文档库 最新最全的文档下载
当前位置:文档库 › 旋风分离器地设计

旋风分离器地设计

旋风分离器地设计
旋风分离器地设计

旋风分离器的设计

姓名:顾一苇

班级:食工0801

学号:2008309203499

指导老师:刘茹

设计成绩:

华中农业大学食品科学与技术学院

食品科学与工程专业

2011年1月14日

目录

第一章、设计任务要求与设计条件 (3)

第二章、旋风分离器的结构和操作 (4)

第三章、旋风分离器的性能参数 (6)

第四章、影响旋风分离器性能的因素 (8)

第五章、最优类型的计算 (11)

第六章、旋风分离器尺寸说明 (19)

附录

1、参考文献 (20)

任务要求

1.除尘器外筒体直径、进口风速及阻力的计算

2.旋风分离器的选型

3.旋风分离器设计说明书的编写

4.旋风分离器三视图的绘制

5.时间安排:2周

6.提交材料含纸质版和电子版

设计条件

风量:900m3/h ;

允许压强降:1460Pa

旋风分离器类型:标准型

(XLT型、XLP型、扩散式)

含尘气体的参数:

?气体密度:1.1 kg/m3

?粘度:1.6×10-5Pa·s

?颗粒密度:1200 kg/m3

?颗粒直径:6μm

旋风分离器的结构和操作

原理:

?含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。

?颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。

?在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。

?在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出;

?固相沿内壁落入灰斗。

旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。

旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。其最大缺点是阻力大、易磨损。

?

旋风分离器的性能参数

在满足气体处理量的前提下,评价旋风分离器性能的主要指标是尘粒的分离性能和气体经过旋风分离器的压强降。

①分离性能

分离性能的好坏常用理论上可以完全分离下来的最小颗粒尺寸:临界粒径dc及分离效率η表示。

A:临界粒径dc:指旋风分离器能100%除去的最小颗粒直径。

假设:在器内颗粒与气流相对运动为层流;颗粒在分离器内的切线速度恒定且等于进气处的气速u i;颗粒沉降所穿过的最大距离为进气口宽度B,导出临界粒径d c的估算式:

d c=(9μB /πN eρs u i)1/2

旋风分离器进口管的宽度B,标准型B=D/4;Ne:气流的有效旋转圈数,一般0.5~3,标准型3~5,通常取5;u i进口气体的速度(m/s);μ:气体粘度;ρs:固相的密度

d c愈小,分离效率愈高,由估算式可见d c随D的加大而增大,即效率随D增大而减小。当气体处理量很大又要求较高的分离效果时,常将若干小尺寸的旋风分离并联使用,称为旋风分离器组。粘度减小,进口气速提高有利于提高分离效率。

B:分离效率:有两种表示方法

*总效率:指被除去的颗粒占气体进入旋风分离器时带入的全部颗粒的质量百分数

η0=(C1-C2)/C1

C1:旋风分离器入口气体含尘浓度;C2:旋风分离器出口气体含尘浓度

总效率是工程上最常用的,也是最易测定的分离效率,其缺点是不能表明旋风分离器对不同粒子的不同分离效果。

*粒级效率:粒级效率指按颗粒大小分别表示出其被分离的质量分数。

含尘气体中的颗粒通常是大小不均的,通过旋风分离器后,各种尺寸的颗粒被分离下来的百分率也不相同。通常把气流中所含颗粒的尺寸范围等分成几个小段,则其中平均粒径为d i的第i小段范围颗粒的粒级效率定义为:

ηpi=(C1i-C2i)/C1i

不同粒径的颗粒,其粒级效率是不同的。根据临界粒径的定义,粒径大于或等于临界粒径d c的颗粒,ηp=100%。粒级效率为50%的颗粒直径称为分割直径

d50=0.27[μD/u i(ρS-ρ)]1/2

对于同一型式且尺寸比例相同的旋风分离器,无论大小,皆可通用同一条粒级曲线。标准旋风分离器的ηp与d/d50的关系:

总效率η0=Σx iηpi,x i为进口处第i段颗粒占全部颗粒的质量分率。

②旋风分离器的压强降

压强降可表示为进口气体动能的倍数:Δp=ξρu i2/2

ξ为阻力系数,对于同一型式及相同尺寸比例的旋风分离器,ξ为常数,标准型旋风分离器ξ=8,一般500~2000Pa。

影响旋风分离器性能的因素

气流在旋风分离器内的流动情况和分离机理均非常复杂,因此影响旋风分离器性能的因素较多,其中最重要的是物系性质及操作条件。一般说来,颗粒密度大、粒径大、进口气速度高及粉尘浓度高等情况均有利于分离。如含尘浓度高则有利于颗粒的聚结,可以提高效率,而且可以抑制气体涡流,从而使阻力下降,所以较高的含尘浓度对压力降与效率两个方面都是有利的。但有些因素对这两方面的影响是相互矛盾的,如进口气速稍高有利于分离,但过高则导致涡流加剧,增大压力降也不利于分离。因此,旋风分离器的进口气速在10~25m/s范围内为宜。气量波动对除尘效果及压力降影响明显。(4)旋风分离器的结构型式与选用

①旋风分离器的结构型式

旋风分离器的性能不仅受含尘气的物理性质、含尘浓度、粒度分布及操作条件的影响,还与设备的结构尺寸密切相关。只有各部分结构尺寸恰当,才能获得较高的分离效率和较低的压力降。近年来,为提高分离效率并降低压降,在旋风分离器的结构设计中,主要从以下几个方面进行改进:

A:采用细而长的器身:减小器身直径可增大惯性离心力,增加器身长度可延长气体停留时间,所以,细而长的器身有利于颗粒的离心沉降,使分离效率提高。

B:减小上涡流的影响:含尘气体自进气管进入旋风分离器后,有一小部分气体向顶盖流动,然后沿排气管外侧向下流动,当达到排气管

下端时汇入上升的内旋气流中,这部分气流称为上涡流。上涡流中的颗粒也随之由排气管排出,使旋风分离器的分离效率降低。采用带有旁路分离室或采用异形进气管的旋风分离器,可以改善上涡流的影响。

C:消除下旋流影响:在标准旋风分离器内,内旋流旋转上升时,会将沉集在锥底的部分颗粒重新扬起,这是影响分离效率的另一重要原因。为抑制这种不利因素设计了扩期式旋风分离器。

D:排气管和灰斗尺寸的合理设计都可使除尘效率提高。

鉴于以上考虑,对标准旋风分离器加以改进,设计出一些新的结构形式。目前我国对各种类型的旋风分离器已制定了系列标准,各种型号旋风分离器的尺寸和性能均可从有关资料和手册中查到。化工中几种常见的旋风分离器:

