文档库 最新最全的文档下载
当前位置:文档库 › 耐高温树脂的固化动力学分析及其力学性能

耐高温树脂的固化动力学分析及其力学性能

耐高温树脂的固化动力学分析及其力学性能
耐高温树脂的固化动力学分析及其力学性能

古建筑木结构榫卯节点分析

古建筑木结构榫卯节点分析 一、前言 中国是四大文明古国之一,在源远的历史长河中,流传下了无数珍贵的物质和文化遗产,而其中重要的一部分就是古建筑木结构。古建筑木结构在世界建筑之林中独树一帜,影响深远,是东方建筑的代表。古建筑木结构有其独特的构造方式,如高台基、榫卯连接、平摆浮搁、侧脚和升起、雀替、斗拱铺作层等,展现出良好的抗震性能。不用一钉一铆,整体体系以木构架为主要承重构件,全靠木构件之间相互搭接和穿插而建造。被称为三大“世界奇塔”之一的释迦塔,是中国现存最高最古老的木塔,历经九百多年依然屹立不倒。 二、榫卯节点 古建筑木结构总体可分为井干式、抬梁式和穿斗式等三种结构形式。梁柱是主要的受力构件,承载建筑的自身及外界荷载,而榫卯节点将梁柱构件连接到一起,形成木构架。因此,梁柱节点的榫卯连接是木结构研究中的重要部分。榫卯节点中,“榫”即为凸出木构件,“卯”为凹部木构件。榫卯节点具有不同于现代建筑结构节点的特性,其既具有很强的转动能力又能够传递一定的弯矩,具有明显的半刚性特性。常见的榫卯连接形式有直榫和燕尾榫两种。直榫中榫径与榫头同宽,多用于木构件的穿插。燕尾榫榫头大于榫径,一般用于水平木构件与竖直木构件间的连接。 三、榫卯连接工作机理 以燕尾榫为例,分析榫卯节点在地震中的受力机理。为了施工安装方便,一般卯口尺寸略大于榫头尺寸,因此榫卯节点中会存在一定的间隙。当外部震动较小时,榫卯之间发生微小转动,结构利用构件转动与接触面间的摩擦抵消震动破

坏的能量。当震动较大时,榫卯节点会产生弯矩,轴力和剪力。此时,梁受到力的作用,榫头与卯口产生挤压应力,梁上的轴力与摩擦力、挤压应力平衡。随着梁震动位移增大,榫头以榫径为支点,与卯口内壁之间发生位移。由于燕尾榫榫头宽度大于榫径宽度,位移产生时,榫头侧面受到卯口侧壁挤压应力增大,摩擦力也相应增加。相对滑移产生剪力,此时榫头顶部与卯口上部挤压作用明显,弯矩作用产生。当转角增大到一定程度时,卯口侧壁与榫头侧面的挤压应力达到极限值,会导致卯口破坏或榫头折断。 四、榫卯节点研究现状 古建筑木结构具有重要的历史和文化价值,保护工作意义非凡。榫卯节点常见的破坏模式有榫卯拔脱、榫头折断、卯口破坏等。对于榫卯节点的力学性能及加固技术方面,国内外学者已进行了大量研究。方东平等在古建筑结构特性试验研究的基础上,提出了木结构特征的三维有限元计算模型和分析方法,第一次对古建筑木结构的斗栱和榫卯节点的力学性能作定量研究;胡明等跟据木材的正交各向异性,采用广义hill屈服准则准确建立木材的本构模型,运用AYSYS有限元软件模拟并与试验对比分析碳纤维加固区木梁损伤;赵鸿铁等通过燕尾榫节点木构架的低周反复荷载试验,得到弯矩-转角滞回曲线及骨架曲线,得到榫卯节点半刚性连接特性和节点刚度退化的规律。徐明刚等以1:2.65的缩尺比例制作宫殿式木构架模型,并分别采用胶入钢筋和外贴碳纤维布的方式加固榫卯节点,进行抗震性能试验研究,得出加载初期结构刚度与强度有明显提升,后期加固效果逐渐下降;周乾等对采用马口铁、钢构件和CFRP布加固的燕尾榫节点木构架进行了振动台试验,研究得出三种加固方式都可以提高结构的抗震性能,加固效果由高到低依次为:钢构件、碳纤维、马口铁;邓大力等提出了耗能软钢的榫卯节

如何简单的区分ANSYS Workbench有限元分析中的静力学与动力学问题

如何简单的区分ANSYS Workbench 有限元分析中的静力学与动力 学问题 四川 曹文强 “力”是一个很神秘的字,是个象形字,形体极像古代的犁形,上部为犁把,下部为耕地的犁头,也形象的解释“力”含义 ,将无形不可见,不可描述的现象充分的表达了出来。 从初中物理我们就学习过,力是物体之间的相互作用,是使物体获得加速度和发生形变的外因,单独就力而言,有三个要素力的大小、方向和作用点。力学是研究物体的机械运动和平衡规律及其应用的,力学可分为静力学、运动学和动力学三部分。而今天主要是简单介绍一个静力学与动力学。 首先,静力学与动力学区别是什么? 答案很简单,一个是“静”,一个是“动”,动静的含义就是时间的问题。故,静力学实际是在研究工程结构在静载荷作用下的弹塑性变形和应力状态,以及结构优化问题,其中的静载荷是指不随时间变化的外加载荷,变化较慢的载荷,也可近似地看作静载荷。当然 “静”动力学 静力学

实际上只是相对而言,严格地说,物体相对于惯性参照系处于静止或作匀速直线运动的状态,即加速度为零的状态,也就是平衡的状态。 对于平衡的状态阐述,牛顿第一运动定律(牛顿第一定律,又称惯性定律、惰性定律)就有一个完整表述:任何物体都要保持匀速直线运动或静止状态,直到外力迫使它改变运动状态为止。 此外,静力学的有五大公理 公理一 力的平行四边形法则:作用在物体上同一点的两个力,可合成一个合力,合力的作用点仍在该点,其大小和方向由以此两力为边构成的平行四边形的对角线确定,即合力等于分力的矢量和。 公理二 二力平衡公理:作用在物体上的两个力,使物体平衡的必要和充分条件是:两个力的大小相等,方向相反,作用线沿同一直线。 公理三 加减平衡力系公理:在已知力系上加或减去任意平衡力系,并不改变原力系对刚体的作用。 公理四 牛顿第三定律:两物体间的相互作用力,大小相等,方向相反,作用线沿同一直线。 此公理概括了物体间相互作用的关系,表明作用力与反作用力成对出现,并分别作用在不同的物体上。 公理五 刚化公理:变形体在某一力系作用下处于平衡时,如将其刚化为刚体,其平衡状态保持不变。 在有限元结构仿真里面,可简化为下流程图。 静荷载 大小、方向、作用点 输入 刚度、约束、尺寸、材料输出 位移、内力、应力

