文档库 最新最全的文档下载
当前位置:文档库 › 深埋盾构机施工盾尾漏水治理方法的探讨

深埋盾构机施工盾尾漏水治理方法的探讨

深埋盾构机施工盾尾漏水治理方法的探讨
深埋盾构机施工盾尾漏水治理方法的探讨

深埋盾构机施工盾尾漏水治理方法的探讨

【摘要】结合天津地铁金狮桥站~天津站区间隧道盾构施工工程,分析了盾构施工过程中盾尾失效引起漏水漏砂的原因,并提出了有针对性的应对措施,确保了盾构施工的安全进行,有一定的盾构施工借鉴价值。

【关键词】承压水层;盾尾失效;原因分析;应对措施

0.引言

盾构在深层地下掘进施工中,盾尾密封很关键,从本施工案例来讲,盾尾密封失效风险,发生的概率较低,但一旦发生,处理不及时可能造成较为严重的后果,出现漏水漏沙现象,严重的话,引起地面塌陷,危及周边环境,造成巨大损失。本文将结合天津地铁天津站~金狮桥站的隧道施工情况,简要介绍有效应对盾尾密封失效治理方案,以期对今后隧道工程施工提供参考借鉴。

1.工程概况

天津站~金狮桥站区间为单线单洞圆形区间隧道,线路全长1211.496m,最大纵坡为30‰,隧道最大埋深为22.5m。盾构机从金狮桥站始发,下穿狮子林大街、北岸华庭小区、胜利路、德丰花园小区、万春花园小区、河东区危改广场、华龙道、老龙头菜市场等,最终到达天津站接收。盾构机选用的是日本川崎土压平衡盾构机,盾构管片结构形式为准5.5m,厚度0.35m,环宽1.2m。每环管片共分6 片:3 个标准块、2 个邻接块、1 个封顶块。

2.地质、水文情况

盾构机穿越地层为全断面⑦4 粉砂层,为微承压水层,水土压力为0.2Mpa。

3.现场漏水情况

右线盾构在推进772 环(共计1009 环)时,在盾尾左侧7 点钟位置(按时钟点位置)出现漏水情况,现场采取注浆等措施封住后暂时停机。两天后恢复掘进,开始推进773 环,盾尾左侧7 点钟位置再次出现漏水、漏砂现象,采取同步注浆及二次双液注浆控制住漏水、漏砂。研究处理方案,五天后在采取加注盾尾油脂措施后,试推进约5cm,盾尾左侧7 点位置再次出现漏水、漏砂。三次盾尾漏水事故中水压都较大,约为0.2Mpa,且水中含砂量较多,共计漏水50 方,漏砂30 方。该位置盾构埋深为25.6m,地面上有2 层钢棚架结构的菜市场,菜市场结构基础为独立基础,整体受力较差。盾构机下穿该建筑物,推进影响范围为758 环(刀盘切口进入菜市场)至824 环(盾尾脱出菜市场),总计66环,穿越长度79.2 米。盾尾出现漏水事故后菜市场的沉降较明显,其中最大的一点累计沉降已达21.27mm,接近报警值24mm,墙体出现明显裂缝。

4.盾尾漏水原因分析

引起盾尾泄漏的原因有很多,根据现场情况分析,有以下几种原因:

4.1 盾构机姿态欠佳

盾构机在掘进时总会偏离设计轴线,必须不断的采取纠偏措施,让盾构掘进轴线回到正确的设计轴线上来,切记出现偏差就猛纠猛调,一般前进1m 纠偏量为5mm, 猛纠猛调容易造成隧道出现蛇形摆动, 还有可能造成盾尾间隙不均,间隙大的一边容易漏浆。实际盾构推进过程中由于盾构纠偏过猛,再加上管片拼装不好的原因,造成了盾尾与管片之间的间隙不均匀,经实测,773 环管片与盾尾上部间隙为16mm,下部为91mm,左边为22mm,右边为20mm,管片呈椭圆形。

4.2 盾尾油脂量和压力不足

在盾构推进过程中, 盾尾刷与管片的摩擦消耗的油脂与掘进速度成正比关系, 如推进速度过快而注入盾尾的油脂量和注入压力不足,难以满足其消耗量要求,则会减弱密封效果,形成盾尾漏浆。该盾构机前期推进过程中有一根盾尾油脂泵管路堵塞,造成密封刷内油脂压力过低和密封油脂压入量不足。

4.3 盾尾密封局部损坏

盾构机盾尾密封是盾构机用于防止地下泥水、土砂和注浆浆液从盾尾侵入盾构机的重要部分,由盾尾钢丝刷和盾尾油脂组成,盾尾钢丝刷在盾尾壳内共布置三道(见图1),随着盾构推进,盾尾油脂持续地打进三道盾尾钢丝刷和管片外周边所形成的两个腔内,始终保持管片外周边与盾壳之间的间隙密封良好。金狮桥—天津站区间盾构施工中,一方面由于盾尾密封性能不好,使部分浆液(水泥砂浆)流入密封刷内部及空腔内,浆液凝固变形,在盾构推进时与管片外周不断的发生摩擦,使得密封钢丝刷折断损坏;另一方面油脂注入量不足,使盾尾密封与管片之间形成空隙,密封失效,形成漏水通道。

5.具体解决方案

由于本段隧道埋深大、位于微承压水层中,且盾构下穿建筑物,若采取更换盾尾刷方式风险很大,无法确保成功,经充分分析论证,决定采取封堵后继续掘进的方式,采取措施如下:

5.1 封堵地下水

5.1.1 对已拼装完管片处的堵水措施

①在脱出盾尾后4 环位置进行二次注浆(5 环内注双液浆,容易损坏盾尾刷),浆液为双液浆,形成后部封闭止水墙。双液浆浆液配比为:水泥浆(水灰比为1:1)、水玻璃(35 波美度),水泥浆:水玻璃=3:1~2:1;注浆压力不大于0.5Mpa。防止压力过大双液浆进入盾尾刷对其造成进一步破坏。

②在脱出盾尾后第3 环注入上海隧道公司生产的油容性聚氨酯(发泡效率大,密封效果好)封堵,采取整环不少于2 点位注入,注入量为300kg。

5.1.2 增加“密封腔”措施(对应下图2)

盾构姿态控制欠佳,盾壳与管片间间隙不均,下半部位间隙过大,采取措施是:管片拼装前在3-9 点钟(时钟平面)之间的管片下部垫两道海绵条,规格为40*40*200cm 或25*25*200cm,依据盾尾间隙大小选用。管片拼装完毕后,在管片下部的5 点和7 点两个吊装孔内注入盾尾油脂填满腔体,浸满油脂的海绵条起到很好的堵水作用。油脂注入量不少于160L,油脂泵出口压力为1-1.5mpa。这样就又形成了一个密封腔,起到了加强盾尾密封的效果。

5.1.3 封闭管片与盾构机壳体内壁之间的空隙

在盾尾内部已拼装完成的管片间隙部位敷设高压胶管,同时用钢板将管片与盾构壳体内壁缝隙封闭支档。为了方便施工,将钢板用螺栓紧固在推进千斤顶上,川崎盾构机共20 根千斤顶,每根千斤顶上都紧固一块,钢板块与块之间连接紧密,20 块正好连成一个密闭的圆,起堵水作用。