XLT/A型:具有倾斜螺旋面进口,倾斜方向进气可在一定程度上减小涡流的影响,并使气流阻力较低,阻力系数ξ值可取5.0~5.5。XLP型:XLP型是带有旁路分离室的旋风分离器,采用蜗壳式进气口,其上沿较器体顶盖稍低。含尘气进入器内后即分为上、下两股旋流。“旁室”结构能迫使被上旋流带到顶部的细微尘粒聚结并由旁室进入向下旋转的主气流而得以捕集,对5μm以上的尘粒具有较高的分离效果。根据器体及旁路分离室形状的不同,XLP型又分为A和B 两种形式,其阻力系数值可取4.8~5.8。

扩散式:主要特点是具有上小下大的外壳,并在底部装有挡灰盘(又称反射屏)。挡灰盘a为倒置的漏斗型,顶部中央有孔,下沿与器壁

底圈留有缝隙。沿壁面落下的颗粒经此缝隙降至集尘箱内,而气流主体被挡灰盘隔开,少量进入箱内的气体则经挡灰盘顶部的小孔返回器内,与上升旋流汇合经排气管排出。挡灰盘有效地防止了已沉下的细粉被气流重新卷起,因而使效率提高,尤其对10μm以下的颗粒,分离效果更为明显。

几种类型旋风机分离器的主要性能列于下表:

②旋风分离器的选型

选择旋风分离器时,首先应根据具体的分离含尘气体任务,结合各型设备的特点,选定旋风分离器的型式,而后通过计算决定尺寸与个数。计算的主要依据有:含尘气的体积流量;要求达到的分离效率;允许的压力降。

由上面的计算结果可以看出,在处理气量及压力降相同的条件下,本例中串联四台与并联四台的效率比较接近,但并联时所需的设备尺寸小、投资省。

900 m3/s总风量下不同类型旋风分离器分离效果

标准型

Δp=ξρu i2/2

取Δp=1460Pa,ξ=8.0,允许的最大气速:u i=(2Δp/ξρ)1/2=18.2m/s 取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.33m

D=4B B=0.083m

入口高度h=D/2=0.166m

处理量= u i Bh=0.25 m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2

=4.2μm

d/ d50=1.43

查询图(采用实际线)可知,η=0.79

两台旋风分离器并联

Δp=ξρu i2/2

取Δp=1460Pa,ξ=8.0,允许的最大气速:u i=(2Δp/ξρ)1/2=18.2m/s 取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.23m

D=4B B=0。0575m

入口高度h=D/2=0.115m

处理量= u i Bh= 0.12m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2

=3.5μm

d/ d50=1.71

查询图可知,η为0.82

四台旋风分离器并联

Δp=ξρu i2/2

取Δp=1460Pa,ξ=8.0,允许的最大气速:u i=(2Δp/ξρ)1/2=18.2m/s 取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.166m

D=4B B=0。0414m

入口高度h=D/2=0.m

处理量= u i Bh= 0.0828m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2=2.9μm

d/ d50=2.07

查询图可知,η为0.9

XLT/A型

一台

取Δp=1460Pa,ξ=5.2,允许的最大气速:u i=(2Δp/ξρ)1/2=22.6m/s

取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.297m

D=4B B=0.074m

入口高度h=D/2=0.149m

处理量= u i Bh=0.249 m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2=3.5μm

d/ d50=1.71

查询图可知,η为0.82

两台旋风分离器并联

取Δp=1460Pa,ξ=5.2,允许的最大气速:u i=(2Δp/ξρ)1/2=22.6m/s 取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.21m

D=4B B=0。0526m

入口高度h=D/2=0.105m

处理量= u i Bh= 0。125m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2=3.0μm

d/ d50=2

查询图可知,η为0.9

四台旋风分离器并联

取Δp=1460Pa,ξ=5.2,允许的最大气速:u i=(2Δp/ξρ)1/2=22.6m/s 取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.149m

D=4B B=0。0372m

入口高度h=D/2=0.0744m

处理量= u i Bh= 0.0625m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2

=2.5μm

d/ d50=2.4

查询图可知,η为0.93

XLP/B型

一台

取Δp=1460Pa,ξ=5.3,允许的最大气速:u i=(2Δp/ξρ)1/2=22.4m/s 取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.299m

D=4B B=0.075m

入口高度h=D/2=0.150m

处理量= u i Bh=0.252 m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2

=3.6μm

d/ d50=1.67

查询图可知,η为0.84

两台旋风分离器并联

取Δp=1460Pa,ξ=5.3,允许的最大气速:u i=(2Δp/ξρ)1/2=22.4m/s

取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.211m

D=4B B=0.053m

入口高度h=D/2=0.106m

处理量= u i Bh=0.126 m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2

=3.0μm

d/ d50=2

查询图可知,η为0.9

四台旋风分离器并联

取Δp=1460Pa,ξ=5.3,允许的最大气速:u i=(2Δp/ξρ)1/2=22.4m/s 取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.149m

D=4B B=0.037m

入口高度h=D/2=0.075m

处理量= u i Bh=0.062 m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2 =2。5μm

d/ d50=2.4

查询图可知,η为0.93

扩散型

一台

取Δp=1460Pa,ξ=6。7,

允许的最大气速:u i=(2Δp/ξρ)1/2=19.9m/s

取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 , D=0.317m

D=4B B=0.079m

入口高度h=D/2=0.159m

处理量= u i Bh=0.250 m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2 =3.9μm

d/ d50=1.54

查询图可知,η为0.8

两台旋风分离器并联

取Δp=1460Pa,ξ=5.3,允许的最大气速:u i=(2Δp/ξρ)1/2=19.9m/s

取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.224m

D=4B B=0.056m

入口高度h=D/2=0.112m

处理量= u i Bh=0.125 m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2

=3.3μm

d/ d50=1.82

查询图可知,η为0.87

四台旋风分离器并联

取Δp=1460Pa,ξ=5.3,允许的最大气速:u i=(2Δp/ξρ)1/2=19.9m/s

取d c=6μm,N e=5,进气口宽度hB=Vs/ u i = D2 /8 ,

D=0.159m

D=4B B=0.040m

入口高度h=D/2=0.079m

处理量= u i Bh=0.063m3/s

临界粒径d c的颗粒d50=0.27[μD/u i(ρS-ρ)]1/2

=2.8μm

d/ d50=2.1

查询图可知,η为0.91

通过比较可知使用XLT/A或XLP/B四台并联使用,可以得到较好分离,超过0.9.

XLT/A

D=0.149m B=D2=0.0372m h=D1=D/2=0.0744m H1=H2=0.298m S=0.01863m XLP/B

D=0.149m B=D2=0.037m h=D1=D/2=0.075m H1=H2=0.298m S=0.01863m

D/4

D D/8S 2D,H 2D,H D/2D D/4,B D/2,h 2211=======

参考文献

姚玉英. 化工原理. 天津:天津大学出版社, 1999.

赵思明. 食品工程原理. 北京:科学出版社, 2009.

马海乐. 食品机械与设备. 北京:中国农业出版社,2004.