酚醛树脂的固化性能(技术汇总)

酚醛树脂的固化性能(技术汇总) (一)定义 酚和醛在合成反应设备中,通过加成和适当缩聚反应所得到的树脂,通常都是分子量不高的低聚物和各种羟甲基酚的混合体系,虽然Novolaks及Resoles以如上节所述,结构上是有差异的,但从物性上它们均应为可溶及可熔。这样的可溶、可熔性使得它们便于浸渍填充增强材料制成各种类型的塑料用于生产形态及性能多种多样的塑料制品,也便于用作黏结剂、成模剂、功能性助剂等应用于耐火材料、铸造造型材料、摩擦材料、涂料、电子封 装材料等多种府用领域。 然而,酚醛树脂只有在形成交联网状(或称体型)结构之后才具有优良的使用性能,包括力学性能、电绝缘性能、化学稳定性、热稳定性等。 酚醛树脂的固化就是使其转变为网状结构的过程,表现出凝胶化和完全固化的两个阶段,这一转变不仅是物理过程,更要强调的是,这是一个化学过程。所以酚醛树脂的固化绝不是熔体冷却到熔点以下的一般意义上的固化,而是高分子化学概念上的由线(支)型分子交联(cure)成网状分子导致失去可溶、可熔性的固化。 酚醛树脂固化后,在获得优良物理性质的同时,又失去了可溶、可熔性,不再有可加工性。因而其固化过程必然应在以酚醛树脂(Novolaks或Resoles)为黏结剂组成的塑料、油漆涂料及各种各样工程材料的使用或成型过程中完成。 正由于酚醛树脂的固化过程本质上是一种化学反应过程,所以表现出以下一些特点: (1)树脂在固化前的结构因素(组成、分子量大小、反应官能度等)影响显著; (2)固化反应受催化剂、固化剂、树脂pH值等的影响显著;(3)固化过程有热效应;(4)固化速率受温度、压力的影响显著;(5)固化过程有副产物(如水、甲醛等)产生;(6)固化反应是不可逆过程。 (二)热塑性酚醛树脂固化 Novolak型树脂的结构,一般可表示为: n一般为4~12,其值大小与起始反应原料中苯酚过量多少及反应时间有关。工业生产的此类树脂视应用领域不同而控制掌握n的大小,也就是分子量的大小。例如当竹值平均为5时,其平均分子量(Mn)约在500左右。

环氧树脂的固化

实验五 环氧树脂的固化 化工系 毕啸天 2010011811 一、实验目的 1.了解高分子化学反应的基本原理及特点 2.了解环氧树脂的制备及固化反应的原理、特点 二、实验原理 热固性树脂是一类重要的树脂材料,环氧树脂(epoxy resins )就是其中的一大品种。含有环氧基团的低聚物,与固化剂反应形成三维网状的固化物,是这类树脂的总称,其中以双酚A 型环氧树脂产量最大,用途最广。它是由环氧氯丙烷与双酚A 在氢氧化钠作用下聚合而成。根据不同的原料配比,不同反应条件,可以制备不同软化点、不同分子量的环氧树脂。其通式如下: CH 2 CH CH 2 O C CH 3 CH 3 OCH 2CHCH 2 OH n C CH 3CH 3 OCH 2 CH CH 2 O 环氧树脂通常用下面几个参数表征: 1.树脂粘度 2.环氧当量或环氧值 3.平均分子量和分子量分布 4.熔点或软化点 环氧值是表征环氧树脂质量的重要指标。它表示每100g 环氧树脂中含环氧基的摩尔数。我国环氧树脂部颁牌号中的两位数字是该牌号树脂的平均环氧值×100,所以部颁牌号可以很简明的表示出该环氧树脂的主要特征。 环氧树脂的结构中末端的活泼的环氧基和侧羟基赋予树脂反应活性,双酚A 骨架提供强韧性和耐热性;亚甲基链赋予树脂柔韧性;羟基和醚键的高度极性,使环氧树脂分子与相邻界面产生了较强的分子间作用力。双酚A 型环氧树脂综合性能好,因而用途广泛,商业上称作“万能胶”。 环氧树脂在未固化前呈热塑性的线性结构,通过与固化剂发生化学反应,形成网状结构的大分子,才具有使用价值。环氧树脂固化物的性能除了取决于自身的结构特性以外,还取决于固化剂的种类。此外固化物性能还受固化反应程度的影响。采用的固化条件不同,交联密度也会不同,所得固化物的性能也各异。环氧树脂的固化剂种类很多,不同的固化剂,其交联反应也不同。 未固化的环氧树脂是粘性液体或脆性固体,没有实用价值,只有与固化剂进行固化生成交联网络结构才能实现最终用途。环氧树脂与固化剂的反应,除了一般的脂肪胺和部分脂环胺类固化剂可以在常温固化外,其它大部分脂环族胺和芳香胺类以及全部的酸酐类固化剂都需要在较高的温度下经过较长的时间才能发生固化交联反应。为了降低固化温度,使用促进剂是必要的,适用于胺类和酸酐类固化环氧树脂的促进剂可分为亲核型、亲电型和金属羧酸(或乙酰丙酮)盐三类。环氧树脂的固化反应是通过环氧基的开环反应完成的,末端基为环氧基的树脂可以和多种含活泼氢的化合物反应。活泼氢对环氧化合物的作用先是在环氧基的 氧原子上引起质子的亲电附加,生成H 3O +离子,此反应非常迅速,在此H 3O + 离子的作用下进行亲核进攻,使环氧基开环。含有活泼氢的化合物有醇、酚、羧酸、硫醇、酰胺、脲类和异氰酸酯等,上述反应并不需要消除小分子就能使链增长或交联,因此环氧树脂比其它类型