5.1.4 原有盾尾密封系统

在已拼装管片下部两吊装孔注入盾尾油脂填满空隙,选用优质进口高密度微膨盾尾密封油脂,注入量不少于160L,出口控制压力 2.5-4.5Mpa;盾尾密封刷内油脂注入压力控制在5-6Mpa,每环注入量不少于50L。

5.2 盾尾钢丝刷修复(对应上图1)

盾构施工过程中,盾尾钢丝刷部分折断磨损,密封不严,形成漏水通道,为解决这一问题,我们在管片与盾壳间隙较大部位填塞浸满油脂的钢丝球,在管片脱出盾尾时,钢丝球挂在盾尾钢丝刷上,有效地弥补了钢丝刷的空隙,具体做法是在盾尾4-7 点位置填塞100-200 个钢丝球,修复效果非常理想。

5.3 盾尾油脂质量控制

盾尾油脂须达到一定的黏度,同时又需要有良好的泵送性能。如果泵送性差,油脂就不能被充分泵送到盾尾刷内,使盾尾尾刷产生空隙。如果黏度太小,那么被泵送的盾尾油脂就自然流到底部,在盾尾尾刷顶部产生空隙。经过分析比较决定选用上海茨夫生产的鲁伯茨-1000 型。

5.4 轴线控制及管片拼装

严格控制盾构姿态,推进速度控制在10-20mm/min 左右,土压控制在260kpa。尽量避免纠偏过急现象;本环推进完成后,拼装一环转弯环调整管片姿态,以减少下部间隙;严格控制管片拼装质量,及时螺栓复紧,减少管片失圆量;

5.5 管片背后注浆控制

推进时同步注浆采用单浆液,注浆量控制在5.5 方,压力控制在0.5Mpa 之内;同时要求浆液稠度为9-11,初凝时间不大于6 小时,经过现场实验比选最终确定配比参数如下:

5.6 加强监测

加强地面及建筑物沉降监测(每天不少于4 次),对盾构及隧道管片变化观测每天2 次,及时有效地掌控施工信息。

6.推进效果评估

采取上述措施后,右线盾构从773 环起推至1009 环,共推进236环,未再发生漏水漏沙事件,已顺利接收。上述措施一方面避免了深埋盾构在微承压水层软弱地质地段,更换盾尾刷失败的较大风险,另一方面节约了时间,提高了工作效率。

7.结语

金狮桥站--天津站右线隧道盾构穿越建筑物时,掘进过程中发生盾尾密封局部失效,引起盾尾严重的漏水漏沙事件,危及周边环境安全。针对这一盾尾密封失效险情,所采取的止水密封措施,在目前国内穿越深埋微承压水层、软弱地质隧道中属于首次应用,经工程实践证明是安全、有效、科学的,为盾构施工积累了经验,值得参考借鉴。

【参考文献】

[1]广州地铁3 号线盾构隧道工程施工技术研究.2004(1).

盾构机的工作原理 1

盾构机的工作原理 1.盾构机的掘进 液压马达驱动刀盘旋转,同时开启盾构机推进油缸,将盾构机向前推进,随着推进油缸的向前推进,刀盘持续旋转,被切削下来的碴土充满泥土仓,此时开动螺旋输送机将切削下来的渣土排送到皮带输送机上,后由皮带输送机运输至渣土车的土箱中,再通过竖井运至地面。 2.掘进中控制排土量与排土速度 当泥土仓和螺旋输送机中的碴土积累到一定数量时,开挖面被切下的渣土经刀槽进入泥土仓的阻力增大,当泥土仓的土压与开挖面的土压力和地下水的水压力相平衡时,开挖面就能保持稳定,开挖面对应的地面部分也不致坍坍或隆起,这时只要保持从螺旋输送机和泥土仓中输送出去的渣土量与切削下来的流人泥土仓中的渣土量相平衡时,开挖工作就能顺利进行。 3.管片拼装 盾构机掘进一环的距离后,拼装机操作手操作拼装机拼装单层衬砌管片,使隧道—次成型。 盾构机的组成及各组成部分在施工中的作用: 盾构机的最大直径为6.28m,总长65m,其中盾体长8.5m,后配套设备长56.5m,总重量约406t,总配置功率1577kW,最大掘进扭矩5300kN?m,最大推进力为36400kN,最陕掘进速度可达8cm/min。盾构机主要由9大部分组成,他们分别是盾体、刀盘驱动、双室气闸、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 1.盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状简体,其外径是6.25m。前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推力油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有30个推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后面已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力,这30个千斤顶按上下左右被分成A、B、

地铁盾构施工工法专业技术

地铁盾构施工工法专业技术2009-10-22 12:58:06 阅读126 评论2 字号:大中小 工法之一:土压平衡盾构施工工法 1、特点 1.1 盾构施工为多工序程序化作业,其自动化程度高,施工速度快、质量好、安全性高。 1.2 盾构掘进不需降水辅助施工,且管片属工厂预制,有利于环境保护和减少施工对城市正常生活秩序的干扰。 1.3 通过建立并保持密封仓内土压与开挖面水土压力的动态平衡,减少了施工对土层的扰动,工作面稳定,能有效地控制地表隆陷。 1.4 与泥水盾构工法相比,其所需场地面积小,施工成本低。 2、工艺原理

土压平衡式盾构机的工作原理是随着盾构机的推进,刀盘切削下来的土体进入密封仓,利用该部分土体使仓内维持适当压力,使之与开挖面水土压力相平衡。同时,通过螺旋输送机及其排土阀门等排土机构的控制,实现排土量与盾构推进量的匹配,形成盾构推进的同时保持开挖面稳定的动态平衡。 3、应用实例 北京地铁四号线角门北路站~北京南站区间工程,作为北京地铁四号线工程一部分。整个工程自南四环马家楼,向北沿终至龙背村,线路全长28.14km,共设24座车站。其中角门北路站~北京南站区间盾构法施工隧道长:2392.922m(见图3所示),其中左线长:1161.488m,右线长:1231.434m。 区间管片外径6000mm,内径5400mm,宽1200mm,每环6块。隧道埋深约10~17m,线路最小水平曲线半径350m,最大水平曲线半径600m,线间距12~21.49m;最小竖曲线半径3000 m,最大竖曲线半径5000m;区间线路纵坡成“V”字形,角门北路站位于纵坡最大坡度2‰上坡段,出站后区间线路以15‰的坡率下坡,至最低点后左右线分别以6.863‰和6.906‰的坡率上坡,北京南站位于纵坡2‰上坡段。 工法之二:小半径曲线段盾构始发施工工法