李功祥,陈兰英,崔英德. 常用化工单元设备设计. 广州:华南理工大学出版社,2003.

杨同舟. 食品工程原理. 北京:中国农业出版社,2001.

旋风分离器计算

作成 作成::时间时间::2009.5.14 一、問題提出 PHLIPS FC9262/01 這款吸塵器不是旋風除塵式的,現在要用這款吸塵器測參數選擇旋風分離裝置。二、計算過程 1.選擇工作狀況選擇工作狀況:: 根據空氣曲線選擇吸入效率最高點的真空度和流量作為旋風分離器的工作狀態。 吸塵器旋風分離器選擇 Bryan_Wang

已知最大真空度h和最大流量Q,則H-Q曲線的兩個軸截距已知,可確H-Q直線的方程。 再在這個直線上求得吸入功率H*Q最高點(求導數得)。求解過程不再詳述。求得最大吸入功率時真空度H=16.5kPa;流量Q=18.5L/s;吸入功率P2=305.25w 現將真空度及流量按照吸入功率計算值與實際值的比例放大,得真空度H=18.3kPa;流量Q=20.5L/s;2.選擇旋風分離器 為使旋風分離裝置體積最小,選擇允許的最小旋風分離器尺寸。一般旋風分離器筒體直徑不小于50mm,故選擇筒體直徑為50mm。按照標準旋風分離器的尺寸比例,確定旋風除塵器的結構尺寸。 D0=50mm b=12.5mm a=25mm de=25mm h0=20mm h=75mm H-h=100mm D2=12.5mm 計算α約為11度 發現計算得到的吸入功率最大值與產品標稱值375W相差一些,可能是由于測量誤差存在以及壓力損失的原因。

一般要求旋風分離器進氣速度不超過25m/s,這里取旋風分離器進氣速度為22m/s. 計算入口面積為S=3.125e-4平方米。 則單個旋風除塵器流量為Q=6.9e-3平方米/秒則所需旋風除塵器個數為3個計算分級效率 根據GB/T 20291-2006吸塵器標準,這里使用標準礦物灰塵,為大理石沙。进气粒径分布 103058 10019037575015002010 10102016113 顆粒密度ρp=2700kg/m3 進口含塵濃度取為10g/Nm3,大致選取空氣粘度μ=1.8e-6Pa*s 按照以下公式計算顆粒分級效率: 平均粒徑(μm)比重(%)

旋风分离器设计方案

旋风分离器设计方案 用户:特瑞斯信力(常州)燃气设备有限公司 型号: XC24A-31 任务书编号: SR11014 工作令: SWA11298 图号: SW03-020-00 编制:日期:

本设计中旋风分离器属于中压容器,应以安全为前提,综合考虑质量保证的各个环节,尽可能做到经济合理,可靠的密封性,足够的安全寿命。设计标准如下: a. TSG R0004-2009《固定式压力容器安全技术监察规程》 b. GB150-1998《钢制压力容器》 c. HG20584-1998《钢制化工容器制造技术要求》 d. JB4712.2-2007《容器支座》 2、旋风分离器结构与原理 旋风分离器结构简单、造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般主要应用于需要高效除去固、液颗粒的场合,不论颗粒尺寸大小都可以应用,适用于各种燃气及其他非腐蚀性气体。 说明: 旋风分离器的总体结构主要由:进 料布气室、旋风分离组件、排气室、 集污室和进出口接管及人孔等部分组 成。旋风分离器的核心部件是旋风分 离组件,它由多根旋风分离管呈叠加 布置组装而成。 旋风管是一个利用离心原理的2 英寸管状物。待过滤的燃气从进气口 进入,在管内形成旋流,由于固、液 颗粒和燃气的密度差异,在离心力的 作用下分离、清洁燃气从上导管溜走, 固体颗粒从下导管落入分离器底部, 从排污口排走。由于旋风除尘过滤器 的工作原理,决定了它的结构型式是 立式的。常用在有大量杂物或有大量 液滴出现的场合。

其设计的主要步骤如下: ①根据介质特性,选择合适的壳体材料、接管、法兰等部件材料; ②设计参数的确定; ③根据用户提供的设计条件及参数,根据GB150公式,预设壳体壁厚; ④从连接的密封性、强度等出发,按标准选用法兰、垫片及紧固件; ⑤使用化工设备中心站开发的正版软件,SW6校核设备强度,确定壳体厚度及接管壁厚; ⑥焊接接头型式的选择; ⑦根据以上的容器设计计算,画出设计总设备图及零件图。 4、材料的选择 ①筒体与封头的材料选择: 天然气最主要的成分是甲烷,经过处理的天然气具有无腐蚀性,因此可选用一般的钢材。由操作条件可知,该容器属于中压、常温范畴。在常温下材料的组织性和力学性能没有明显的变化。综合了材料的机械性能、焊接性能、腐蚀情况、强度条件、钢板的耗材量与质量以及价格的要求,筒体和封头的材料选择钢号为Q345R的钢板,使用状态为热轧(设计温度为-20~475℃,钢板标准GB 713-2008 锅炉和压力容器用钢板)。 ②接管的材料选择: 根据GB150《钢制压力容器》引用标准以及接管要求焊接性能较好且塑性好的要求,故选择16Mn号GB6479《高压化肥设备用无缝钢管》作各型号接管。因设备设计压力较高,涉及到开孔补强问题,在后面的强度计算过程中,选择16MnII锻件作为接管材料。 ③法兰的材料选择: 法兰选用ASME B16.5-2009钢制管法兰,材质:16MnII,符合NB/T47008-2009压力容器用碳素钢和低合金钢锻件标准。 ④其他附件用材原则: 与受压件相焊的的垫板,选用与壳体一致的材料:Q345R GB713-2008; 其余非受压件,选用Q235-B GB3274 《碳素结构钢和低合金钢热轧厚钢板和

旋风分离器的设计(苍松参考)

旋风分离器的设计 姓名:顾一苇 班级:食工0801 学号:2008309203499 指导老师:刘茹 设计成绩:

华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20)

任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: ?气体密度:1.1 kg/m3 ?粘度:1.6×10-5Pa·s ?颗粒密度:1200 kg/m3 ?颗粒直径:6μm

旋风分离器的结构和操作 原理: ?含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 ?颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 ?在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 ?在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; ?固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。其最大缺点是阻力大、易磨损。

旋风分离器设计计算的研究.