古建筑榫卯联接结构的力学合理性分析与优化

《东南大学学报(副刊)》[ISSN:1001-0505/CN:32-1178/N], 期数:2013年第4期页码: 849-855 栏目: 土木工程古建筑榫卯联接结构的力学合理性分析与优化及相应推广设计 王云飞於恒花逸扬林雨豪孙延超 摘要 简要分析了抬梁式建筑的等应力设计原理,分析了部分重要构件及重要节点,并对相应节点设计提出了改进意见。 关键词:古建筑榫卯力学分析 榫卯结构的受力特性 榫卯结构,是通过卯口与榫头的结合,以达到一种横向或纵向传力的结构,节点处往往比较薄弱,榫卯结合处一般不能承受较大的弯矩。 榫卯连接节点属于半刚性节点,在榫头拔出的过程,结构构件会产生很大的变形和相对位移,可以使结构的内力进行重新分配。 由于制作误差及木材本身特有的弹性,榫卯难以完成严格意义上紧密结合,在结构的初始受力阶段,连接节点更近似于铰接。随着节点变形增加,节点刚度亦随之增加。 由于卯口对榫头有一定握裹力,在地震作用下,榫头与卯口会形成摩擦滑移,从而消耗一部分能量,可以有效减小上部结构的地震反应,减震效果明显。 单位换算 宋尺一尺约为现在国际单位制的32cm,宋斤一斤接近于0.625kg,为方便研究,本文将长度、质量单位统一换算为现行单位。 本文的几点假定 (1)裂缝、木节等缺陷严重影响节点与构件受力性能,较小的荷载便会导致裂缝扩展与加深,在裂缝或木节处突然断裂,发生脆性破坏,非常危险。 由于本文主要进行理论计算分析,故对此不予讨论,计算时,假定所有构件使用之木材纹理皆为顺丝且无任何瑕疵。 (2)古建筑为了抗震需要,常常会使木柱上端向内收敛,谓之侧脚。实验证明,地震作用时,侧脚作用明显。以殿堂为例,一般殿堂外围木柱,面阔方向侧脚1%,进深方向侧脚0.8%,因倾斜角极小,对本文演算之影响可忽略不计,故假定建筑柱身皆为竖直。 (3)因为柱脚以管脚榫与石础相连,柱脚之间连以地栿,且榫卯联接不能提供过大的弯矩,故假定柱脚与基础铰接。由于柱端受相连的斗栱、木枋等约束,故假定柱端受侧向支撑,但竖直方向自由。 (4)因为榫卯联接近似于铰接,结构之间允许较大的相对转角,因此结构体系对地基沉降并不敏感,是以假定微量的基础沉降不会使结构产生相应的附加应力。 (5)考虑到木材瞬时持荷的能力高于长久持荷的能力,计算时不考虑木材的塑性开展,即自中和轴到构件边缘,应力成线性分布,且构件边缘应力不高于

环氧树脂特性

环氧树脂 目录 材料简介应用特性类型分类使用指南国内主要厂商环氧树脂应用领域环氧树脂行业 材料简介 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。 应用特性 1、形式多样。各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。 2、固化方便。选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。 3、粘附力强。环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。 4、收缩性低。环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。 5、力学性能。固化后的环氧树脂体系具有优良的力学性能。 6、电性能。固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。 7、化学稳定性。通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。 8、尺寸稳定性。上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和耐久性。 9、耐霉菌。固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。 类型分类 根据分子结构,环氧树脂大体上可分为五大类: 1、缩水甘油醚类环氧树脂 2、缩水甘油酯类环氧树脂 3、缩水甘油胺类环氧树脂 4、线型脂肪族类环氧树脂 5、脂环族类环氧树脂 复合材料工业上使用量最大的环氧树脂品种是上述第一类缩水甘油醚类环氧树脂,而其中又以二酚基丙烷型环氧树脂(简称双酚A型环氧树脂)为主。其次是缩水甘油胺类环氧树脂。 1、缩水甘油醚类环氧树脂 缩水甘油醚类环氧树脂是由含活泼氢的酚类或醇类与环氧氯丙烷缩聚而成的。

华南理工-理论力学静力学与动力学习题 主观题

第一章 静力学基础 一. 填空题 1.理论力学的任务是研究物体作 机械运动 的规律 2.平衡是指 (相对于地球)静止或作匀速直线运动 . 3.力是物体之间 相互的机械 作用,这种作用使物体的 运动 或 形状 发生改变。 4.刚体是受力作用而 不变形 的物体。 5.刚体受到两个力作用而平衡的充分必要条件是 此两力等值、反向、共线 。 6.对刚体而言,力的三要素是大小、方向、作用线。 7.对刚体而言,力是 物体位移 矢量。 第二章 平面汇交力系与平面力偶系 一、填空题 1.平面汇交力系平衡的几何条件是 力多边形自行封闭 。 2.同一平面内两力偶的等效条件是 。 3.研究平面汇交力系时, 采用两种方法, 即 几何法 和 解析法 。 4.一个力F 在某轴上的分力是 量、投影是 量。 5.力偶使刚体转动的效果与 矩心位置 无关,完全由 力偶矩 决定。 6.力偶可在作用平面内任意 移动 ,也可向平行平面 移动 。 三、计算题 1.不计杆重,求图示结构中AB 、AC 两杆所受的力。 C A B

第三章 平面任意力系 一、填空题 1.平面任意力系平衡的充要条件为:该力系的主矢 和 主矩 同时为零。 2.平面平行力系独立的平衡方程有 3 个,可解 3 个未知量的问题。 3.作用在刚体上A 点的力,F 可以等效平移到刚体上任意点B ,但必须附加一个力偶,此 附加力偶的矩等于 。 4.平面任意力系向一点简化,需要将力系中的各力 简化 到作用面内选定的一点上,该点称为 简化中心 。 三、计算题 1.求图示简支梁A 、B 处的约束力。 )(2/7, )(2/9), (4↓=↑=→=qa qa qa F F F B Ay AX

