文档库 最新最全的文档下载
当前位置:文档库 › 无线通信原理 基于matlab的ofdm系统设计与仿真

无线通信原理 基于matlab的ofdm系统设计与仿真

无线通信原理 基于matlab的ofdm系统设计与仿真
无线通信原理 基于matlab的ofdm系统设计与仿真

基于matlab的ofdm系统设计与仿真

摘要

OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。

本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理

1.1多载波传输系统

多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。

图1-1多载波系统的基本结构

多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。

1.2正交频分复用

OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?????=?

+m n m n m n T T tdt m t n T t t ωω 其中ω

π

2=T (1-1)

根据上述理论,令N 个子信道载波频率为)(1t f ,)(2t f ,……,)(t f N ,并使其满足下面的关系:),1(,/0N k T k f f N k ?=+=,其中N T 为单元码持续时间。单个子载波信号为:

?

??<≤=others T t t f t f N k k 00)2cos()(π (1-2) 由正交性可知:????≠==n m n m T dt t f t f N m n 0)(*)( (1-3)

由式(1-3)可知,子载波信号是两两正交的。这样只要信号严格同步,调制出的信号严格正交,理论上接收端就可以利用正交性进行解调。OFDM 信号表达式与FDM 的一样,区别在于信号的频谱。OFDM 信号的频谱与FDM 频谱情况对比如图1-2所示。由图1-2可以看出,由于采用的原理不一样,FDM 中接收端需要频率分割,因而需要较宽的保护间隔。OFDM 系统的接收端利用正交性解调,相邻子信道频谱在一定程度上是可以重叠的。

图1-2 FDM 与OFDM 的频谱

1.3 OFDM 基本原理

一个OFDM 符号之内包括多个经过调制的子载波的合成信号,其中每个子载波都可以受到相移键控(PSK)或者正交幅度调制(QAM)符号的调制。如果N 表示子信道的个数,T 表示OFDM 符号的宽度,d i (i =0,1,…,N —1)是分配给每个子

信道的数据符号,f 0是第0个子载波的载波频率,rect(t)=1,∣t ∣≤T /2,

则从t =t s 开始的OFDM 符号可以表示为:

(1-4)

图1-3中给出了OFDM系统基本模型的框图,其中f

i =f

+i/T。

图1-3 OFDM 系统基本模型

图1-4给出了一个OFDM符号内包括4个子载波的实例。

图1-4 一个OFDM符号内包括4个子载波的实例

由图中可以看出,每个子载波在一个OFDM符号周期内都包含整数个周期,

并且相邻子载波相差一个周期。这样可以保证子载波间的相互正交性。即

(1-5)

比如对上式1-4的第j个子载波进行解调,然后再时间长度T内进行积分,即

(1-6)

。而对于其根据上式可以看到,对第j个子载波进行解调可以恢复出期望符号d

j

他载波来说,由于在积分间隔内,频率差别(i—j)/T可以产生整数倍个周期,所以其积分结果为零。

1.4快速傅里叶变换(FFT/IFFT)

在OFDM系统的实际应用中,可以用快速傅里叶变换(FFT/IFFT)。N点IDFT 运算需要实施N2次的复数乘法,而IFFT可以显著地降低运算的复杂度。对于常

(N),而且随着子载用的基2 IFFT算法来说,其复数乘法的次数仅为(N/2)log

2

波个数N的增加,这种算法复杂度之间的差距也越明显,IDFT的计算复杂度会随N增加而呈现二次方增长,IFFT的计算复杂度的增加速度只是稍稍快于线性变化。对于子载波数量非常大的OFDM系统来说,可以进一步采用基4IFFT算法。在4点的IFFT运算中,只存在{1,-1,j,-j}的相乘运算,因此不需要采用完整的乘法器来实施这种乘法,只需要通过简单地加、减以及交换实部和虚部的运算(当与-j,j相乘时)来实现这种乘法。在基4算法中,IFFT变换可以被分为多个4点的IFFT变换,这样就只需要在两个级别之间执行完整的乘法操作。因此,

(N-2)次复数乘法或相位旋转,以N点的基4IFFT算法中只需要执行(3/8)Nlog

2

N次复数加法。

及Nlog

2

1.5保护间隔、循环前缀

应用OFDM的一个重要原因在于它可以有效的对抗多径时延扩展。通过把输入数据流串并变换到N个并行的子信道中,使得每一个调制子载波的数据周期可以扩大为原始数据符号周期的N倍。为了最大限度的消除符号间干扰,还可以在

每个OFDM符号间插入保护间隔(GI),而且该保护间隔长度一般要大于无线信道中的最大时延扩展,这样一个符号的多径分量就不会对下一个符号造成干扰。在这段保护间隔内,可以不插入任何信号,即是一段空闲的传输时段。但在这种情况中,由于多径传播的影响,则会产生信道间干扰(ICI),即子载波之间的正交性遭到破坏,不同的子载波之间产生干扰,这种效应如图1-5所示。

图1-5 子载波间干扰

由于每个OFDM符号中都包括所有的非零子载波信号,而且也同时会出现该OFDM符号的时延信号,因此图1-5中给出了第一子载波和第二子载波的时延信号。从图中可以看到,由于在FFT运算时间长度内,第一子载波与带有时延的第二子载波之间的周期个数只差不再是整数,所以当接收机试图对第一子载波进行解调时,第二子载波会对此造成干扰。同时,当接收机对第二子载波进行解调时,也会来自第一子载波的干扰。T