浅析盾尾漏浆处理方法

浅析盾尾漏浆处理方法 摘要:本文主要介绍施工过程中盾构机盾尾密封漏浆的常见原因和处理方法, 盾尾漏浆涉及到注浆压力、注浆量、盾构机的掘进状态、地质状况、盾尾油脂及 注入量、管片拼装等多种因素。并提出了相应建议,对同类施工具有很好的借鉴 作用。 关键词:盾尾间隙;漏浆;注浆;浆液 1 施工概况 本工程为盾构施工,区间最大纵坡约-2.7%,,最小转弯半径300m,管片采 用环宽1.2m的标准环、左转弯楔形环、右转弯楔形环等3种,转弯环的双边楔 形量为24mm。 盾构机在掘进过程中,为避免地表沉降,影响施工进度和施工质量,盾构开 挖范围内与管片之间产生的空隙必须通过注浆来填充,同时注浆还可以有效的防 治管片漏水。泥浆通过尾盾的管路注入到产生的空隙当中,整个填充的过程通过 注浆的压力和体积来控制。如图1-1所示。 图1-1 注浆示意图 整个系统通过向3排盾尾刷之间注入盾尾密封油脂来实现隔离,达到封闭的 效果。如果密封失效,盾体外面的浆液和地层中的流通水就会从这3排盾尾刷进 入到盾构机内,影响施工,同时由于浆液不能够及时的填充,就会出现施工质量 的问题。 2 盾尾发生渗漏的不良影响及安全防患措施 2.1盾尾发生渗漏的不良影响 若盾尾发生渗漏,就会注浆质量,并污染盾构管片安装的工作面,给管片安 装造成不便,严重影响盾构的正常掘进,更有甚者盾尾发生渗漏不能及时封堵和 排水,将会面临盾构机和隧道被水淹的巨大风险;长时间的盾尾渗漏将对盾构机 自身的设备有很大的损害,尤其是千斤顶油缸和管片拼装机。当盾尾发生大量渗 漏时,会造成外侧土体流失,使隧道外侧应力释放;同时,土体松弛造成地面沉 降剧增,而隧道的上浮量将剧减,有可能产生负值,会造成隧道管片变形、损坏 及出现裂缝。 本工程盾构隧道掘进中就曾多次发生渗漏、窜浆现象,严重影响到施工进度,经仔细认真的分析和查找原因,制定切实可行的办法,有效解决和预防盾尾渗漏 问题,保证了工程的顺利进行。 2.2盾尾发生渗漏的安全防患措施 针对于盾尾发生渗漏产生的不良影响和巨大风险,盾构掘进中发生渗漏应急 方案必须完善,应急物资充足,抢险人员随时到位,对盾尾渗漏的风险进行有效 控制。隧道内必须贮备充足的堵漏材料,例如聚氨脂、水玻璃、水泥、棉被以及 海绵等;隧道内设置独立的排污系统,而且排污系统能力必须强大可靠,以备不 时之需。 3 盾尾渗漏原因分析及预防措施 3.1管片拼装不当导致盾尾渗漏 3.1.1管片变形 管片按照标准拼装后要求在盾尾内部要形成一个标准的圆,盾尾与管片构造 示意图见图二。管片之间采用错缝拼装,但由于拼装操作不熟练而往往拼装成椭

地铁盾构渣土改良研究报告

盾构渣土改良研究报告北京地铁8号线天桥站~永定门外站

目录 1 渣土改良研究现状 (1) 1.1 渣土改良的原因 (1) 1.2 渣土改良的作用及目的 (4) 1.2.1 渣土改良的作用 (4) 1.2.2 渣土改良要达到的状态 (4) 1.3 常用的土体改良剂 (5) 1.3.1 界面活性材料类 (6) 1.3.2 矿物类 (9) 1.3.3 高分子类聚合物 (11) 1.3.4 分散剂 (13) 1.3.5 水 (13) 1.3.6 不同渣土改良剂比较 (13) 1.4 渣土改良剂添加部位 (14) 2渣土改良应用实例 (15) 2.1 无水砂卵石地层 (15) 2.1.1 北京地铁4号线20标 (15) 2.1.2 北京地铁10号线2期 (15) 2.1.3 北京地铁10号线(莲花桥—六里桥) (15) 2.1.4 北京地铁4号线(动物园站—双榆树站) (16) 2.1.5 北京地铁5号线试验段 (17) 2.1.6 北京地铁4号线角门北路站—北京南站 (17) 2.1.7 北京地铁9号线丰台东大街站—丰台北路站 (18) 2.1.8 北京地铁7号线达官营站—广安门内站区间 (18) 2.1.9 无水砂卵石地层渣土改良应用小结 (18) 2.2 富水砂卵石地层 (19) 2.2.1 北京地铁九号线六标 (19) 2.2.2 成都地铁一号线 (19) 2.2.3 长沙地铁2号线(体育公园—长沙大道) (20) 2.2.4 富水砂卵石地层渣土改良应用小结 (21) 2.3 粉质黏土、粉土层 (21) 2.4 全断面砂层 (21) 2.4.1 西安地铁一号线二标 (21) 2.4.2 哈尔滨地铁一号线(程哈东站—南直路站) (22) 2.4.3 广州地铁3号线(珠江新城站—客村站) (22) 3 不同地层渣土改良剂选用 (24) 3.1 软土地层 (24) 3.2 砂卵石地层 (24) 3.3 砂性土地层 (25) 3.4 硬岩地层 (26) 3.5 富水地层 (26) 3.6 总结 (26) 4 北京地铁八号线三期05标渣土改良 (28)

盾构工法

第五章盾构法施工 第一节概述 盾构法是暗挖隧道的专用机械在地面以下建造隧道的一种施工方法。盾构是与隧道形状一致的盾构外壳内,装备着推进机构、挡土机构、出土运输机构、安装衬砌机构等部件的隧道开挖专用机械。采用此法建造隧道,其埋设深度可以很深而不受地面建筑物和交通的限制。近年来由于盾构法在施工技术上的不断改进,机械化程度越来越强,对地层的适应性也越来越好。城市市区建筑公用设施密集,交通繁忙,明挖隧道施工对城市生活干扰严重,特别在市中心,若隧道埋深较大,地质又复杂时,用明挖法建造隧道则很难实现。而盾构法施工城市地下铁道、上下水道、电力通讯、市政公用设施等各种隧道具有明显优点。此外,在建造水下公路和铁路隧道或水工隧道中,盾构法也往往以其经济合理而得到采用。 盾构法是一项综合性的施工技术。盾构法施工的概貌如图5-1所示。构成盾构法的主要内容是:先在隧道某段的一端建造竖井或基坑,以供盾构安装就位。盾构从竖井或基坑的墙壁预留孔处出发,在地层中沿着设计轴线,向另一竖井或基坑的设计预留孔洞推进。盾构推进中所受到的地层阻力,通过盾构千斤顶传至盾构尾部已拼装的预制衬砌,再传到竖井或基坑的后靠壁上。盾构是一个能支承地层压力,又能在地层中推进的圆形、矩形、马蹄形及其他特殊形状的钢筒结构,其直径稍大于隧道衬砌的直径,在钢筒的前面设置各种类型的支撑和开挖土体的装置,在钢筒中段周圈内安装顶进所需的千斤顶,钢筒尾部是具有一定空间的壳体,在盾尾内可以安置数环拼成的隧道衬砌环。盾构每推进一环距离,就在盾尾支护下拼装一环衬砌,并及时向盾尾后面的衬砌环外周的空隙中压注浆体,以防止隧道及地面下沉,在盾构推进过程中不断从开挖面排出适量的土方。 盾构是进行土方开挖正面支护和隧道衬砌结构安装的施工机具,它还需要其它施工技术密切配合才能顺利施工。主要有:地下水的降低;稳定地层、防止隧道及地面沉陷的土壤加固措施;隧道衬砌结构的制造;地层的开挖;隧道内的运输;衬砌与地层间的充填;衬砌的防水与堵漏;开挖土方的运输及处理方法;配合施工的测量、监测技术;合理的施工布置等。此外,采用气压法施工时,还涉及到医学上的一些问题和防护措施等。