中国木结构古建筑榫卯连接节点抗震性能研究进展

中国木结构古建筑榫卯连接节点抗震性能研究进展 【摘要】:榫卯连接是中国木结构古代建筑的重要特征。由于在地震作用下,梁柱等构件一般会处于弹性工作状态,节点的抗震性能就决定了整个建筑的安全,因此该领域已成为古建筑保护工作的研究热点方向。对中国古代建筑榫卯节点抗震性能研究进展情况进行了梳理,并提出了相应的见解。 【关键词】:木结构古建筑;榫卯连接节点;抗震性能;研究 引言 中国木结构古建筑具有良好的抗震性能,迄今尚存有许多已逾千年的建筑遗存,虽经历了许多地震灾害作用而仍能挺然直立的事实就是明证。一个结构减震耗能能力的大小,是其抗震性能好坏的重要标志。榫卯连接方式与斗棋结构是中国木结构古建筑的主要结构特征,也是中国古建筑区别于世界它系建筑结构的主要标志。在地震作用下,作为重要结构特征的榫卯节点与斗棋的抗震机制是一个值得深入研究的问题。 一、榫卯结构及其分类 榫卯结构是建筑或家具中相连接的两构件上采用的一种凹凸处理接合方式。凸出部分叫榫(或榫头);凹进部分叫卯(或榫眼、榫槽)。这种形式在我国传统建筑与家具中达到很高的技艺水平,同时也常见于其他木、竹、石制的器物中。我国古建筑家具把各个部件连接起来的“榫卯”做法,是建筑家具造型的主要结构方式。各种榫卯做法不同,应用范围不同,但它们在每处建筑或每件家具上都具有形体构造的“关节”作用 几十种不同的“榫卯”,按构合作用来归类,大致可分为三大类型: 一类主要是作面与面的接合,也可以是两条边的拼合,还可以是面与边的交接构合。如“槽口榫”、“企口榫”、“燕尾榫”、“穿带榫”、“扎榫”等。如图(1)所示: 图(1) 另一类是作为“点”的结构方法。主要用于作横竖材丁字结合,成角结合,交叉结合,以及直材和弧形材的伸延接合。如“格肩榫”、“双榫”、“双夹榫”、“勾挂榫”、“锲钉榫”、“半榫”、“通榫”等等。如图(2): 图(2)

环氧树脂的固化原理

环氧树脂的固化原理 环氧树脂硬化反应的原理,目前尚不完善,根据所用硬化剂的不同,一般认为它通过四种途径的反应而成为热固性产物. (1)环氧基之间开环连接; (2)环氧基与带有活性氢官能团的硬化剂反应而交联; (3)环氧基与硬化剂中芳香的或脂肪的羟基的反应而交联; (4)环氧基或羟基与硬化剂所带基团发生反应而交联. 不同种类的硬化剂,在硬化过程中其作用也不同.有的硬化剂在硬化过程中,不参加到本分子中去,仅起催化作用,如无机物.具有单反应基团的胺、醇、酚等,这种硬化剂,叫催化剂.多数硬化剂,在硬化过程中参与大分子之间的反应,构成硬化树脂的一部分,如含多反应基团的多元胺、多元醇、多元酸酐等化合物. 1、胺类硬化剂 胺类硬化剂—般使用比较普遍,其硬化速度快,而且黏度也低,使用方便,但产品耐热性不高,介电性能差,并且硬化剂本身的毒性较大,易升华.胺类硬化剂包括;脂肪族胺类、芳香族胺类和胺的衍生物等.胺本身可以看作是氮的烷基取代物,氨分子(NH3)中三个氢可逐步地被烷基取代,生成三种不同的胺.即:伯胺(RNH2)、仲胺(R2NH))和叔胺(R3N). 由于胺的种类不同,其硬化作用也不同: (1)伯胺和仲胺的作用 含有活泼氢原子的伯胺及仲胺与环氧树脂中的环氧基作用.使环氧基开环生成羟基,生成的羟基再与环氧基起醚化反应,最后生成网状或体型聚合物. (2)叔胺的作用与伯胺、仲胺不同,它只进行催化开环,环氧树脂的环氧基被叔胺开环变成阴离子,这个阴离子又能打开一个新的环氧基环,继续反应下去,最后生成网状或体型结构的大分子. 2、酸酐类硬化剂 酸酐是由羧酸(分子结构中含有羧基—COOH)与脱水剂一起加热时,两个羧基除去一个水分子而生成的化合物. 酸酐类硬化剂硬化反应速度较缓慢,硬化过程中放热少,使用寿命长,毒性较小,硬化后树脂的性能(如力学强度、耐磨性、耐热性及电性能等)均较好.但由于硬化后含有酯键,容易受碱的侵蚀并且有吸水性,另外除少数在室温下是液体外.绝大多数是易升华的固体,而且一般要加热固化. 酸酐和环氧树脂的硬化机理,至今尚未完全阐明,比较公认的说法如下: 酸酐先与环氧树脂中的羟基起反应而生成单酯,第二步由单酯中的羟基和环氧树脂的环氧基起开环反应而生成双酯,第三步再由其中的羟基对环氧基起开环作用,生成醚基,所以可得到既含醚键,又含有酯基的不溶不熔的体型结构. 除了上述反应之外,第一步生成的单酸中的羧基也可能与环氧树脂分子上的羟基起酯化反应,生成双酯.但这不是主要的反应. 3、树脂类硬化剂 含有硬化基团的一NH一,一CH2OH,一SH,一COOH,一OH等的线型合成树脂低聚物,也可作为环氧树脂的硬化剂.如低分子聚酰胺.酚醛树脂,苯胺甲醛树脂,三聚氰胺甲醛树脂,糠醛树脂,硫树脂,聚酯等.它们分别能对环氧树脂硬化物的耐热性,耐化学性,抗冲击性,介电性,耐水性起到改善作用.常用的是低分子聚酰胺和酚醛树脂. (1)低分子聚酰胺不同于尼龙型的聚酰胺.它是亚油酸二聚体或是桐油酸二聚体与脂肪族多元胺,如乙二胺、二乙烯三胺反应生成的一种琥珀色粘稠状树脂.由于原材料的性质,反应组分的配比和反应条件不同,低分子聚酰胺的性质差别很大.它们的分子量在500~9000之间,有熔

