数分裂粗线期的染色体上形成的、染色较深的呈线性排列的念球状突起,是在核小体组装成染色体过程中,连续的DNA丝局部螺旋化产生的结构,是DNA和蛋白质的复合体,是染色体上重复DNA顺序密集的区域。 六、染色纽 染色纽:或染色质结或疖,是粗线期染色体上一种染色特别深的大染色粒。位置和数量对特定物种是恒定的。位置多在染色体的末端或亚末端。主要是由结构异染色质组成,遗传活性很低。

浙大远程-遗传学基础-石春海-遗传学基础作业

第一章绪言 一、名词解释: 遗传学、遗传、变异。 二、问答题: 1. 简述遗传学研究的对象和研究的任务。 2. 为什么说遗传、变异和选择是生物进化和新品种选育的三大因素 3. 为什么研究生物的遗传和变异必须联系环境 4. 遗传学建立和开始发展始于哪一年,是如何建立 5. 为什么遗传学能如此迅速地发展 6. 简述遗传学对于生物科学、生产实践的指导作用。

第二章遗传的细胞学基础 一、名词解释: 染色体、染色单体、着丝点、细胞周期、同源染色体、异源染色体、联会、无丝分裂、有丝分裂、单倍体、二倍体。 二、问答题: 1.细胞的膜体系包括哪些膜结构细胞质里包括哪些主要的细胞器 2. 一般染色体的外部形态包括哪些部分染色体形态有哪些类型 3. 植物的10个花粉母细胞可以形成:多少花粉粒多少精核多少管核(营养核)又10 个卵母细胞可以形成:多少胚囊多少卵细胞多少极核多少助细胞多少反足细胞 4. 植物的双受精是怎样的用图表示。 5. 玉米体细胞里有10对染色体,写出下面各组织的细胞中染色体数目。 6. 假定一个杂种细胞里有3对染色体,其中A、B、C来表示父本、A’、B’、C’来自母 本。通过减数分裂能形成几种配子写出各种配子的染色体组织。 7. 有丝分裂和减数分裂有什么不同用图表示并加以说明。 8. 有丝分裂和减数分裂意义在遗传学上各有什么意义 9. 高等植物与高等动物的生活周期有什么主要差异用图说明。

第三章孟德尔遗传 一、名词解释: 性状、相对性状、单位性状、质量性状、杂交、异交、近交、自交、测交、显性、不完全显性、共显性、相引组、相斥组、显性性状、隐性性状、基因型、表现型、基因型、纯合基因型、杂合基因型、等位基因、复等位基因、主基因、微效基因、修饰基因、一因多效、多因一效、互补作用、积加作用、重叠作用、显性上位作用、隐性上位作用、抑制作用、基因内互作、基因间互作。 二、问答题: 1.小麦毛颖基因P为显性,光颖基因p为隐性。写出下列杂交组合的亲本基因型: ⑴. 毛颖×毛颖,后代全部毛颖。 ⑵. 毛颖×毛颖,后代3/4为毛颖:1/4光颖。 ⑶. 毛颖×光颖,后代1/2毛颖:1/2光颖。 2.小麦无芒基因A为显性,有芒基因a为隐性。写出下列个各杂交组合中F 1 的基因型和 表现型。每一组合的F 1 群体中,出现无芒或有芒个体的机会是多少 ⑴. AA×aa,⑵. AA×Aa,⑶. Aa×Aa,⑷. Aa×aa,⑸. aa×aa。 3.小麦有稃基因H为显性,裸粒基因h为隐性。现以纯合的有稃品种(HH)与纯合的裸 粒品种(hh)杂交,写出其F 1和F 2 的基因型和表现型。在完全显性的条件下,其F 2 基因型和表现型的比例怎么样 4.大豆的紫花基因P对白花基因p为显性,紫花×白花的F 1全为紫花,F 2 共有1653株, 其中紫花1240株,白花413株,试用基因型说明这一试验结果。 5.纯种甜玉米和纯种非甜玉米间行种植,收获时发现甜粒玉米果穗上结有非甜玉米的籽粒,而非甜玉米果穗上找不到甜粒的籽粒,如何解释这一现象怎么样验证解释 6.番茄的红果Y对黄果y为显性,二室M对多室m为显性。两对基因是独立遗传的。当一株红果二室的番茄与一株红果多室的番茄杂交后, F 1 群体内有3/8的植株为红果二室的,3/8是红果多室的,1/8是黄果二室的,1/8是黄果多室的。试问这两个亲本植株是怎样的基因型