盾构机与(TBM)的区别

什么是盾构机?与全断面掘进机(TBM)的区别 行业:制造机械信息来源:网络发布时间:2011-02-14 打印转发关闭 盾构机是盾构法施工中的主要施工机械。盾构施工法是在地面下暗挖隧洞的一种施工方法,它使用盾构机在地下掘进,在防止软基开挖面崩塌或保持开挖面稳定的同时,在机内安全地进行隧洞的开挖和衬砌作业。其施工过程需先在隧洞某段的一端开挖竖井或基坑,将盾构机吊入安装,盾构机从竖井或基坑的墙壁开孔处开始掘进并沿设计洞线推进直至到达洞线中的另一竖井或隧洞的端点。 用盾构机进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。 盾构机的基本工作原理就是一个圆柱体的钢组件沿隧洞轴线边向前推进边对土壤进行挖掘。该圆柱体组件的壳体即护盾,它对挖掘出的还未衬砌的隧洞段起着临时文撑的作用,承受周围土层的压力,有时还承受地下水压以及将地下水挡在外面。挖掘、排土、衬砌等作业在护盾的掩护下进行。 盾构机施工主要由稳定开挖面、挖掘及排土、衬砌包括壁后灌浆三大要素组成。其中开挖面的稳定方法是其工作原理的主要方面,也是区别于硬岩掘进机或比硬岩掘进机复杂的主要方面。大多数硬岩岩体稳定性较好,不存在开挖面稳定问题。 盾构机根据其适用的土质及工作方式的不同主要分为压缩空气式、泥水式,土压平衡式盾构机等不同类型。泥水式盾构机是通过加压泥水或泥浆(通常为膨润土悬浮液)来稳定开挖面,其刀盘后面有一个密封隔板,与开挖面之间形成泥水室,里面充满了泥浆,开挖土料与泥浆混合由泥浆泵输送到洞外分离厂,经分离后泥浆重复使用。土压平衡式盾构机是把土料(必要时添加泡沫等对土壤进行改良)作为稳定开挖面的介质,刀盘后隔板与开挖面之间形成泥土室,刀盘旋转开挖使泥土料增加,再由螺旋输料器旋转将土料运出,泥土室内土压可由刀盘旋转开挖速度和螺旋输出料器出土量(旋转速度)进行调节。 盾构机问世至今已有近180年的历史,其始于英国,发展于日本、德国。近30年来,通过对土压平衡式、泥水式盾构机中的关键技术,如盾构机的有效密封,确保开挖面的稳定、控制地表隆起及塌陷在规定范围之内,刀具的使用寿命以及在密封条件下的刀具更换,对一些恶劣地质如高水压条件的处理技术等方面的探索和研究解决,使盾构机有了很快的发展。国外主要生产厂家有日本三菱重工人川崎重工、日立造船、德国海伦克内希特(HerrenknechtAG)公司等。盾构机尤其是土压平衡式和泥水式盾构机在日本由于经济的快速发展及实际工程的需要发展很快。德国的盾构机技术也有独到之处,尤其是在地下施工过程中,保证密封的前提以及高达0.3MPa气压的情况下更换刀盘上的刀具,从而提高盾构机的一次掘进长度。德国还开发了在密封条件下,从大直径刀盘内侧常压空间内更换被磨损的刀具。 盾构机是盾构法施工中的主要施工机械。盾构施工法是在地面下暗挖隧洞的一种施工方法,它使用盾构机在地下掘进,在防止软基开挖面崩塌或保持开挖面稳定的同时,在机内安全地进行隧洞的开挖和衬砌作业。其施工过程需先在隧洞某段的一端开挖竖井或基坑,将盾构机吊入安装,盾构机从竖井或基坑的墙壁开孔处开始掘进并沿设计洞线推进直至到达洞线中的另一竖井或隧洞的端点。 用盾构机进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。

盾构施工渣土改良专项方案

编制依据 (1)隧道施工图 (2)铁路隧道工程施工技术指南(TZ204-2008) (3)公司《质量管理体系-要求》(GB/T19001-2000) 一、工程概况 本工程盾构区间总长度3566.5m ,附属工程包括7个联络通道、2 个防淹门、12 个洞门。盾构区间采用德国进口的两台直径8.84 米的海瑞克土压平衡盾构机进行施工。 二、工程地质条件和水文地质条件 2.1地形地貌 本线地处广东省中部,沿线经过珠江三角洲海陆交互沉积平原区,地形平坦,地面高程多为0~10m,仅佛山西站附近有零星剥蚀残丘分布,高程10~20m。区内道路纵横,水网发达,河流纵多,主要河流有汾江、东平水道、吉利涌、潭洲水道、陈村水道等,均为通航河道。 2.2工程地质条件 (1)洞身地层本标段区间盾构隧道范围地层岩性按成因和时代分类主要有:第四系人工填土层<1-1>;第四系全新统海陆交互沉积层<2-1>、<2-2>、<3-1>、<3-2>、<3-3>、<3-4>、<4-1>;第四系全新统残积层<5>;白垩系下统基岩<7-1>、<7-2>、<7-3>。在里程DK31+439~DK32+260洞身范围地层主要为上软下硬,上部为砂层或全风化或强风化砂质泥岩、砂岩W4、W3(821m);里程DK32+260~DK34+50洞0 身范围地层主要为弱风化砂质泥岩、砂岩W2(2240m);里程 DK34+500~DK35+005.5洞身范围地层主要为上软下硬,上部为强风化砂质泥岩、砂岩W3,下部为弱风化砂质泥岩、砂岩W2(500.5m)。 (2)洞身地层分布统计根据目前提供的地质断面图,隧道洞身地层统计如下表所示: 表隧道地层统计

盾构机液压系统原理

盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q m ax范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

盾构井逆筑施工工法1介绍

盾构井逆作施工工法 工法编号: 编制单位:中国建筑一局(集团)有限公司 主要执笔人:张鹏、丁海明 1 前言 北京地铁四号线工程北京南站~陶然亭站区间在右线K4+074处设置3号盾构接收井,在左线K4+077.261处设置4号盾构接收井,盾构接收井二衬结构的净空尺寸为15×9m。盾构接收井围护结构原设计采用Φ800@1200钻孔灌注桩与钢支撑体系,接收井内衬模筑钢筋混凝土结构采用顺做法施工,即先进行土方开挖与钢支撑安装,土方开挖至设计井底标高后,再由下而上施做内衬结构。后根据现场施工条件与工期情况,内衬结构采用逆作法施工,节省了工程造价并提前了工期,取得了良好的社会效益和经济效益。 2 工法特点 2.1逆作法施工结构受力良好合理,围护结构变形量小,因而对邻近建筑的影响亦小。 2.2逆作法施工,土方开挖可较少或基本不占总工期。 2.3采用逆作法施工,可省掉钢支撑安装与拆除这一工序,节省材料、人力物力;二次衬砌支模用的模板及钢管架料可达到轮换倒用,大大节约了模板、架料的投入。 3 适用范围 3.1本工法适用于盾构工程始发井、接收井施工,也可用于暗挖竖井的施工。 4 工艺原理 先沿盾构井周围施工地下钻孔灌注桩或其他支护结构,随后逐层向下开挖土方和浇筑各层井壁内衬结构,直至底板封底。 5 施工工艺流程及操作要点 5.1 施工工艺流程 冠梁施工→开挖工作面→初喷混凝土→打设抗滑锚杆并注浆→挂网喷射混凝土→绑扎二衬钢筋→支模→二衬混凝土浇筑→拆模→砼强度达到设计值的75%后,安装钢管斜撑→开挖下一层土方 5.2 操作要点