环氧树脂固化剂

环氧树脂固化剂

固化剂 1.脂肪族多元胺 1.1 乙二胺(EDA) 由1,2-二氯乙烷(EDC)和氨反应制备。还可由一乙醇胺(MEA)和氨反应制备乙二胺。 对于脂肪胺,伯胺基与环氧的反应速度约为仲胺的2倍。但环氧基与伯胺的反应与生成的仲胺基和环氧基的反应几乎是同时进行的。伯胺易与空气中的二氧化碳反应生成白色的固体碳酸铵盐,不能与环氧基发生反应,但加热可以放出二氧化碳,可继续反应。 1.2 二亚乙基三胺(DETA) 在25℃下24小时内就能充分固化,7d可以达到最高值,加热进行后固化,其性能可以得到进一步改善。 二亚乙基三胺的粘度非常低,与空气接触生产白烟,环氧当量为185的双酚A型环氧树脂其计算用量为11%。在其化学计算量的当量点附近有最大的交联密度。而实际用量为化学计算量的75%即可,有助于减少固化放热。 以二亚乙基三胺固化的环氧树脂有良好的耐化学药品性。 二亚乙基三胺的变性物: 二亚乙基三胺与环氧乙烷(EO)、环氧丙烷(PO)的加成物。生成N,N’-二羟乙基二亚乙基三胺,由于加成物中含有羟基,加速了环氧树脂的固化速度,其适用期比二亚乙基三胺要短。固化放热温度随羟乙基化程度提高而降低。且改善了固化剂对树脂的溶解性,降低

了固化剂的挥发性和毒性。但其吸湿性变强。 二亚乙基三胺与丙烯晴的加成反应成为氰乙基化反应,加成后反应活性降低,适用期增长,受湿度的影响也变难。随着氰乙基化程度的增加,最高放热温度降低,树脂固化物的耐溶剂性得到改善,特别是耐氯化溶剂性能,但固化物电性能有所下降。 二亚乙基三胺与甲醛或多聚甲醛的反应称作羟甲基化反应,可制成一种低毒性的固化剂,适用期较短,适用于快速固化的要求。 二亚乙基三胺与环氧树脂及单环氧化物反应,生成具有羟基和氨基的胺加成物,由于加成物的分子量较大,挥发性小,没有胺臭味,毒性亦低,与树脂的配合量较多,称量不严格,生成的羟基具有促进其固化的作用,由于胺加成物的粘度高,使适用期变短。 二乙胺基三胺与酚、醛的反应成为曼尼期反应,三元反应生成物成为曼尼期碱。由于反应生成物的分子结构里含有酚羟基、氨基、仲胺基使得该类固化剂固化速度快,可在低温、潮湿或水下固化。 二亚乙基三胺与有机酸、有机酸酯的反应加成物 二亚乙基三胺与桐油、丙烯酸酯、水杨酸甲酯、癸二酸、二元羧酸酯、环氧油酸乙酯、环氧树脂、二酮丙烯酰胺的加成物。 三亚乙基四胺和四亚乙基五胺及其变性物,二者的蒸汽压比二亚

榫卯结构种类及图片详解

榫卯结构种类及图片详解 Prepared on 22 November 2020

榫卯结构在中国的运用具有悠久的历史,是中国的一大特色。许多明清时期的红木家具距今已几百年的历史了,虽略显陈旧,但家具整体的结构仍然完好如初,其中,榫卯结构可是功不可没的。传统红木家具各连接部位,一律以榫卯相接,不仅严谨、牢固,还有装饰作用。榫卯结构的种类很多,就其使用的部位、功能和形态而言,大体可分为明榫、暗榫、套榫、夹头榫、插肩榫、抱肩榫、钩挂榫、燕尾榫、楔钉榫及走马销等。 燕尾榫结构图 燕尾榫:相传为鲁班发明,被后世尊称为“万榫之母”,是明清家具中不可缺少的榫卯连接法。燕尾榫是指两块平板直角相接时,为了防止受拉力时脱开,将榫头做成梯台形,形似燕尾,故名“燕尾榫”。

明榫结构图 明榫:制作好家具之后,在家具的表面能看到榫头的称为明榫。明榫多用在桌案板面的四框和柜子的门框处。 暗榫结构图 暗榫:制作好家具之后,在家具的表面不能看到榫头的称为暗榫,也称“闷榫”。暗榫的形式多种多样,就直材角结合而言,就有单闷榫和双闷榫之分。明式和靠椅的椅背搭脑和扶手的转角处常用暗榫。

楔钉榫结构图 楔钉榫:是用来连接弧形弯材的常用榫卯结构,它把弧形材截割成上下两片,将这两片的榫头交搭,同时让榫头上的小舌入槽,使其不能上下移动。然后在搭扣中部剔凿方孔,将一枚断面为方形,一边稍粗,一边稍细的楔钉插贯穿过去,使其不能左右移动。圈椅、的扶手一般都是使用楔钉榫。 套榫结构图套榫:椅子搭脑与腿料连 接时不用夹头榫,而是将腿料做成方形出榫,搭脑也相应的挖成方形榫眼,然后将二者套接,这类榫卯结构称为“套榫”。