遗传学知识点

《现代遗传学》内容整理 第二章遗传学三大基本定律 一、内容提要: 分离定律、自由组合定律、连锁与互换定律是遗传学的三大基本定律。 二、知识点: 1,人ABO血型-复等位基因 2,完全连锁:同一条染色体上的基因,以这条染色体为单位传递,只产生亲型配子,子代只产生亲型个体。 不完全连锁:连锁基因间发生重组,产生亲型配子和重组型配子,自交和测交后代均出现重组型个体。 3,交换(crossing over)与交叉(chiasma):遗传学上把在细胞减数分裂前期Ⅰ,联会的同源染色体发生非妹妹染色单体片段的互换称为交换。交换导致在双线期—终变期表现染色体的交叉现象。交叉是发生交换的细胞学证据。 4,端粒的作用:保护染色体不被核酸酶降解;防染色体融合;为端粒酶提供底物,保证染色体的完全复制。 5,常染色质(euchromatin)区:碱性染料着色浅而均匀、螺旋化程度低;主要是单一序列DNA和中度重复序列DNA;是基因活性区,具有转录和翻译功能。 异染色质(heterochromatin):指在细胞间期呈凝缩状态,而且染色较深,很少进行转录的染色质。其特点:1.在细胞间期处于凝缩状态 2.是遗传惰性区,只含有不表达的基因 3.复制时间晚于其他染色质区域异染色质又可分为结构异染色质和兼性异染色质。 6,异固缩现象:在同一条染色体上既有常染色质又有异染色质,或者说既有染色浅的区域(解螺旋而呈松散状态)又有染色深的区域(高度螺旋化而呈紧密卷缩状态),这种差异表现称为异固缩现象。 第三章性别决定与性别遗传 一、内容提要: 性别决定系统可分为基因型性别决定系统和环境性别决定系统。性染色体主要有四种类型XY型、XO型、ZW型、ZO型。性相关遗传包括伴性遗传、从性遗传、限性遗传。 二、知识点: 1,植物性别决定类型:性染色体决定性别;两对基因决定性别;多对基因决定性别。 2,伴性遗传:位于性染色体上的基因所控制的某些性状总是伴随性别而遗传的现象称为性连锁。其中,基因位于X或Z染色体的,称为伴性遗传。

血液病材料-细胞遗传学

恶性血液病的细胞遗传学 中国医学科学院中国协和医学大学血液学研究所血液病医院 刘世和 一、背景 染色体发展历史 染色体检查在恶性血液病中的应用价值 国内外发展动态 染色体分析发展历史 1960-1971:非显带时期 1971-1980:显带、高分辨 1980-至今:与分子生物学相结合时期,分子细胞遗传学(FISH) 意义 诊断与分型 疗效判断 验证移植成功与否或确定白血病的复发及其来源。 预后分析与指导治疗 查找新的致病基因,探讨发病机制 国内外发展动态 国外:广泛开展,白血病与淋巴瘤必查项目 国内:相对薄弱 原因 技术 劳动强度大 价格 患者经济 开展染色体检查要素 技术 合理的价格 规模化:降低成本,提高效率,缩短报告时间 二、人类细胞遗传学命名 根据1995版人类细胞遗传学国际命名体制,正常核型男:46,XY; 女:46,XX。异常核型包括体质性和获得性:体质性异常;获得性异常 表1 核型命名常用的缩写符号

染色体倒位(inv) 指同一染色体上的两个断点之间的片段发生180o旋转,如发生于单一臂内称为臂内倒位,发生于两臂称臂间倒位。 染色体重复(dup) 在一个染色体的某一位点上重复一段染色体片段。 插入(ins) * 包括2个染色体之间的插入和一个染色体内的插入。2个染色体之间的插入为插入易位,接受插入片段的染色体总是列于前面,而提供易位片段的染色体列于次。 * 一个染色体内的染色体插入可分为正向插入与反向插入。 等臂染色体(iso) 指一条染色体含有完全相同的臂。 易位(t): 至少2个染色体之间发生的遗传物质的互换。 平衡易位和不平衡易位 两条染色体之间的易位描述方式为按染色体由小到大的排列顺序 易位:3个染色体以上 罗伯逊易位(rob) 发生于D组或/和G组端着丝粒染色体易位,为两个长臂对接。 Rob(14;21) 缺失(del) 在某一个染色体上丢失部分遗传物质;分为中间缺失和末端缺失,如5q- 增加(add) 表示在某一染色体上获得来源不明的遗传物质,通常代表在染色体的末端增加。 15q+ 区带的命名 区的定义是一个染色体上位于两个相邻的界标之间的区段。 带则是根据染色体上染色强度的强或弱与相邻形成反差而划分,每一条带可再分为亚带。 书写方式 书写方式:①染色体号数,②臂的符号,③区号,④带,⑤小数点,⑥亚带 如1p33.11 读作:1号染色体短臂3区3带1亚带1 克隆的定义 来自一个细胞的细胞群体称之为一个克隆, 通常指具有相同或近似的异常染色体组成的一群细胞。标准为:至少2个细胞具有相同的染色体增加或结构异常,或至少3个细胞有一致的染色体丢失。克隆性异常