5.2.1 冠梁施工 1、冠梁结构形式 冠梁截面尺寸为800×1500(高×宽),配筋为主筋:21Ф25,箍筋为Φ10@200的双支箍,Ф22抗剪筋,Ф10拉结筋,浇筑C30S8砼,详见冠梁配筋图5-1。 图5-1 冠梁配筋图 2、工艺流程

盾构隧道压浆质量问题处理措施

盾构隧道压浆质量问题处理措施 1、沿隧道轴线地层变形量过大 (1)现象 沿隧道轴线地层变形过量,引起地面建筑物及地下管线损坏。 (2)原因分析 ①盾构开始掘进后,如不能同步地进行注浆或注浆效果差,则会产生地面沉降; ②盾尾密封效果不好,注浆压力又偏高,浆液从盾尾渗入隧道,造成有效注浆量不足: ③浆液质量不好,强度达不到要求,不能起到支护作用,造成地层变形量过大; ④注浆过程不均匀,推进过程中有时注浆压力大,注浆量足,有时注浆量少,甚至不注浆,造成对土体结构的扰动和破坏,使地层变形量过大。 (3)预防措施 ①正确确定注浆量和注浆压力,及时、同步地进行注浆; ②注浆应均匀,根据推进速度的快慢适当地调整注浆的速率,尽量做到与推进速率相符;通过地面监测情况调整注浆量和注浆压力。 ③提高拌浆的质量,保证压注的浆液的强度; ④推进时同时、均匀、经常地压注盾尾密封油脂,保证盾尾钢丝刷的使用功能。 (4)治理方法 ①根据地面变形情况及时调整注浆量、注浆部位,对于沉降大的部位可采用补压浆的措施; ②损坏的盾尾进行更换,或采用在盾尾内垫海绵的方法对盾尾进行堵漏; ③注浆口离盾尾太近引起盾尾漏浆,可采用从管片上进行壁后注浆的方法,减少浆液的渗漏。 2、同步注浆浆管堵塞 (1)现象 采用单液浆注浆时浆管堵塞,无法注浆,甚至发生浆管爆裂的情况,严重影

响施工质量和进度。 (2)原因分析 ①停止注浆的时间太长,留在浆管中的浆液结硬,引起堵塞; ②浆液中的砂含量太高,沉淀在浆管中,使浆管通径逐渐减小,引起堵塞; ③浆管的三通部位在压浆过程中有浆液积存,时间长了就沉淀凝固。 (3)预防措施 ①停止推进时定时用浆液打循环回路,使管路中的浆液不产生沉淀。长期停止推进,应将管路清洗干净; ②拌浆时注意配比准确,搅拌充分; ③定期清理浆管,清理后的第一个循环用膨润土泥浆压注,使注浆管路的管壁润滑良好; ④经常维修注浆系统的阀门,使它们启闭灵活。 (4)治理方法 将堵塞的管子拆下,将堵塞物清理干净后重新接好管路。

地铁盾构施工总结

盾构工作总结 2015年在各位领导和部门的帮助,盾构工区顺利的完成了领导交办的各项工作任务。现对一年来的工作进行总结与归纳,并对新一年的工作作出展望,如有不妥之处恳请领导批评指正。 一、2015年盾构工区工作总结 在公司的大力支持下,2015年公司首次购置两台土压平衡盾构机,规格型号为CTE6250,投入到合肥地铁项目中。 盾构工区在项目部各部门的鼎力支持下,4月1日两台盾构机经过15天时间组装、调试完成。6月24日“铁兵一号”118#盾构机顺利始发;7月16日“铁兵二号”119#盾构机顺利始发,9月24日顺利到达接收,10月18日119#盾构机二次顺利始发。 2016年1月25日“铁兵一号”118#盾构机顺利接收,2016年3月11日“铁兵一号”118#盾构机在广德站二次顺利始发,3月27日“铁兵二号”119#盾构机在和县路站顺利接收。截止到2016年4月19日118#盾构机掘进里程1005米,119#盾构机掘进里程1905米。 1 盾构施工管理 项目部内部设置盾构施工组织机构,成立了盾构工区。盾构施工管理人员、盾构机操作司机、土木工程师、盾构机维修保养、地面调度、测量作业等为项目部自主配置人员;盾构施工管片粘贴止水条、龙门吊司机、盾构管片运输与拼装、洞内文明施工等进行临时招工,项目部统一管理。 在这种管理组织模式下,优缺点并存。 1.1 管理模式缺点: 1)项目部前期需要投入大量的培训时间,同时需要投入施工的人员较多,增加管理成本和人员投入。 2)前期施工经验不足,需要大量的时间去摸索施工经验,存在较大的安全、质量风险。 1.2 管理模式优点:

1)管理体系健全,能够直接有效的对现场进行管理,能够最直接掌握盾构施工信息并及时处置。 2)对于公司盾构技术人员的培养和提高有极大的帮助,有助于形成专业系统的盾构施工经验,有利于提高公司在地铁施工市场的竞争力。 3)可以有效的控制施工耗材的使用量。 2 盾构机日常维保 盾构施工设备是关键,盾构施工的正常进行,离不开盾构机及相关配套设备的正常运行,要想维持设备的良好的运行状态,使设备能够及时满足盾构施工的需要,则少不了机电技术人员对机械设备的维修保养工作。 2.1维保方式 盾构工区成立维修保养班负责机械设备的日常管理工作,根据施工要求配置盾构机操作及维护保养人员,盾构机操作以自有员工和少量外聘人员结合的方式组成,盾构机维保全部为自有员工,掘进过程中由项目部领导带班负责,及时发现隐患及时进行处理。 盾构施工过程中盾构机维保以“养修并重,预防为主”为主要原则,设备在使用过程中既要注重平时的保养维护,又要及时维修处理,这样才能保证盾构施工的顺利进行。盾构机及相关配套设备的日常保养分为日检、周检、月检等,具体内容根据物资设备部的设备保养计划,由机电技术人员按时进行保养,施工负责人负责督促检查。机械设备出现故障时,操作人员会及时通知当班维保人员,同维保人员一起做好设备的维修工作;故障难以排除时,由机电工程师组织进行设备维修工作。盾构机完成广龙区间的施工后,对盾构机状况进行全面检测评估,并对处理困难大的故障,利用转场时间进行专项维保。转场期间主要对刀盘主轴承密封圈进行了检修,因在掘进过程中处理难度大,无法维修。 2.2优缺点 项目部机电技术人员多数为刚毕业的学生,工作经验少,形式较单一,相对地铁施工综合性较高,大部分年轻人达不到独挡一面的程度,仍需要大量经验的积累。对于盾构机来说,若得不到机电技术人员的合理养护,随着盾构机使用年

盾构注浆施工工艺工法

盾构注浆施工工艺工法 1 前言 1.1 工艺工法概况 盾构注浆通过盾体及管片上的预留注浆孔向有盾体和管片背后注入水泥浆液、化学浆液、混合浆液等,以达到填充空隙、控制地层沉降、堵水或加固地层作用的施工技术,主要包含同步注浆和二次注浆。盾构注浆施工技术是盾构工法中必不可少的关键性辅助工法,是控制地表沉降、确保管线及建构筑物安全的关键,亦是确保隧道防水质量及成型隧道线型质量的关键。 1.2 工艺原理 盾构注浆施工主要包括同步注浆和二次注浆。 1.2.1 同步注浆工艺原理 在盾构掘进的同时利用注浆泵,在管片背部和刀盘开挖轮廓面之间形成空隙的同时,用具有长期稳定性及一定流动性、微收缩性,并能保证适当初凝时间的浆液,在盾尾空隙形成的短时间内将其充填密实,从而使围岩土体获得及时支撑,可有效的防治土体坍塌,控制地表沉降,原理如图1所示。