浅述数字图像相关方法在土木工程测量中的应用

浅述数字图像相关方法在土木工程测量中的应用 发表时间:2019-07-23T15:48:31.213Z 来源:《基层建设》2019年第13期作者:彭连光 [导读] 摘要:随着我国社会经济的快速发展以及科学技术的日新月异,土木建设工程规模不断扩大化,结构更为复杂,如大型结构、桥梁等,导致土木工程测量需求日益增多。 身份证号码:37152519840910XXXX 摘要:随着我国社会经济的快速发展以及科学技术的日新月异,土木建设工程规模不断扩大化,结构更为复杂,如大型结构、桥梁等,导致土木工程测量需求日益增多。因此,提高土木工程测量精度和简化测量操作流程是亟待解决的问题。本文以数字图像相关技术为研究对象,分析其在土木工程测量中的应用前景,本文的研究成果有助于推动该技术在工程测量领域的发展。 关键词:数字图像相关方法;土木工程测量;应用研究 数字图像相关方法是一种现代化全场光学测量技术,具有非接触、非干涉的特点,已广泛的应用于航空航天、土木工程测量以及物体形变监测等领域[1]。该方法首先运用在二维测量中,采用单个摄像机进行测量,通过比较变形前后同一平面物体表面的两幅数字图像,匹配其对应点从而得到像面位移和应变。但在实际测量中,由于单个相机的局限性,要求相机垂直于被测物表面,同时被测物体表面的离面位移会对测量带来明显的误差,因此二维数字图像相关方法通常应用于平面物体的面内变形测量。而使用两个摄像机基于双目立体视觉原理的三维数字图像相关方法克服了这一局限,通过标定相机与物体之间的相对位置关系,可以重构出各种形状物体的三维形貌。数字图像相关方法是立足于数字图像处理技术和数值分析技术的光学测量技术,是通过拍摄并匹配变形前后数字图像中的各个控制点,获得物体表面形变信息的技术,与其他测量技术相比而言,该技术具有更加简便的操作流程,能够适用于更加宽泛的使用环境,所获得的精度也更高,因此,在土木工程测量中的应用越来越普遍。 1 数字图像相关方法的应用概况 随着光学信息技术、计算机技术、图像识别技术的快速发展,数字图像相关方法得到了快速发展,逐渐因其测量精度高、非接触全场测量、环境要求低、操作简便等优点而应用于各领域中,主要包含了以下几个方面:(1)对各种材料形变特征和力学性能的直接测量。在土木工程中常用到类型较多的金属材料、复合材料等,那么这些材料是否满足土木工程建设的基本需求,需要进行相应的测量实验。将数字图像相关方法应用于土木工程相关材料的表面形变和力学性能监测,可以获得全场形变信息,进而借助数值分析模块可以获得材料的力学参数,如热胀系数、断裂韧性、弹性模量、应力强度因子、泊松比、表面粗糙度等[2]。因此,该技术的应用推进了土木工程建设中对材料各种参数的精确把控,提高了材料的综合利用价值。(2)在工程结构实际测量中的应用。评估土木工程结构、构件的安全性和可靠度是评估土木工程建设质量的指标之一,将数字图像相关方法应用于工程结构监测中,可以获得结构位移或者应变形变信息,如大型桥梁墙式基础参数的监测等,在此基础上评估结构、构件的安全性和可靠度。(3)借助有限元分析方法获得物体实际表面的形变信息。土木工程建设中通常要借助有限元分析方法进行实验设计结构是否合理,将数字图像相关技术融合至有限元模型中,就可以实现理论、仿真、实验三者数据参数的紧密联系,进而提高模型改进质量,完善建设模型,对提高土木工程建设整体质量有着积极的推动意义。 2 数字图像相关方法在土木工程测量中的应用 数字图像相关方法在土木工程测量中的应用极为广泛,本文着重介绍该方法在木结构榫卯节点抗拉性能监测中的应用。众所周知,木结构建筑是我国具有民族特色的传统建筑物,一栋建筑物在没有一颗钉子的前提下可以经历数百年屹立不倒,显示出木结构强大的可靠性[3]。木结构中榫卯节点是建筑物承载的重要枢纽,因此,在研究木结构建筑物的力学性能时必须研究榫卯节点的力学特征。 2.1 应用条件分析 本文选用常用的杉木作为实验材料,按照传统木结构模型进行缩小比例尺制作,主要研究榫卯节点的力学性能变化以及形变信息。此外,纤维增强复合材料FRP 具有较高的强度、轻的质量等而广泛用于维修古建筑,在外侧涂抹防火涂料就可以实现既加固木质建筑物的目的,又达到了不破坏建筑外观的目的。因此,本文使用该材料作为研究实验的对照组,此外使用钢材对木质建筑物进行加固也是常用的方法之一,本文选用 Q235 钢进行实验。 2.2 加载及测量方案制定 为了尽可能的模拟木质建筑物构架柱脚的实际载荷,在底部增加单向铰支座,柱顶施加竖向载荷 20k N,并保持竖向载荷恒定不变。在实验过程中逐渐枋下侧单调向上加载,直至构建破坏为止。根据数字图像相关方法测量的参数要求,本文选择使用三维数字图像相关系统,并在实验模具表面用不同颜色的喷漆喷涂制成标志点,实验时采用 LED 直流光即可[4]。 2.3 实验结果对比分析 根据上述实验方案同步进行不同材料的实验,最终获得如下结论:对于木质榫卯节点而言,由于木材自身具有特异性,因此在载荷加载过程中的形变呈现出一定的差异性,但总体上破坏形态是一致的,也意味着木质结构的榫卯节点承载能力是大体相当的;随着载荷量的逐渐增加,榫卯节点边缘大约有 2.5mm 的拔出量,随着控制位移量的增加,榫头边缘的拔出量进一步增加。对纤维增强复合材料 FRP 制作成的节点而言,其形变特征以及拔出量与木质结构的榫卯节点变化差异较大,在载荷加载开始,节点转动刚度较大,承载力呈直线上升,随着载荷量的不断增加,纤维增强复合材料 FRP 榫卯节点的粘结胶逐渐剥落,当载荷持续增大时,纤维增强复合材料 FRP 材料逐渐出现褶皱并逐渐开始撕裂,进而承载能力下降[5]。综上所述,虽然纤维增强复合材料 FRP 材料属于脆性材料,但是由于木质材料具有独特的力学性能,将纤维增强复合材料 FRP 材料应用于木质结构建筑物的加固中,可以增强该材料的承载能力和延性。对照实验组使用钢材进行加固实验,当载荷加载开始时,加载处的承载力急剧上升,使得榫卯节点出现挤压现象,当载荷持续加载时,榫头上部挤压区变形较大,且钢箍在枋端连接段逐渐滑移,直至破坏。通过实验可知,采用钢材加固木质结构房屋,可以提高榫卯节点的极限承载力,虽然后期出现显著的滑移现象,但采用该种方法加固,可以进行拆卸,因此具有一定的应用前景。 3 结束语 综上所述,数字图像是一种非接触、全场变形测量技术,其相关方法在土木工程测量中具有极为宽泛的应用前景,在建筑物表面形变监测以及实验建筑材料力学参数等方面具有精度高、非接触、全场测量、环境适用性好、操作简便的优势,并且在实验过程中可以获得全场形变信息,具有广阔的应用前景。本文主要分析了数字图像相关方法在土木工程测量木质结构榫卯节点力学性能研究的应用,搭建适用于工程实际测量的自标定数字图像相关系统,并设计精度实验,通过两组对照组的研究表明,采用纤维增强复合材料 FRP 材料对木质结构