文章编号:1OO8-7524C 2OO3D O8-OO21-O3 IMS P 旋风分离器设计计算的研究 蔡安江 C 西安建筑科技大学机电工程学院, 陕西西安 摘要:在理论研究和设计实践的基础上, 提出了旋风分离器的设计计算方法O 关键词:旋风分离器9压力损失9分级粒径9计算中图分类号:TD 922+-5 文献标识码:A 71OO55D O 引言 旋风分离器在工业上的应用已有百余年历 离器性能的关键指标压力损失AP 作为设计其筒体直径D O 的基础, 用表征旋风分离器使用性能的关键指标分级粒径dc 作为其筒体直径D O 的修正依据, 来高效~准确~低成本地完成旋风分离器的设计工作O 1 压力损失AP 的计算方法 压力损失AP 是设计旋风分离器时需考虑的关键因素, 对低压操作的旋风分离器尤其重要O 旋风分离器压力损失的计算式多是用实验数据关联成的经验公式, 实用范围较窄O 由于产生压力损失的因素很多, 要详尽计算旋风分离器各部分的压力损失, 我们认为没有必要O 通常, 压力损失的表达式用进口速度头N H 表示较为方便O 进口速度头N H 的数值对任何旋风分离器将是常数O 目前, 使用的旋风分离器为减少压

力损失和入口气流对筒体内气流的撞击~干扰以及其内旋转气流的涡流, 进口形式大多从切向进口直入式改为18O ~36O 的蜗壳式, 但现有文献上的压力损失计算式均只适用于切向进口, 不具有通用性, 因此, 在参考大量实验数据的基础上, 我们提出了压力损失计算的修正公式, 即考虑入口阻力系数, 使其能适用于各种入口型式下的压力损失计算O 修正的压力损失计算式是: 史O 由于它具有价格低廉~结构简单~无相对运动部件~操作方便~性能稳定~压力损耗小~分离效率高~维护方便~占地面积小, 且可满足不同生产特殊要求的特点, 至今仍被广泛应用于化工~矿山~机械~食品~纺织~建材等各种工业部门, 成为最常用的一种分离~除尘装置O 旋风分离器的分离是一种极为复杂的三维~二相湍流运动, 涉及许多现代流体力学中尚未解决的难题, 理论研究还很不完善O 各种旋风分离器的设计工作不得不依赖于经验设计和大量的工业试验, 因此, 进行提高旋风分离器设计计算精度~提高设计效率, 降低设计成本的研究工作就显得十分重要O 科学合理地设计旋风分离器的关键是在设计过程中充分考虑其所分离颗粒的特性~流场参数和运行参数等因素O 一般旋风分离器常规设计的关键是确定旋风分离器的筒体直径D O , 只要准确设计计算出筒体直径D O , 就可以依据设计手册完成其它结构参数的标准化设计O 鉴于此, 我们在理论研究和设计实践的基础上, 提出了分级用旋风分离器筒体直径D O 的计算方法O 即用表征旋风分 收稿日期:2OO3-O3-O3 -21- AP = CjPV j 7N H 2

旋风分离器的设计

旋风分离器的设计公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

旋风分离器的设计 姓名:顾一苇 班级:食工0801 指导老师:刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构和操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型 3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制

5.时间安排:2周 6.提交材料含纸质版和电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: 气体密度: kg/m3 粘度:×10-5Pa·s 颗粒密度:1200 kg/m3 颗粒直径:6μm 旋风分离器的结构和操作 原理: 含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管排出; 固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于

旋风分离器设计

旋风分离器设计中应该注意的问题 旋风分离器被广泛的使用已经有一百多年的历史。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分。但人们还是对旋风分离器有一些误解。主要是认为它效率不高。还有一个误解就是认为所有的旋风分离器造出来都是一样的,那就是把一个直筒和一个锥筒组合起来,它就可以工作。旋风分离器经常被当作粗分离器使用,比如被当做造价更高的布袋除尘器和湿式除尘器之前的预分离器。 事实上,需要对旋风分离器进行详细的计算和科学的设计,让它符合各种工艺条件的要求,从而获得最优的分离效率。例如,当在设定的使用范围内,一个精心设计的旋风分离器可以达到超过99.9%的分离效率。和布袋除尘器和湿式除尘器相比,旋风分离器有明显的优点。比如,爆炸和着火始终威胁着布袋除尘器的使用,但旋风分离器要安全的多。旋风分离器可以在1093 摄氏度和500 ATM的工艺条件下使用。另外旋风分离器的维护费用很低,它没有布袋需要更换,也不会因为喷水而造成被收集粉尘的二次处理。 在实践中,旋风分离器可以在产品回收和污染控制上被高效地使用,甚至做为污染控制的终端除尘器。 在对旋风分离器进行计算和设计时,必须考虑到尘粒受到的各种力的相互作用。基于这些作用,人们归纳总结出了很多公式指导旋风分离器的设计。通常,这些公式对具有一致的空气动力学形状的大粒径尘粒应用的很好。在最近的二十年中,高效的旋风分离器技术有了很大的发展。这种技术可以对粒径小到5微米,比重小于1.0的粒子达到超过99%的分离效率。这种高效旋风分离器的设计和使用很大程度上是由被处

理气体和尘粒的特性以及旋风分离器的形状决定的。同时,对进入和离开旋风分离器的管道和粉尘排放系统都必须进行正确的设计。工艺过程中气体和尘粒的特性的变化也必须在收集过程中被考虑。当然,使用过程中的维护也是不能忽略的。 1、进入旋风分离器的气体 必须确保用于计算和设计的气体特性是从进入旋风分离器的气体中测量得到的,这包括它的密度,粘度,温度,压力,腐蚀性,和实际的气体流量。我们知道气体的这些特性会随着工艺压力,地理位置,湿度,和温度的变化而变化。 2、进入旋风分离器的尘粒 和气体特性一样,我们也必须确保尘粒的特性参数就是从进入旋风分离器的尘粒中测量获得的。很多时候,在想用高效旋风分离器更换低效旋风分离器时,人们习惯测量排放气流中的尘粒或已收集的尘粒。这种做法值得商榷,有时候是不对的。 获得正确的尘粒信息的过程应该是这样的。首先从进入旋风分离器的气流中获得尘粒样品,送到专业实验室决定它的空气动力学粒径分布。有了这个粒径分布就可以计算旋风分离器总的分离效率。 实际生产中,进入旋风分离器的尘粒不是单一品种。不同种类的尘粒比重和物理粒径分布都不相同。但空气动力学粒径分布实验有机地将它们统一到空气动力学粒径分布中。 3、另外影响旋风分离器的设计的因素包括场地限制和允许的压降。例如,效率和场地限制可能会决定是否选用并联旋风分离器,或是否需要加大压降,或两者同时采用。 4、旋风分离器的形状 旋风分离器的形状是影响分离效率的重要因素。例如,如果入口

旋风分离器计算结果

旋风除尘器性能的模拟计算 一、下图为旋风除尘器几何形状及尺寸,如图1所示,图中D、L 及入口截面的长宽比在数值模拟中将进行变化与调整,其余参数保持不变。 图1 旋风分离器几何形状及尺寸(正视图)

旋风分离器的空间视图如图2所示。 图2 旋风分离器空间视图 二、旋风分离器数值仿真中的网格划分 仿真计算时,首先对旋风除尘器进行网格划分处理,计算网格采用非结构化正交网格,如图3所示。 图3 数值仿真时旋风分离器的网格划分(空间)