图1 同步注浆原理图 1.2.2 二次注浆工艺原理 以水泥浆液(或水泥浆、水玻璃混合浆液)为介质,通过在管片吊装孔安装注浆管,注浆填充管片背后的孔隙,达到控制地表下沉、阻断隧道漏水通道的目的。 2 工艺工法特点 2.1 通过注浆压力、注浆量、注浆速度的控制可有效的降低对于地层的扰动,并可以促进管片及隧道的早期稳定,避免了地表沉降破坏、隧道线型超限等。 2.2 从材料选择到浆液配比优选、拌浆、运输、注浆全过程,工艺简单、可操作性强,可形成标准化作业,安全、质量受控。 3 适用范围 本工法适用于土压平衡盾构掘进过程中盾尾同步注浆、盾构隧道的二次注浆施工。 4 主要引用标准 4.1《盾构法隧道施工与验收规范》(GB50446); 4.2《地下铁道工程施工及验收规范》(GB50299); 4.3《地下防水工程质量验收规范》(GB50208); 4.4《通用硅酸盐水泥检测标准》(GB175); 4.5《用于水泥和混凝土中的粉煤灰》(GB1956);

突泥涌水、地面塌陷处置措施

盾构应急处置措施 1、盾构出现突泥涌水处置措施 (1)螺旋机出现突泥涌水处置措施 原因一:掘进中渣土改良较差或地下水过多时,土仓内细颗粒和水量过多,掌子面失稳,气压将水和细颗粒从螺旋机口喷射出,造成螺旋机突泥涌水出现。 处置措施:遇到此类情况首先关闭螺旋出土口,关闭盾构加水,通过控制螺旋出土口将土仓内多余的地下水排出后,恢复掘进,再根据出渣情况调整泡沫的发泡率和注入率,直到渣土恢复正常状态。跟机工程师对出现情况的刀盘里程进行记录,并及时通知地面巡视人员加强该区域的巡视,及时预警。 原因二:螺旋机侧面检查口未紧固到位,泥水从螺旋机检查口涌出。 处置措施:遇到此类情况首先慢慢打开螺旋机出土口进行泄压,然后对螺旋机检查口进行冲洗,然后重新紧固螺旋机检查口,最后关闭螺旋机出土口。跟机工程师对出现情况的刀盘里程进行记录,并及时通知地面巡视人员加强该区域的巡视,及时预警。 (2)盾尾出现突泥涌水处置措施 原因一:盾尾间隙过小、纠偏过猛等原因使盾尾刷受到管片挤压造成局部损坏,出现盾尾局部漏浆或突泥涌水。 处置措施:遇到此类情况,现场应及时暂停掘进,采取应急水泵将盾尾里面的水及时抽走,并及时通知地面准备应急棉絮,通过将棉絮塞入相应位置及时封堵漏水点,然后通过盾尾油脂系统将该位置的盾尾油脂注入饱满。然后恢复掘进控制好盾尾间隙和纠偏姿态,同时密切观察盾尾漏浆情况,直至恢复正常。如情况没有得到改善,应做好更换盾尾刷的准备。跟机工程师对出现情况的盾尾里程进行记录,并及时通知地面巡视人员加强该区域的巡视,及时预警。 原因二:同步注浆压力过大、二次注浆距离过近造成盾尾刷隔水层被水压冲破,出现盾尾局部漏浆或突泥涌水。 处置措施:遇到此类情况,现场应及时暂停注浆作业,采取应急水泵将盾尾里面的水及时抽走,同时加大该位置盾尾油脂的注入,直至不再漏浆后,方可根据情况恢复注浆,注浆压力应从小到正常,同时密切观察盾尾漏浆情况,直至恢复正常。如情况没有得到改善,应做好更换盾尾刷的准备。跟机工程师对出现情况的盾尾里程进行记录,并及时通知地面巡视人员加强该区域的巡视,及时预警。 原因三:盾尾油脂系统故障,盾尾油脂不能正常注入,导致盾尾刷磨损较为严重,出现盾尾局部漏浆或突泥涌水。 处置措施:遇到此类情况,采取应急水泵将盾尾里面的水及时抽走,并及时通知设备维保人员进行处置,如漏浆较为严重应及时停止掘进, 并及时通知地面准备应急棉絮,通过将棉絮塞入相应位置及时封堵漏水点,然后通过恢复盾尾油脂注入后,观察盾尾漏浆情况,直至恢复正常。如情况没有得到改善,应做好更换盾尾刷的准备。跟机工程师对出现情况的盾尾里程进行记录,并及时通知地面巡视人员加强该区域的巡视,及时预警。 (3)始发、到达洞门出现突泥涌水处置措施 原因一:由于洞门封堵效果不佳存在薄弱点,导致同步注浆浆液将止水帘布冲破,造成洞门突泥涌水。 处置措施:遇到此类情况,首先暂停同步注浆,井口设置应急水泵及时将水抽走,通过塞棉絮将漏水点临时堵住,待浆液凝固一段时间之后,组织人员将洞门漏浆位置进行二次注浆封堵,直至洞门得到有效控制之后,方可恢复掘进,注浆压力应从小到正常,同时密切观察洞门漏浆情况,直至恢复正常。巡视人员加强端头区域的巡视,及时预警。

渣土改良工法

盾构施工中的的渣土改良工法 一、前言 碴土改良是保证盾构施工安全、顺利、快速的一项不可缺少的重要技术手段,其主要作用是使碴土具有较好的土压平衡效果,利于稳定开挖面,控制地表沉降;使碴土具有较好的止水性,以控制地下水流失;使切削下来的碴土具有良好的塑性流动性,能够顺利快速进入土仓,并利于螺旋输送机顺利排土;有效防止土碴粘结刀盘而产生泥饼;可防止或减轻螺旋输送机排土时的喷涌现象;可有效降低刀盘扭矩,降低对刀具和螺旋输送机的磨损。 二、工法特点 1、可根据不同的地质情况以及不同的目的采取不同的技术措施来改善渣土的性质,以确保盾构安全快捷的掘进施工。 2、以信息化施工为手段,通过对通过地层的地质情况的及时、超前的预报来指导施工。 3、能有效地降低对刀具和螺旋输送机的磨损,具有良好的经济效益。 三、适用范围 土压平衡盾构机,在采取土压平衡模式掘进的隧道。 四、施工工艺及流程 1、总体流程