高中生物遗传规律知识点

高中生物遗传规律知识点 知识 1.基因的分离定律 相对性状:同种生物同一性状的不同表现类型,叫做相对性状。 显性性状:在遗传学上,把杂种F1中显现出来的那个亲本性状叫做显性性状。 隐性性状:在遗传学上,把杂种F1中未显现出来的那个亲本性状叫做隐性性状。 性状分离:在杂种后代中同时显现显性性状和隐性性状(如高茎和矮茎)的现象,叫做性状分离。 显性基因:控制显性性状的基因,叫做显性基因。一般用大写字母表示,豌豆高茎基因用D表示。 隐性基因:控制隐性性状的基因,叫做隐性基因。一般用小写字母表示,豌豆矮茎基因用d表示。 等位基因:在一对同源染色体的同一位置上的,控制着相对性状的基因,叫做等位基因。(一对同源染色体同一位置上,控制着相对性状的基因,如高茎和矮茎。显性作用:等位基因D和d,由于D和d有显性作用,所以F1(Dd)的豌豆是高茎。 等位基因分离:D与d一对等位基因随着同源染色体的分离而分离,最终产生两种雄配子。D∶d=1∶1;两种雌配子D∶d=1∶1。) 非等位基因:存在于非同源染色体上或同源染色体不同位置上的控制不同性状的不同基因。 表现型:是指生物个体所表现出来的性状。 基因型:是指与表现型有关系的基因组成。 纯合体:由含有相同基因的配子结合成的合子发育而成的个体。可稳定遗传。 杂合体:由含有不同基因的配子结合成的合子发育而成的个体。不能稳定遗传,

后代会发生性状分离。 2.基因的自由组合定律 基因的自由组合规律:在F1产生配子时,在等位基因分离的同时,非同源染色体上的非等位基因表现为自由组合,这一规律就叫基因的自由组合规律。 对自由组合现象解释的验证:F1(YyRr)X隐性(yyrr)→(1YR、1Yr、1yR、1yr)Xyr→F2:1YyRr:1Yyrr:1yyRr:1yyrr。 基因自由组合定律在实践中的应用:基因重组使后代出现了新的基因型而产生变异,是生物变异的一个重要来源;通过基因间的重新组合,产生人们需要的具有两个或多个亲本优良性状的新品种。 孟德尔获得成功的原因: ①正确地选择了实验材料。 ②在分析生物性状时,采用了先从一对相对性状入手再循序渐进的方法(由单一因素到多因素的研究方法)。 ③在实验中注意对不同世代的不同性状进行记载和分析,并运用了统计学的方法处理实验结果。 ④科学设计了试验程序。 基因的分离规律和基因的自由组合规律的比较: ①相对性状数:基因的分离规律是1对,基因的自由组合规律是2对或多对; ②等位基因数:基因的分离规律是1对,基因的自由组合规律是2对或多对; ③等位基因与染色体的关系:基因的分离规律位于一对同源染色体上,基因的自由组合规律位于不同对的同源染色体上; ④细胞学基础:基因的分离规律是在减I分裂后期同源染色体分离,基因的自由组合规律是在减I分裂后期同源染色体分离的同时,非同源染色体自由组合; ⑤实质:基因的分离规律是等位基因随同源染色体的分开而分离,基因的自由