图4为从空间不同角度所观测到的旋风分离器空间网格。 图4 旋风分离器空间网格空间视图 本数值仿真生成的非结构化空间网格数大约为125万,当几何尺寸(如D、L及长宽比)改变时,网格数会略有变化。 三、对旋风分离器的数值模拟仿真 采用混合模型,应用Eulerian(欧拉)模型,欧拉方法,对每种工况条件下进行旋风分离器流场与浓度场的计算,计算残差<10-5,每种工况迭代约50000步,采用惠普工作站计算,CPU耗时约12h。 以下是计算结果的后处理显示结果。由于计算算例较多,此处仅列出了两种工况条件下的计算后处理结果。 图5是L=1.3m,D=1.05m 入口长宽比1:3,入口速度10m/s时,在y=0截面(旋风分离器中心截面)上粒径为88微米烟尘的体积百分数含量分布图。可以明显看出由于旋风除尘器的离心作用,灰尘被甩到外壁附近,而在靠近中心排烟筒下方筒壁四周,烟尘的体积浓度最大。

粒径88微米烟尘的空间浓度分布(空间) 粒径88微米烟尘的浓度分布(旋风分离器中心截面)

粒径200微米烟尘的空间浓度分布(空间) 粒径200微米烟尘的浓度分布(旋风分离器中心截面) 图5 L=1.3m、D=1.05m、长宽比1:3,入口速度10m/s时烟尘空间分布

旋风分离器的工艺计算

旋风分离器的工艺计算 》 : *

目录 一.前言 (3) 应用范围及特点 (3) 分离原理 (3) 分离方法 (4) ) 性能指标 (4) 二.旋风分离器的工艺计算 (4) 旋风分离器直径的计算 (5) 由已知求出的直径做验算 (5) 计算气体流速 (5) < 计算旋风分离器的压力损失 (5) 旋风分离器的工作范围 (6) 进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 分离性能 (6) ~ 临界粒径d pc (7) 分离效率 (8) 旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) $ 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 工作原理 (11) 基本计算公式 (12) 算例 (13) ( 八.影响旋风分离器效率的因素 (14) 气体进口速度 (14) 气液密度差 (14) 旋转半径 (14) 参考文献 (15) …

' 旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 [ 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 ' 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、

旋风分离器设计

旋风分离器: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管理维修方便,价格低廉,用于捕集直径5~10μm以上的粉尘,广泛应用于制药工业中。 主要功能: 旋风分离器设备的主要功能是尽可能除去输送气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行,在西气东输工程中,旋风分离器是较重要的设备。 机构简介: 旋风分离器,是用于气固体系或者液固体系的分离的一种设备。工作原理为靠气流切向引入造成的旋转运动,使具有较大惯性离心力的固体颗粒或液滴甩向外壁面分开。是工业上应用很广的一种分离设备。 工作原理: 旋风分离器是利用气固混合物在作高速旋转时所产生的离心力,将粉尘从气流中分离出来的干式气固分离设备。由于颗粒所受的离心力远大于重力和惯性力,所以分离效率较高。 常用的(切流)切向导入式旋风分离器的分离原理及结构如图所示。主要结构是一个圆锥形筒,筒上段切线方向装有一个气体入口管,圆筒顶部装有插入筒内一定深度的排气管,锥形筒底有接受细粉的出

粉口。含尘气流一般以12—30m/s速度由进气管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分,沿器壁自圆筒体呈螺旋形向下朝锥体流动。此外,颗粒在离心力的作用下,被甩向器壁,尘粒一旦与器壁接触,便失去惯性力,而靠器壁附近的向下轴向速度的动量沿壁面下落,进入排灰管,由出粉口落入收集袋里。旋转下降的外旋气流,在下降过程中不断向分离器的中心部分流入,形成向心的径向气流,这部分气流就构成了旋转向上的内旋流。内、外旋流的旋转方向是相同的。最后净化气经排气管排出器外,一部分未被分离下来的较细尘粒也随之逃逸。自进气管流入的另一小部分气体,则通过旋风分离器顶盖,沿排气管外侧向下流动,当到达排气管下端时,与上升的内旋气流汇合,进入排气管,于是分散在这部分上旋气流中的细颗粒也随之被带走,并在其后用袋滤器或湿式除尘器捕集。 净化天然气通过设备入口进入设备内旋风分离区,当含杂质气体沿轴向进入旋风分离管后,气流受导向叶片的导流作用而产生强烈旋转,气流沿筒体呈螺旋形向下进入旋风筒体,密度大的液滴和尘粒在离心力作用下被甩向器壁,并在重力作用下,沿筒壁下落流出旋风管排尘口至设备底部储液区,从设备底部的出液口流出。旋转的气流在筒体内收缩向中心流动,向上形成二次涡流经导气管流至净化天然气室,再经设备顶部出口流出。 特点: 旋风分离器的主要特点是结构简单、操作弹性大、效率较高、管

蜗壳式旋风分离器的原理与设计

蜗壳式旋风分离器的原理与设计 l0余热锅炉2007.4 蜗壳式旋风分离器的原理与设计 杭州锅炉集团股份有限公司王天春徐亦芳 1前言 循环流化床锅炉的分离机构是循环流化床锅炉的关键部件之一,其主要作用是 将大量高温,高浓度固体物料从气流中分离出来,送回燃烧室,以维持燃烧室一定 的颗粒浓度,保持良好的流态化状态,保证燃料和脱硫剂在多次循环,反复燃烧和 反应后使锅炉达到理想的燃烧效率和脱硫效率.因此, 循环流化床锅炉分离机构的性能,将直接影响整个循环流化床锅炉的总体设计,系统布置及锅炉运行性能.根 据旋风分离器的入口结构类型可以分为:圆形或圆管形入口,矩形入口,"蜗壳式" 入口和轴向叶片入口结构.本文重点分析在循环流化床锅炉中常用的"蜗壳式"入 口结构. 2蜗壳式旋风分离器的工作原理 蜗壳式旋风分离器是一种利用离心力把固体颗粒从含尘气体中分离出来的静 止机械设备.入口含尘颗粒气体沿顶部切向进入蜗壳式分离器后,在离心力的作用下,在分离器的边壁沿轴向作贴壁旋转向下运动,这时气体中的大于切割直径的颗粒被分离出来, 从旋风分离器下部的排灰口排出.在分离器 锥体段,迫使净化后的气流缓慢进入分离器内部区域,在锥体中心沿轴向逆流 向上运动,由分离器顶部的排气管排出.通常将分离器的流型分为"双旋蜗",即轴 向向下外旋涡和轴向向上运动的内旋涡.这种分离器具有结构简单,无运动部件, 分离效率高和压降适中等优点,常作为燃煤发电中循环流化床锅炉气固分离部件. 图l蜗壳式旋风分离器示意图