2、超前地质预报 a. 利用TSP202超前地质预报系统进行超前探测 TSP202超前地质预报系统是利用地震波在不均匀地质体中产生的反射波特性来预报隧道掌子面前方及周围临近区域的地质情况,其能够较准确地探测地层构造界面,同时也能准确探测到前方地层中的桩基等,其的预报距离为地质雷达的4~12倍。 隧道地震波超前地质预报原理图 b. 在掌子面进行超前探测 在地层复杂的地段,在采用TSP202系统进行超前地质预报的基础上,利用盾构机上自带的小型钻机进行超前钻探,依据相同压力下钻进速度的不同来判断前方地层的变化情况及位置,以进一步核实TSP202系统的超前预报结果,确认施工前方围岩物理特性,为盾构机选择正确的掘进模式及是否需要进行渣土改良提供科学的依据。 3、渣土改良方式的选择 土压平衡盾构机的掘进模式(敞开式Open、半敞开式semi-open、土压平衡式EPB)根据围岩的情况进行选定,即控制土仓内的土压力。土仓内的土压力受掘进速度和螺旋输送机的出土速度控制,为了保持开挖面的稳定性,必须控制此两个速度在适当的数值,同时确保开挖渣土的流动性和止水性。

盾构机构造及工作原理简介分析

盾构机构造及工作原理简介第二部分 四、盾构机的主控系统及工作原理 下图是天地重工生产的土压平衡盾构机示意图,通过这台土压平衡盾构来简单介绍盾构机的构造及工作原理。 盾构法隧道的基本原理是用一件有形的钢质组件沿隧道设计轴线开挖土体而向前推进。这个钢组件在初步或最终隧道衬砌建成前,主要起防护开挖出的土体、保证作业人员和机械设备安全的作用,同时还能够承受来自地层的压力,防止地下水或流沙的入侵,这个钢质组件被称为盾构。而盾构的主要组成部分即为盾体。 1. 盾体 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状筒体。前盾和与之焊在一起的承压隔板用来支撑刀盘驱动,同时使泥土仓与后面的工作空间相隔离,推进油缸的压力可通过承压隔板作用到开挖面上,以起到支撑和稳定开挖面的作用。承压隔板上在不同高度处安装有五个土压传感器,可以用来探测泥土仓中不同高度的土压力。前盾的后边是中盾,中盾和前盾通过法兰以螺栓连接,中盾内侧的周边位置装有推进油缸。中盾的后边是尾盾, 尾盾末端装有密封用的盾前盾 中盾 后盾

尾刷。 2. 刀盘和刀盘驱动 刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体,刀盘通过安装在前盾承压隔板上的法兰上的刀盘电机来驱动。它可以使刀盘在顺时针和逆时针两个方向上实现无级变速。刀盘电机的变速齿轮箱内需设置制动装置,用于制动刀盘。电机的防护等级需大于IP55。 为了适用于不同的土质条件,刀盘上安装了多种类型和功能的刀具,所有刀具都由螺栓连接,可以从刀盘后面的泥土仓中进行更换。 刀盘(中交天和14.93米泥水气压平衡复合式盾构机) 铲刀:铲刀可以双向进行开挖,主要用于保证开挖直径的稳定不变。 铲刀

盾尾漏浆处理方案

盾尾泄漏预防及应急处理方案 一、编制目的 1.保证盾尾不发生漏浆现象; 2.保证合理的注脂量,合理的注脂压力,保证盾尾刷的良好的密封效果; 3.盾尾发生漏浆的紧急处理措施。 二、编制依据 1.本工程《实施性施工组织设计》; 2.长江隧道工程《施工风险应急预案》; 3.盾构机盾尾密封油脂使用操作规程; 4.目前盾构机盾尾密封实际状态及密封效果; 5.盾构机穿越线路的水文地质状况; 三、盾尾密封的目前状况 1.TBM1第一道3#设定和实际压力较高; 2.TBM1第二道2#、5#、6#、7#设定压力和实际压力偏高; 3.TBM1第三道2#设定压力和实际压力很高,槽油脂口外围部分堵塞。 4.TBM1第三道7#、8#、9# 设定压力较高。 四、目前存在的风险分析 盾尾密封主要是防止地下水、泥水和壁后注浆浆液通过管片和盾壳间喷涌到隧道作业面;此外,由于管片破损、止水条损坏等也会导致地下水等由盾构尾部涌入,特别是在江中段掘进过程中正值汛期,盾构推力大,水压大,水压将达到0.6Mpa,此时对盾尾密封要求更为严格。盾尾密封出现问题将会直接影响盾构正常掘进,严重的可能导致隧道和盾构被淹。所以盾尾密封是否正常工作对施工进度和安全都有很重要的影响。 五、规避风险采取的预防措施

1.在管片接缝处增加海绵橡胶(细化、图纸) 2.盾尾油脂注入控制 1)注脂压力的设定 基本原则: 第三道盾尾刷的设定压力比注浆压力高2bar,第二道盾尾刷的设定压力比第三道盾尾刷低1bar,第一道盾尾刷比第二道盾尾刷低1bar。 特殊情况: 一般情况第三道盾尾刷容易堵塞,若某个或几个油脂管出现堵塞现象,则调大设定压力。若某个或几个注浆管注浆压力比正常值偏高,则 相应增大此位置和相邻位置油脂的设定压力,第二、一道盾尾刷设定压 力依次减少1bar。 2)盾尾油脂注入量控制 正常情况下,盾尾油脂的注入量定在2-2.5环一桶。每环掘进前必须注脂10分钟。长时间停机,必须每隔3-4小时,注油脂10分钟。 3.盾尾注脂系统完好率的控制 1)注脂管路及盾尾密封的清理 油脂管路的清理:对盾尾部分堵塞和完全堵塞的油脂管路采用特殊的机械装置进行清理导通(比如清理下水道的特殊工具)。 盾尾密封的清理:彻底清理第一道盾尾刷处的掉落的海绵橡胶、砂浆、泥浆及其他异物,避免异物损坏盾尾刷。 2)注脂系统泵、阀的检查 注脂系统好坏直接影响盾尾注脂,保养班负责每天对系统中油脂泵及各个阀进行检查、维护,保证每个油脂管路都有油脂注入,并作好书 面检查维保记录,检查、维保人员和维保工程师要签字确认,确保系统

盾构施工——粘土中的渣土改良方案

粘土中的渣土改良方案 一、基本情况 近段时间源天盾构项目部在珠江新城旅游观光线的盾构施工过程中,出现掘进缓慢,刀盘结泥饼等现象,影响了施工进度。其中先后试用了ELCO,东莞明洁和巴斯夫的麦斯特等三种品牌发泡剂,效果均不是很明显,没有解决根本问题。经同相关人员沟通和现场了解情况,在盾构机始发阶段,有约十多环砂层,喷涌厉害,采用日本TAC高分子材料和ELCO发泡剂搭配改良渣土,解决了喷涌问题。随后进入8号粘土层,渣土粘度大,推进困难。在第19环(约10月12号)项目部撤下ELCO发泡剂,换上另一品牌泡沫剂,在16号晚我司接到项目部电话,告之结泥饼厉害,掘进不顺利。17号上午我方派人到现场了解情况,盾构机已经开仓清理过泥饼,当天已经掘进到23环,25日再到现场了解情况,已经掘进到40环,平均每天2环左右,其间一直在试用另两种发泡剂,但没有根本解决问题。二、原因分析 在此过程中项目部采取各种措施来解决问题,但由于地层条件恶劣等因素,目前未能根本解决此难题。经过多年的工程实践,我方认为如下因素会导致这种不利情况出现: 1.盾构通过地层条件差,广州这种典型的复合地层对盾构施工是个极大的考验。在这种粘土层中,经过改良剂和水的浸润,在刀盘的搅拌下,土体粘度增大,很容易粘附在刀盘上,同时由于相互之间的摩擦