环氧树脂固化剂种类大全

一、脂肪多元胺型固化剂 环氧树脂固化物具有优良的机械性能、电器性能、耐化学药品性能,因而得到广泛的应用。固化剂是环氧树脂固化物必需的原料之一,否则环氧树脂就不会固化。为适应各种应用领域的要求,应使用相应的固化剂。固化剂的种类很多,现介绍于下: 乙二胺 EDA H2NCH2CH2NH2 分子量60 活泼氢当量15 无色液体每100份标准树脂用6-8份性能:有毒、有剌激臭味,挥发性大、粘度低、可室温快速固化。用于粘接、浇注、涂料。该类胺随分子量增大,粘度增加,挥发性减小,毒性减小,性能提高。但它们放热量大、适用期短。一般而言它们分子量越大受配合量影响越小。长期接触脂肪多元胺会引起皮炎,它们的蒸汽毒性很强,操作时须十分注意。 二乙烯三胺 DETA H2NC2H4NHC2H4NH2 分子量103 活泼氢当量20.6 无色液体每100份标准树脂用8-11份。固化:20℃2小时+100℃30分钟或20℃4天。性能:适用期50克25℃45分钟,热变形温度95-124℃,抗弯强度1000-1160kg/cm2,抗压强度1120kg/cm2,抗拉强度780kg/cm2,伸长率5.5%,冲击强度 0.4尺-磅/寸洛氏硬度99-108。介电常数(50赫、23℃)4.1 功率因数(50赫、23℃)0.009 体积电阻2x1016 Ω-cm 常温固化、毒性大、放热量大、适用期短。 三乙烯四胺 TETA H2NC2H4NHC2H4NHC2H4NH2 分子量146 活泼氢当量24.3 无色粘稠液体每100份标准树脂用10-13份固化:20℃2小时+100℃30分钟或20℃7天。性能:适用期50克25℃45分钟,热变形温度98-124℃,抗弯强度950-1200kg/cm2,抗压强度1100kg/cm2,抗拉强度780kg/cm2,伸长率4.4%,冲击强度 0.4尺-磅/寸洛氏硬度99-106。常温固化、毒性比二乙烯三胺稍低、放热量大、适用期短。 四乙烯五胺 TEPA H2NC2H4(NHC2H4)3NH2 分子量189 活泼氢当量27 棕色液体每100份标准树脂用11-15份性能同上。 多乙烯多胺 PEPA H2NC2H4(NHC2H4)nNH2 浅黄色液体每100份标准树脂用14-15份性能:毒性较小,挥发性低、适用期较长、价廉。 二丙烯三胺 DPTA H2N(CH2)3 NH(CH2)3NH2 分子量131 活泼氢当量26 浅黄色液体每100份标准树脂用12-15份性能同TETA。 二甲胺基丙胺 DMAPA (CH3)2N (CH2)3NH2 低粘度透明液体每100份标准树脂用4-7份毒性较大,具有固化和催化两个反应,粘附性能良好,柔性也好,适用期长。 二乙胺基丙胺 DEAPA (C2H5)2N (CH2)3NH2 分子量130 活泼氢当量65 低粘度透明液体每100份标准树脂用4-8份固化:60-70℃4小时。性能:适用期50克25℃4小时,

运动学、静力学、动力学概念

运动学、静力学、动力学概念 运动学 运动学是理论力学的一个分支学科,它是运用几何学的方法来研究物体的运动,通常不考虑力和质量等因素的影响。至于物体的运动和力的关系,则是动力学的研究课题。 用几何方法描述物体的运动必须确定一个参照系,因此,单纯从运动学的观点看,对任何运动的描述都是相对的。这里,运动的相对性是指经典力学范畴内的,即在不同的参照系中时间和空间的量度相同,和参照系的运动无关。不过当物体的速度接近光速时,时间和空间的量度就同参照系有关了。这里的“运动”指机械运动,即物体位置的改变;所谓“从几何的角度”是指不涉及物体本身的物理性质(如质量等)和加在物体上的力。 运动学主要研究点和刚体的运动规律。点是指没有大小和质量、在空间占据一定位置的几何点。刚体是没有质量、不变形、但有一定形状、占据空间一定位置的形体。运动学包括点的运动学和刚体运动学两部分。掌握了这两类运动,才可能进一步研究变形体(弹性体、流体等)的运动。 在变形体研究中,须把物体中微团的刚性位移和应变分开。点的运动学研究点的运动方程、轨迹、位移、速度、加速度等运动特征,这些都随所选的参考系不同而异;而刚体运动学还要研究刚体本身的转动过程、角速度、角加速度等更复杂些的运动特征。刚体运动按运动的特性又可分为:刚体的平动、刚体定轴转动、刚体平面运动、刚体定点转动和刚体一般运动。 运动学为动力学、机械原理(机械学)提供理论基础,也包含有自然科学和工程技术很多学科所必需的基本知识。 运动学的发展历史 运动学在发展的初期,从属于动力学,随着动力学而发展。古代,人们通过对地面物体和天体运动的观察,逐渐形成了物体在空间中位置的变化和时间的概念。中国战国时期在《墨经》中已有关于运动和时间先后的描述。亚里士多德在《物理学》中讨论了落体运动和圆运动,已有了速度的概念。