遗传学中常用的基本概念和符号

遗传学中常用的基本概念和符号 一、遗传学中常用的基本概念和符号: 1、基本概念 性状类型: (1)性状——是生物体形态、结构、生理和生化等各方面的特征。 (2)相对性状——同种生物的同一性状的不同表现类型。 (3 )显性性状、隐性性状——在具有相对性状的亲本的杂交实验中,杂种一代(F1)表现出来的性状是显性性状,未表现出来的是隐性性状。 (4)性状分离——是指在杂种后代中,同时出现显性性状和隐性性状的现象。 (5)显性相对性——亲本杂交,杂种子一代不分显隐性,表现出两者的中间性状(不完全显性)或者是同时表现出两个亲本的性状(共显性)。 交配类型: (6)杂交——具有不同相对性状的亲本之间的交配或传粉。常用于探索遗传的规律、显隐性性状判断,育种中将不同优良性状集中到一起,获得新品种。 (7)自交——具有相同基因型的个体之间的交配或传粉(自花传粉是其中的一种)。常用于①不断提高种群中纯合子的比例,②植物纯合子、杂合子的鉴定。 (8)测交——用隐性性状(纯合体)的个体与未知基因型的个体进行交配或传粉。测定未知个体能产生的配子类型和比例(基因型)的一种杂交方式,如①验证遗传规律理论解释的正确性,②纯合子、杂合子的鉴定。 (9)正交与反交——是相对而言的,正交中的父方和母方分别是反交中的母方和父方,如高茎豌豆作母本(正交)、高茎豌豆作父本(反交)。常用于检验是细胞核遗传还是细胞质遗传。若是细胞核遗传,正反交的结果一样。 基因类型: (10)基因一一具有遗传效应的DNA片断,在染色体上呈线性排列。 (11)等位基因——位于一对同源染色体的相同位置,控制相对性状的基因,如Aa。 非等位基因——包括非同源染色体上的基因及同源染色体的不同位置的基因,如 Ab。 个体类型: (12)表现型——生物个体表现出来的性状。 (13)基因型——与表现型有关的基因组成。 (14)纯合子——由相同基因型的配子结合成的合子发育成的个体。特点: ①不含等位基因 ②自交后代不发生性状分离。如:AA aa (15)杂合子——由不同基因型的配子结合成的合子发育成的个体。①至少含一对等位基因 ②自交后代不发生性状分离。如:Aa、AaBB 2、常见符号

高中生物44高考总复习 遗传学基本概念-知识讲解_遗传学基本概念

遗传学基本概念 编稿:杨红梅审稿:闫敏敏【考纲要求】 1理解遗传学的基本概念及其关系 2.重点掌握性状显隐性的类别及基因型的确定 【考点梳理】 考点一、知识络 考点二、几种交配类型 【高清课堂:01-遗传学基本概念】 考点三、与性状有关的概念 (一)性状:生物体的形态特征和生理特性的总称。 (二)相对性状:一种生物的同一种性状的不同表现类型。

(三)显、隐性性状:具有相对性状的两纯种亲本杂交,F1表现出来的性状叫显性性状,F1未表现出来的性状叫隐性性状。 (四)性状分离:杂种后代中同时出现显性和隐性性状的现象。 (五)性状分离比 1、杂交实验中,F2中出现显︰隐=3︰1; 2、测交实验中,测交后代中出现显︰隐=1︰1。 考点四、与基因有关的概念 (一)显性基因:又叫显性遗传因子,控制显性性状,用大写字母表示。 (二)隐性基因:又叫隐性遗传因子,控制隐性性状,用小写字母表示。 (三)等位基因:位于一对同源染色体的相同位置上,控制相对性状的一对基因。 (四)非等位基因:位于同源染色体的不同位置或非同源染色体上,控制不同性状的基因 考点五、基因型和表现型 (一)概念 基因型:与表现型有关的基因组成;表现型:生物个体表现出来的性状。 (二)关系:在相同的环境条件下,基因型相同,表现型一定相同;在不同环境中,即使基因型相同,表现型也未必相同。表现型是基因型与环境因素共同作用的结果。 考点六、纯合子与杂合子的区别 (一)遗传因子组成相同的个体叫纯合子,纯合子自交后代都是纯合子,但不同的纯合子杂交,后代为杂合子。 (二)遗传因子组成不同的个体叫杂合子,杂合子自交后代会出现性状分离,且后代中会出现一定比例的纯合子 (三)如何判断具有显性性状的个体是纯合体还是杂合体? 已知豌豆的高茎对矮茎为显性,现有一株高茎豌豆,请设计实验,判断该高茎豌豆是纯合体还是杂合体。

相关文档
相关文档 最新文档