产生瞬间高热,使土体结焦附着在刀盘上不易除掉。 2.泡沫剂等外加剂使用不当,在不同的盾构条件下,泡沫剂的使用参数应做相应调整,包括注入率,发泡倍率,稀释倍率,流量等。正确使用泡沫剂有利于防止结泥饼,降低扭矩,提高工作效率。 3.使用工艺不恰当,在恶劣地质条件下,刀盘转速,推进速度,螺旋剂排土速度,外加剂的配合使用都会影响施工质量。 三、产品介绍 针对项目部目前出现的问题和对其影响因素的分析,我们建议采取ELCO高分子材料和发泡剂配合使用来预防和解决盾构机在粘土层中的掘进问题。 ELCO STP 401A是一种长链分子的有机化合物,可以单独使用,也可与膨润土及泡沫配合使用。当高分子材料与渣土混合时,这种长链分子就会附着在渣土颗粒的表面形成高分子膜,当这些颗粒相互碰到一起时,聚合物分子就将颗粒粘结在一起形成网络结构,防止水分渗透,改良渣土的和易性。ELCO高分子材料的水溶液注入到砂层中,在地层中发生交联反应,形成凝胶体系,迅速锁住水分,以此降低高含水地层的渗透率,防止喷涌。ELCO高分子材料的稀溶液亦可使用在粘性土中,它能够在渣土的表面形成一层韧性的高分子膜,具有极好的润滑性能,防止土仓内结泥饼,使其粘土成塑性流动,减少刀具和皮带的磨损。在实际使用时,在沙砾层中建议按2~5‰的比例稀释,注入率为10~20%;在粘性土中建议按0.3~1‰的比例稀释,注入率为25~40%。当与其他外加剂配合使用时,请酌量增减。具

浅覆土河床地段盾构施工工法

浅覆土河床地段盾构施工工法 中铁四局集团有限公司 GZSJGF04-10-30 一、前言 在盾构法隧道施工中,由于隧道线路走向的限制,会遇到穿越河道或湖底,而隧道顶到河底或湖底,而隧道顶到河底或湖底的距离很近,大大小于盾构机直径,也就是浅覆土。盾构机在浅覆土层掘进时,一方面,造成极限最小与最大土压力之间变化范围较小,使得开挖面支护压力不易控制;另一方面,由于衬砌受到周围地下水和盾尾注浆浆液的浮力作用,当管片上部土压力与管片自重无法抵抗管片浮力时,就会出现隧道管片上浮,同时会引发工程事故。天津地铁2号线工程曹庄站~延安西路站区间隧道工程,区间隧道工程需穿越外环河后进入曹庄站盾构井接收,最小覆土仅为3.818m,小于盾构直径6.340m,因此,我们对浅覆土过河段的土体进行加固,有效防止处于饱和含水土层中发生涌水突沉引起上方沉陷产生涌水裂隙,避免了大量河水由盾尾或开挖面的缺陷处涌入而淹没隧道等引发的工程事故,经过工程实践,形成本工法。 二、工法特点 ⒈制定合理外环河土体加固方案,确定搅拌桩施工参数,并增设导流管,确保河水畅通。 ⒉通过监测数据合理制定盾构掘进土压、速度、注浆量等施工参数,并确保管片拼装与盾尾密封符合设计规范要求。 ⒊能有效的防治因为盾构挤压导致前方土体隆起过多,盾构处于饱和含水层中发生涌水突沉引起上方沉陷,产生涌水裂隙,致使大量河水由盾尾或开挖面的缺陷处涌入而淹没隧道。 三、适用范围 本工法适用于浅覆土河床的盾构施工。 四、工艺原理 盾构穿越浅覆土河流时,克服隧道管片上浮比较困难,过程控制与调整尤为重要;增设抗浮板、导流管、河床回填、优化盾构掘进参数等措施,保证土压平衡盾构机在掘进浅覆土过河段时可以建立土压平衡,并且不发生喷涌现象,在通过盾尾同步注浆系统向管片壁厚注浆从而保持地表稳定。

盾尾刷失效原因分析及处理措施

盾尾刷失效原因分析及处理措施 摘要:盾尾刷是盾构机盾尾密封系统的重要组成部分,施工中盾尾刷损坏失效 将对洞内人员、设备及隧道结构安全造成严重威胁。本文对盾尾刷作用原理、损 坏失效原因、洞内更换处理措施等方面进行简要分析,为项目施工提供一定参考。 关键词:盾尾刷;损坏失效;原因;处理措施 引言 盾构法作为较成熟的隧道施工工法,在城市轨道交通、市政基础设施、水利、公路、铁路等工程领域应用十分广泛,但基于工程地质与水文条件的不确定性以 及施工作业的差异化等因素,盾尾渗漏问题在施工中仍时有发生,而盾尾刷的损 坏失效是导致盾尾渗漏甚至引发工程事故的最直接原因,分析研究其损坏失效原 因及洞内更换处理措施具有十分重要的意义。 1.盾尾刷作用原理 盾尾刷由众多独立细钢丝、弹簧钢片等构件组成,通过在盾构机盾尾壳体内 环形多道布置从而形成整体柔性密封结构。根据直径大小的不同,盾构机一般设 置3~5道盾尾刷。 施工中,盾尾刷在自身弹性作用下与隧道管片外弧面紧密贴合,每两道盾尾 刷与盾壳、管片构成腔室,掘进过程中向腔室内注入油脂,与盾尾刷共同形成密 封作用,防止壁后注浆的浆液以及地层中的水土涌入隧道。油脂的注入同时可减 轻刷体与管片间摩擦,延长盾尾刷使用寿命。 2.盾尾刷损坏失效表象 盾尾漏浆涌水、涌砂漏泥等现象发生部位相对固定、情况严重且持续存在, 通过注入盾尾油脂无法改善或需通过超常数量油脂控制渗漏,可判定为局部盾尾 刷损坏。施工中可通过观察盾尾渗漏物组成、渗漏时间、涌出压力及单位时间涌 出物数量等分析判断。 3.盾尾刷损坏失效原因 3.1初始安装不规范 盾尾刷初始安装作业往往容易被忽视,易出现刷片搭接长度不够、焊接不牢 等现象。安装应按照相关规程及技术交底进行,刷片要依次搭接安装,确保相邻 两块刷片间有足够的搭接长度,整圈最后一块尾刷尺寸需经量测确定;焊接作业 应采用高品质焊材,前后满焊并保证焊脚高度,杜绝因安装不规范带来的脱落隐患。 3.2始发油脂填塞不佳 盾尾刷钢丝内需填塞油脂以加强密封效果,盾构推进时机打油脂一般无法有 效进入钢丝内,需在盾构始发负环拼装前进行人工填塞。人工填塞要采用专用手 涂型油脂,借助工具将钢丝刷分层拨开并将油脂最大程度上填塞至钢丝内,再将 油脂均匀涂抹于钢丝外表面,做到饱满均匀,不漏填、不掉落。 3.3掘进中的磨损变形 盾构掘进中,因与管片外弧面长时间接触磨擦,盾尾刷存在一定磨损变形, 尤其在盾构姿态不佳、掘进纠偏幅度过猛的情况下,局部盾尾间隙过小,盾尾刷 弹性钢片因受到过分挤压造成回弹性能减弱甚至永久变形,局部刷片甚至因摩擦 受力过大损坏脱落。 3.4油脂注入控制不佳

相关文档
相关文档 最新文档