蜗壳式旋风分离器的几何尺寸皆被视为分离器的内部尺寸,指与气流接触面的 尺寸.包括以下九个(见图1): a)旋风分离器本体直径(指分离器简体截面的直径),D; b)旋风分离器蜗壳偏心距离,; c)旋风分离器总高(从分离器顶板到排灰口),H; d)升气管直径,D; e)升气管插入深度(从分离器空间顶板算起),s; 余热锅炉2007.4 f)入口截面的高度和宽度,分别为a和 b; g)锥体段高度,H; h)排灰口直径,Dd; 2.1旋风分离器中的气体流动 图2为一种标准的切流式筒锥形逆流旋风分离器的示意图,图中显示了其内部 的流 态状况.气体切向进入分离器后在分离器内部空间产生旋流运动.在旋流的外 部(外旋升气管 涡),气体向下运动,并在中心处向上运动 (内旋涡).旋风分离器外部区域气体 的向下运动是至关重要的.因为,依靠气体的向下运动,把所分离到器壁的颗粒带 到旋风分离器底部.与此同时,气体还存在一个由外旋涡到内旋涡的径向流动,这 个径向流动在升气管下面的分离器沿高度方向的分布并不均匀. 轴向速度 切向速度 / 图2切向旋风分离器及其内部流态示意图图2的右侧给出了气流的轴向速度 和切向速度沿径向位置的分布图.轴向速度图表明气体在外部区域沿轴向向下运

旋风分离器地设计

旋风分离器的设计 姓名: 顾一苇 班级: 食工0801 学号: 29 指导老师: 刘茹 设计成绩: 华中农业大学食品科学与技术学院 食品科学与工程专业 2011年1月14日 目录 第一章、设计任务要求与设计条件 (3) 第二章、旋风分离器的结构与操作 (4) 第三章、旋风分离器的性能参数 (6) 第四章、影响旋风分离器性能的因素 (8) 第五章、最优类型的计算 (11) 第六章、旋风分离器尺寸说明 (19) 附录 1、参考文献 (20) 任务要求 1.除尘器外筒体直径、进口风速及阻力的计算 2.旋风分离器的选型

3.旋风分离器设计说明书的编写 4.旋风分离器三视图的绘制 5.时间安排:2周 6.提交材料含纸质版与电子版 设计条件 风量:900m3/h ; 允许压强降:1460Pa 旋风分离器类型:标准型 (XLT型、XLP型、扩散式) 含尘气体的参数: ?气体密度:1、1 kg/m3 ?粘度:1、6×10-5Pa·s ?颗粒密度:1200 kg/m3 ?颗粒直径:6μm 旋风分离器的结构与操作 原理: ?含尘气体从圆筒上部长方形切线进口进入,沿圆筒内壁作旋转流动。 ?颗粒的离心力较大,被甩向外层,气流在内层。气固得以分离。 ?在圆锥部分,旋转半径缩小而切向速度增大,气流与颗粒作下螺旋运动。 ?在圆锥的底部附近,气流转为上升旋转运动,最后由上部出口管

排出; ?固相沿内壁落入灰斗。 旋风分离器不适用于处理粘度较大,湿含量较高及腐蚀性较大的粉尘,气量的波动对除尘效果及设备阻力影响较大。 旋风分离器结构简单,造价低廉,无运动部件,操作范围广,不受温度、压力限制,分离效率高。一般用于除去直径5um以上的尘粒,也可分离雾沫。对于直径在5um以下的烟尘,一般旋风分离器效率已不高,需用袋滤器或湿法捕集。其最大缺点就是阻力大、易磨损。

旋风分离器的工艺计算

旋风分离器的工艺计算

目录 一.前言 (3) 1.1应用范围及特点 (3) 1.2分离原理 (3) 1.3分离方法 (4) 1.4性能指标 (4) 二.旋风分离器的工艺计算 (4) 2.1旋风分离器直径的计算 (5) 2.2由已知求出的直径做验算 (5) 2.2.1计算气体流速 (5) 2.2.2计算旋风分离器的压力损失 (5) 2.2.3旋风分离器的工作范围 (6) 2.3进出气管径计算 (6) 三.旋风分离器的性能参数 (6) 3.1分离性能 (6) 3.1.1临界粒径d pc (7) 3.1.2分离效率 (8) 3.2旋风分离器的压强降 (8) 四.旋风分离器的形状设计 (9) 五.入口管道设计 (10) 六.尘粒排出设计 (10) 七.算例(以天然气作为需要分离气体) (11) 7.1工作原理 (11) 7.2基本计算公式 (12) 7.3算例 (13) 八.影响旋风分离器效率的因素 (15) 8.1气体进口速度 (15) 8.2气液密度差 (15) 8.3旋转半径 (15) 参考文献 (15)

旋风分离器的工艺计算 摘要:分离器已经使用十分广泛无论在家庭生活中还是工业生产,而且种类繁多每种都有各自的优缺点。现阶段旋风分离器运用比较广泛,它的性能的好坏主要决定于旋风分离器性能的强弱。这篇文章主要是讨论旋风分离器工艺计算。旋风分离器是利用离心力作用净制气体,主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,以达到气固液分离,以保证管道及设备的正常运行。在本篇文章中,主要是对旋风分离器进行工艺计算。 关键字:旋风分离器、工艺计算 一.前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。它是利用旋转气流产生的离心力将尘粒从气流中分离出来。旋风分离器结构简单,没有转动部分制造方便、分离效率高,并可用于高温含尘气体的分离,而得到广泛运用。 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。 1.1应用范围及特点 旋风分离器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,旋风分离器在净化设备中应用得最为广泛。改进型的旋风分离器在部分装置中可以取代尾气过滤设备。 1.2分离原理 旋风分离器的分离原理有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法1、2、3、6)。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。

第十二讲 旋风分离器的设计和非标设计方法

第十二讲旋风分离器的设计和非标设计方法 旋风分离器是对流干燥系统的重要组成部分。我们对此必须要足够地重视,有一些失败的对流干燥系统,不是干燥器设计不合理,而是旋风分离器设计或选用不合理。 在气流干燥和旋转闪蒸干燥系统中,有80~90%的产品是通过旋风分离器回收的,只有10~20%的产品是通过布袋除尘器回收的。如果旋风分离器‘失灵’,大量的产品就‘拥挤’到布袋除尘器中,增加布袋除尘器的阻力,造成风机风压不够,以致干燥系统‘瘫痪’。 在喷雾干燥系统中,对于喷雾干燥塔底部作为主要回收产品的系统来说,也有将近30%的产品要通过旋风分离器回收;对于喷雾干燥塔底部不收集产品的系统(如中药浸膏喷雾干燥系统),就有全部或85%以上的产品要通过旋风分离器收集。 对于振动流化床干燥系统和转筒干燥系统也有5~10%的细微颗粒要通过旋风分离器回收。 一、旋风分离器的结构和工作原理: (一)、旋风分离器的结构: 一般来说,旋风分离器由进风管,直筒,锥形筒,排灰管,锁风阀和排风管组成(见图1)。 (二)、工作原理: 当含尘气流以14~22m/s速度由进风管进入旋风分离器时,气流将由直线运动变为圆周运动。旋转气流的绝大部分沿直圆筒的内壁呈螺旋形向下,