从民间家具看中国榫卯结构之美

从民间家具看中国榫卯结构之美 目前国内欣赏古典家具的价值标准,基本还停留在对黄花梨和紫檀等硬木材料花纹的审美趋向、造型的比例协调和表面漆面的风化和包浆上,大抵不超过以上三种。这些只是停留在对家具表面的视觉来评判的价值标准,而没有从传统文化的诸多领域、哲学思想、军事理论、文学艺术、生活习惯等方面,多视角地分析和研究。虽然古人在《营造法式》、《鲁班经》、《长物志》中有描写木做工艺的论述,但是局限于“材美工巧”上。榫卯结构并没有作为一种科学发明在家具中加以记载。欣赏中国古典家具的精神,笔者一直认为中国家具除“材美工巧”之外,真正组成家具灵魂的是榫卯结构。 科学合理性的榫卯设计是它永恒的魅力。中国榫卯的起源可能比汉字还要早。早在7000年前的河姆渡文化中,榫卯技术已经出现在原始先民们居住的木结构的房子中。榫卯是中国建筑中最早具有科学设计意义的语言,在我们民族文明发展史上,如同汉字的发明源远流长、自成体系。家具发展规律是传承了传统建筑木结构原理。传统建筑的精华是以无与伦比、错综复杂的榫卯斗拱设计而赋予它生命的。经典的家具如同建筑的浓缩,让我们更容易体会先民们的智慧。 欣赏家具的榫卯,不像欣赏家具外表造型那样容易。它是一种理性、内在、似乎带有一种神秘和抽象符号隐藏在家具中。而且大部分古典家具的榫卯结构是隐藏在外表造型之内,古代工匠们留下大量实物资料,但在理论上并没有给我们解释其深邃的含义。笔者近几年在对家具的浓厚兴趣中不断发现,以明式黄花梨为代表的中国文人气质在造型线条上讲究韵律,材料上讲究花纹意向的完美。而以山西中原地区为代表的软木家具,大漆的自然风化和包浆更具有宋元高古风格。南北两地的代表性古典家具,都有一个共同的特点,似隐若现,变幻莫测,成熟科学的榫卯结构。当你在使用它、品味它造型外表的同时,也不断在询问自己,是什么赋予它永恒?经过百年的风风雨雨,那神韵是否尤在?即中国独特的榫卯设计。设计一词似乎是现代从西方传来的词。大约在20世纪初德国的包豪斯工业革命,对一切工业革命的成果,如建筑、室内家用产品的创新,都概用设计一词。设计从此作为一种理性的艺术被现代世界广泛接受。然而中国古代虽然没有现代意义的设计一词,但是关于“设”和“计”二字,有久远的历史描述,并广泛地应用在政治、军事上。“设”字在汉语中有筹划、策略的意思。两千多年的《孙子兵法》,此书英语翻译成《Art of War》,直译成中文《战争的艺术》。不难看出外国人把中国古代的战术智谋当作一门艺术。成书于明清之际的《三十六计》(也称《秘本兵法》),更是体现出中国人在军事中应用阴阳、刚柔、奇正、攻守、主客、劳逸等对立关系的互相转化,所设每一计都体现出极强的辩证哲理。中国古代把“设”和“计”大多形容在政治和军事上,其含义是怎样利用好计谋、阴阳、刚柔,达到智获全胜、安平四番、万国来朝的局面。然而在家具的榫卯结构上不外乎“榫头卯眼阴阳互动”的关系。从这个层面上来说,家具的榫卯结构是从中国古代哲学中,引伸为自然科学,使它更合理地用一种设计表现形式在家具中广泛应用的典范实证。 其一,科学合理性。 中国古典家具的榫卯设计不同于传统手工艺品,如玉雕、牙雕、鼻烟内画壶等,完全是技巧的纯熟,为了装饰而装饰,取悦于人们的视觉快感。而家具中的设计必须在满足人们的视觉美感后,还要求科学合理性,使其长久的耐用。这就要求每个木料榫头卯眼,必须根据家具的造型组合,从力学上每个木料所受到的承受力,在古代木工师傅的多年目测经验中,能准确地判断出来。有时一个木料要从不同的角度、方位和三到四个木料相交。如四方禅凳,每个腿必须跟腰部牙板成45度立面相交,而腿的顶端又必须做出两个精确榫头和坐面大边和抹头相接,大边和抹头又必须做复杂的阴阳套榫(棕榫)自身相接,然后再做两个卯眼和腿柱榫头相接,凳面的面板又通过穿带使其受力均匀到大边抹头,然后再集中到腿柱,其科

木结构梁柱间榫卯连接节点性能研究进展

第33卷 第5期 木材工业 2019年9月 Vol. 33 No.5 CHINA WOOD INDUSTRY September 2019 ·25· 收稿日期:2018-09-04;修改日期:2018-10-12 基金项目:中央级公益性科研院所基本科研业务费专项资金“典型榫卯连接的受力性能及增强研究”(CAFYBB2017SY036)。 作者简介:武国芳(1986—),男,助理研究员。Email: g.f.wu@ https://www.wendangku.net/doc/bb12450714.html, 。 综 述 DOI:10.19455/j.mcgy.20190506 木结构梁柱间榫卯连接节点性能研究进展 武国芳,钟 永,龚迎春,任海青 (中国林科院木材工业研究所,北京 100091) 摘要:为了促进传统营造技术在现代木结构中的传承应用与创新发展,梳理木结构梁柱间榫卯连接节点、榫卯连接木构架的力学性能及榫卯节点加固方法的研究现状,分析现有研究存在的问题,结合现代工程木产品及加工技术的发展现状,提出梁柱间榫卯连接节点在现代木结构中的应用前景及研究方向。 关键词:木结构;榫卯;梁柱连接;半刚性;加固 中图分类号:S781.6;TU531.1;TU366.2 文献标识码:A 文章编号:1001-8654(2019)05-0025-05 Review of Performance of Tenon-Mortise Joints between Column and Beam in Timber Structures WU Guo-fang ,ZHONG Yong ,GONG Ying-chun ,REN Hai-qing (Research Institute of Wood Industry ,Chinese Academy of Forestry ,Beijing 100091,China ) Abstract :The research status of structural performance of tenon-mortise joints ,timber frames connected with tenon-mortise joints and reinforcement of the joints were reviewed. The relevant problems were also analyzed. Taking into development of modern engineered wood materials and manufacturing technology ,the application prospect of the joints in modern timber structure and the future research needs were presented, in order to promote the inheriting of traditional timber structures and innovation of modern timber structures. Key words :timber structure ;tenon-mortise joint ;column and beam connection ;semi-rigid joint ;reinforcement 榫卯是榫头和卯口相互咬合、搭接而形成的一种连接形式。“榫”是构件凸出的部分;“卯”是构件凹进去的部分,也称为“榫眼”。榫卯连接方式是我国古代木结构建筑的重要特征,历史悠久,也是我国传统营造技术与文化的精髓。考古研究发现,早在新石器时代,榫卯就出现在木结构房屋中[1]。随着人类文明的发展,形式、功能各异的榫卯连接 节点被创造出来,有些榫头和卯口形状规则,构造简单;有些则构造非常复杂,如斗拱就是一个复杂的榫卯系统。榫卯节点的分类及详细构造,在《中国古建筑木作营造技术》[2]、《中国古代建筑技术史》[3]和《清式营造则例》[4]等专著中有详细论述。 传统木结构及榫卯连接的工作性能优良,使得许多古代木结构建筑一直保存至今。在各种榫卯连接节点中,梁柱之间的直榫、燕尾榫及箍头榫等最为重要,对结构抗侧性能有决定性作用。然而,榫卯连接也因一些缺点而受到制约,如加工费时费力、对构件尺寸精度要求高、设计加工过度依赖经验等。进入20世纪后,随着销钉、植筋等新型连接的发明

相关文档
相关文档 最新文档