朝锥形筒体运动。通常称此气流为‘外旋气流’。含尘气流在旋转过程中产生离心力,将重度大于气体的尘粒甩向筒内壁。尘粒一旦与筒壁接触,便失去惯性力,而靠入口速度的动量和向下的重力沿壁面下落,进入排灰管。旋转下降的外旋气流在到达锥体时,因圆锥形的收缩而向除尘器中心靠拢。根据‘旋转矩’不变原理,其切向速度不断提高。当气流到达锥体下端某一位置时,即以同样的旋转方向从旋风分离器中部,由下反转而上,继续作螺旋运动,即为‘内旋气流’。最后净化气体经排风内管排出器外,一部分未被捕获的尘粒也由此随排风排出旋风分离器。 自进气管流入的另一小部分气体,则向旋风分离器顶盖流动,然后沿排气管外侧向下流动。当到达排气管下端时,即反转向上随上升的中心气流(内旋气流)一同从排气管排出。分散在这一部分上旋气流中的尘粒也随同被带走。 二、旋风分离器的内部气流分布简介和旋风分离器的特点: 由于旋风分离器的分离,捕集过程是一种极为复杂的三维,二相湍流运动,致使理论与实验研究十分困难。.另外,设备的结构不同,几何尺寸的不一,尤其是气—固两相本身物理性质的差异,操作条件的变化等等因素,都对旋风分离器的主要性能----效率,压力损失有显著的影响.因此,至今仍无法全面掌握它们运动的内在规律,更不能从理论上建立一套完整的成熟的数学模型。我们在这里仅介绍与我们有关旋风分离器的定性和半定量的知识。 (一)、旋风分离器的内部气流分布简介: 1.气流在旋风分离器内是复杂的三维运动,器内任一点上都有切向、径向和轴向速度,其中切向速度对分离性能和压力损失影响最大。在旋风分

旋风分离器设计

准备旋风分离器的设计规范4.旋风分离器的三个视图的图纸5.时间安排:2周6.提交材料包括纸质和电子版本。设计条件:风量:900 m3 / h;允许压降:1460 Pa。旋风分离器类型:标准型(XLT型,XLP型,扩散型):8.3气体密度:1.1 kg / m3×8.3粘度:1.6×10-5pa·s3颗粒密度:1200 kg / m383粒径:6μM。旋风分离器的结构和工作原理:﹣8 ﹣3烟气从圆筒的上矩形切线入口进入,并沿圆筒的内壁旋转。8.3粒子的离心力更大,被抛到外层,气流进入内层。气体和固体可以分离。8.3在圆锥形部分中,旋转半径减小,而切向速度增加,并且气流和颗粒以向下螺旋运动运动。在锥体的底部附近,气流转向向上旋转,最后从上出口管排出。固相8:3沿着内壁落入灰斗。旋风分离器不适用于处理高粘度,高水分含量和高腐蚀性的粉尘。气体量的波动对除尘效果和设备阻力有很大影响。旋风分离器具有结构简单,成本低,没有活动部件,操作范围广,不受温度和压力的限制以及分离效率高的优点。它通常用于去除直径大于5um 的灰尘颗粒,并且还可以分离雾气。对于直径小于5um的粉尘,旋风分离器的效率不高,因此应使用袋式除尘器或湿法。它的最大缺点是阻力大,不易磨损。在满足气体处理能

力的前提下,外部螺旋内螺旋内旋风分离器的性能参数,以防止空气进入载有粉尘的气体固相净化气体,评估旋风分离器性能的主要指标是粉尘颗粒的分离性能和除尘性能。通过旋风分离器的气体的压降。①分离性能分离性能通常用理论上可以完全分离的最小粒径表示:临界粒径DC和分离效率η。A:临界粒径DC:是指可以通过旋风分离器100%去除的最小粒径。假定颗粒与气流之间的相对运动是层流;分离器中颗粒的切线速度是恒定的,等于进口处的气体速度U I。颗粒沉降的最大距离为入口的宽度b,得出临界粒径DC的估算公式:DC =(9μB /πneρSUI)1/2旋风分离器入口管的宽度b ,标准类型B = D / 4;NE:气流的有效转数,一般为0.5-3,标准型为3-5,通常取为5;U I进气速度(M / s);μ:气体粘度;ρs:固相D C的密度较小,分离效率较高。根据估算公式,DC随D的增加而增加,即效率随D的增加而降低。当气体处理能力大且需要较高的分离效果时,经常并行使用几个小型旋风分离器,这就是所谓的旋风分离器组。粘度的降低和进气速度的增加有利于分离效率的提高。B:分离效率:有两种表达方式*总效率:指气体进入旋风分离器时带入的所有颗粒中已去除颗粒的质量百分比,η0 =

旋风分离器英文文献翻译.

旋风分离器的经向入口结构的气固流场数值模拟 Jie Cui, Xueli Chen,* Xin Gong, and Guangsuo Yu ——上海华东理工大学国家煤气化重点实验室,2002.3.7 对应用在多喷嘴对置气化系统中的一个简单的气体与颗粒离分装置——旋风分离器径向入口结构改进的研究现状进行了回顾。在高效率的前提下径向入口旋流器更适合高压工业运行环境。应用计算流体动力学(CFD)技术为基础的模型来研究一种新型旋风分离器的性能。用这一方法,用雷诺应力模型来描述湍流,然后由拉格朗日随机模型来描述粒子流。该方法很好的验证了测量与预测结果之间联系的有效性。结果表明,即使速度流场不是几何对称和三维非稳态,但它是准周期的。此外,还有存在一个涡核现象在旋风分离器中。因为离心力,颗粒浓度分布是不均匀的。根据粒子的运动特征,分布区域可分为三个部分。较大的颗粒比较小的更容易分开。但超过某一临界值的大小时颗粒将不会在旋风分离器的锥形墙底部被收集,然后发生凝滞。这将导致在旋风分离器的锥形部分发生严重侵蚀。此外,分离效率与粒径的增大、径向进气旋风分离器切点的直径是小于相同的入口条件下的传统旋风分离器的。 简介 多喷嘴对置气化系统是由煤处理、煤气发生炉、煤气净化和黑色的水处理工艺组成。煤气净化在整个运行在较高的温度和压力系统中起着重要的作用。它是消除在气化炉生产的合成气才到达旋风分离器下出口之前的颗粒。多喷嘴对置气化系统净化过程是采用搅拌机、旋风器和洗涤器组合的,它与在GE气化合成气净化技术是不同的。旋风分离器的存在提高了净化效果和系统操作的稳定。旋风分离器被广泛应用于工业应用,在空气污染控制及气固分离和气溶胶采样等。随着结构简单、制造成本低和适应极其恶劣的条件下运行,旋风分离器成为在科学与工程除尘应用设备领域中最重要的装备之一。在一般情况下,传统的旋风分离器通常采用切向进气道结构。霍夫曼和Louis纷纷推出关于分离器上锥与切向入口气旋的一些设计要点。但切向进气道结构不能 适用于一些特殊的条件,如高温度下的高压等。因此,经过过去的几十年里的多次尝试,通过引入一个新的入口设计来性能提高。切向入口旋风分离器也是不适用的在多喷嘴对置气化系统。由于切向焊接阻碍了大额投资的投入、使得技术含量需求更高和存在大的风险。在本文中,采用新型旋风分离器介绍一个特殊的径向进气结构如图1所示。在高效率的前提下径向进气旋风分离器能适应产业化经营环境。不正确的分离设备的设计将是具有破坏性的,所以更好地学习设计的基础是至关重要的。因此,有必要了解气体粒子流和径向进气旋风分离的特点。然而,由于复杂的三维强的旋流流旋风,传统的研究方法无法提供的预测准确。随着现代计算流体动力学(CFD)技术的发展,现在是可以充分模拟气旋的气体流量和粒子动力学。在本文中,我们集中在与商业CFD软件FLUENT径向进气旋风气体粒子流场模拟。由模拟获得的信息通过分析和比较,与传统的旋风分离器气体粒子的径向进气旋风流场比,都可以得到验证。

旋风分离器设计

《化工设备机械基础》课程设计 旋风分离器设计 系部: 专业: 姓名: 学号: 指导教师: 时间:

前言 旋风分离器设备的主要功能是尽可能除去输送介质气体中携带的固体颗粒杂质和液滴,达到气固液分离,以保证管道及设备的正常运行。 旋风分离器采用立式圆筒结构,内部沿轴向分为集液区、旋风分离区、净化室区等。内装旋风子构件,按圆周方向均匀排布亦通过上下管板固定;设备采用裙座支撑,封头采用耐高压椭圆型封头。设备管口提供配对的法兰、螺栓、垫片等。 通常,气体入口设计分三种形式: a) 上部进气 b) 中部进气 c) 下部进气 对于湿气来说,我们常采用下部进气方案,因为下部进气可以利用设备下部空间,对直径大于300μm或500μm的液滴进行预分离以减轻旋风部分的负荷。而对于干气常采用中部进气或上部进气。上部进气配气均匀,但设备直径和设备高度都将增大,投资较高;而中部进气可以降低设备高度和降低造价。编辑本段应用范围及特点。 旋风除尘器适用于净化大于1-3微米的非粘性、非纤维的干燥粉尘。它是一种结构简单、操作方便、耐高温、设备费用和阻力较高(80~160毫米水柱)的净化设备,旋风除尘器在净化设备中应用得最为广泛。改进型的旋风分离器在部分装置中可以取代尾气过滤设备。 分离原理有两种: 一、利用组分质量(重量)不同对混合物进行分离(如分离方法1、2、3、6)。 二、利用分散系粒子大小不同对混合物进行分离(如分离方法4、5)。 分离方法有: 1、重力沉降:由于气体与液体的密度不同,液体在与气体一起流动时,液体会受到重力的作用,产生一个向下的速度,而气体仍然朝着原来的方向流动,也就是说液体与气体在重力场中有分离的倾向,向下的液体附着在壁面上汇集在一起通过排放管排出。 2、折流分离:由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡壁面上由于重力的作用向下汇集到一起,通过排放管排出。 3、离心力分离:由于气体与液体的密度不同,液体与气体混合一起旋转流动时,液体受到的离心力大于气体,所以液体有离心分离的倾向,液体附着在分离壁面上由于重力的作用向下汇集到一起,通过排放管排出。 4、丝网分离:由于气体与液体的微粒大小不同,液体与气体混合一起流动时,如果必须通过丝网,就象过筛一样,气体通过了,而液体被拦截而留在丝网上,并在重力的作用下下流至分离器底部排出。 5、超滤分离:由于气体与液体的微粒大小不同,液体与气体混合一起流动时,如果必须通过微孔过滤,就象过筛一样,气体通过了,而液体被拦截而留在微孔过滤器上,并在重力的作用下下流至分离器底部排出。 6、填料分离:由于气体与液体的密度不同,液体与气体混合一起流动时,如果遇到阻挡,气体会折流而走,而液体由于惯性,继续有一个向前的速度,向前的液体附着在阻挡填料表面上由于重力的作用向下汇集到一起,通过排放管排出。

喷雾干燥器设计计算

广东工业大学课程设计任务书 一、课程设计的内容 1.设计任务与要求 设计一喷雾干燥装置以干燥某种物料悬浮液。干燥介质为空气,热源为蒸气和电;雾化器采用旋转型压力喷嘴,选用热风-雾滴(或颗粒)并流向下的操作方式。 2.概述、原理、优点、流程 通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。 3.根据计算的最主要尺寸绘制流程示意图 二、课程设计的要求与数据 料液处理量1G =300h kg / 料液含水量1ω=80%(湿基,质量分数) 产品含水量ω=2%(湿基,质量分数) 料液密度L ρ=11003/m kg 产品密度D ρ=9003/m kg 热风入塔温度 t 1=300℃ 热风出塔温度t 2=100℃ 料液入塔温度1θ=20℃ 产品出塔温度2θ=90℃ 产品平均粒径dp =125μm 干物料比容热m c =2.5kJ/(kg.·℃) 加热蒸汽压力(表压)0.4MPa 料液雾化压力(表压)4MPa 年平均空气温度12℃ 年平均空气相对湿度 70% 注意:以上数据仅作为例子,每个学生设计时应按下表要求独立自选参数3个,并登记入点名册,所选参数完全一致的学生无效,上述示例数据不能选。 三、课程设计应完成的工作 1、通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。 2、工艺计算 3、主要设备尺寸的设计 4、绘制工艺流程 5、撰写课程设计说明书 四、课程设计进程安排

五、应收集的资料及主要参考文献 陈英南刘玉兰主编. 常用化工单元设备的设计. 华东理工大学出版社2005年第一版。 发出任务书日期:2009年6月22日 指导教师签名: 计划完成日期: 2009年7月2日 基层教学单位责任人签章: 主管院长签章: 摘要 物料在加工成为成品之前,必须除去其中超过规定的湿分。化学工业中常用干燥法除湿,它是利用热能使湿物料中的水分汽化,并排出生成的蒸汽,以获得湿含量达到要求的产品。干燥过程中物料表面的水汽压强必须大于干燥介质中的水汽的分压,两者差别越大,干燥操作进行得越快。所以干燥介质应及时将汽化的水汽带走,以维持一定的扩散推动力。

相关文档