在系统带宽和数据传输速率都给定的情况下,

g

OFDM信号的符号速率将远远低于单载波的传输模式,例如在单载波BPSK调制模式下,符号速率相当于传输的比特速率,而在OFDM中,系统带宽由N个子载波占用,符号速率则为单载波传输模式的1/N。正是因为这种低符号速率使OFDM 系统可以自然的抵抗多径传输导致的码间干扰。另外,通过在每个符号的起始位置增加保护间隔可以进一步抵制ISI,还可以减少在接收端的定时偏移错误。这种保护间隔是一种循环复制,增加了符号的波形长度,在符号的数据部分,每一个子载波内有一个整数倍的循环,此种符号的复制产生了一个循环的信号,即将每一个OFDM的后时间中的样点复制到OFDM符号的前面,形成前缀,在交接点没有任何的间断。因此将一个符号的尾端复制并补充到起始点增加了符号的时间长

度,如图1-6所示。

图1-6 保护间隔和循环前缀

1.6 OFDM 系统的优点和缺点

1.61 OFDM 系统的优点

近年来,OFDM系统已经越来越得到人们的广泛关注,其原因在于OFDM系统存在如下的主要优点:

(1)把高速数据流通过串并转换,使得每个子载波上的数据符号持续长度相对增加,从而可以有效地减小无线信道的时间弥散所带来的ISI,这样就减小了接收机内均衡的复杂度,有时甚至可以不采用均衡器,仅通过采用插入循环前缀的方法消除ISI的不利影响。

(2)传统的频分多路传输方法中,将频带分为若干个不相交的子频带来传输并行的数据流,在接收端用一组滤波器来分离各个子信道。这种方法的优点是简单、直接,缺点是频谱的利用率低,子信道之间要留有足够的保护频带,而且多个滤波器的实现也有不少困难。而OFDM系统由于各个子载波之间存在正交性,允许子信道的频谱相互重叠,因此与常规的频分复用系统相比,OFDM系统可以最大限度地利用频谱资源。

(3)各个子信道中的这种正交调制和解调可以采用IDFT和DFT方法来实现。对于N很大的系统中,我们可以通过采用快速傅里叶变换(FFT)来实现。随着大规模集成电路技术与DSP技术的发展,IFFT和FFT都是非常容易实现的。

(4)无线数据业务一般都存在非对称性,即下行链路中传输的数据量要远远大于上行链路中的数据传输量。另一方面,移动终端功率一般小于1W,在大

蜂窝环境下传输速率低于10kbit/s—l00kbit/s;而基站发送功率可以较大。有可能提供1Mbit/s以上的传输速率。因此无论从用户的数据业务的使用需求,还是从移动通信系统自身的要求考虑,都希望物理层支持非对称高速数据传输。而OFDM系统可以很容易地通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率。

(5)由于无线信道存在频率选择性,不可能所有的子载波都同时处于比较深的衰落情况中,因此可以通过动态比特分配以及动态子信道分配的方法,充分利用信噪比较高的子信道,从而提高系统的性能。而且对于多用户系统来说,对一个用户不适用的子信道对其他用户来说可能是性能比较好的子信道,因此除非一个子信道对所有用户来说都不适用,该子信道才会被关闭,但发生这种情况的概率非常小。

(6)OFDM系统可以容易与其他多种接入方法相结合使用,构成OFDMA系统,其中包括多载波码分多址 MC—CDMA 、跳频 OFDM 以及OFDM—TDMA等等,使得多个用户可以同时利用OFDM技术进行信息的传递。

(7)因为窄带干扰只能影响一小部分的子载波,因此OFDM系统可以在某种程度上抵抗这种窄带干扰。

1.62 OFDM 系统的缺点

(1)易受频率偏差的影响:由于子信道的频谱相互覆盖,这就对它们之间的正交性提出了严格的要求。然而由于无线信道存在时变性,在传输过程中会出现无线信号的频率偏移,会使得OFDM系统子载波之间的正交性遭到破坏,从而导致子信道间的信号相互干扰(ICI),这种对频率偏差敏感是OFDM系统的主要缺点之一。

(2)存在较高的峰值平均功率比:与单载波系统相比,由于多载波调制系统的输出是多个子信道信号的叠加,因此如果多个信号的相位一致时,所得到的叠加信号的瞬时功率就会远远大于信号的平均功率,导致出现较大的峰值平均功率比(PAR)。这样就对发射机内放大器的线性提出了很高的要求,如果放大器的动态范围不能满足信号的变化,则会为信号带来畸变,使叠加信号的频谱发生变化,从而导致各个子信道信号之间的正交性遭到破坏,产生相互干扰,使系统性能恶化。

第二章OFDM系统的设计

2.1 OFDM帧结构的设计

和许多数字通信系统一样,在OFDM系统中,被发送的信号也是以帧来组织

在一起的。本文仿真时所采用的结构借鉴了802.11a标准,并对其进行了简化。

每一个OFDM帧由多个OFDM符号组成,对QPSK调制采用每帧6个符号。当FFT

长度为64点时,每一个OFDM符号由一组长度等于52的子载波组成,其中48

个子载波用来传输数据,4个子载波用来传输导频。这里不作导频方面考虑,52

个子载波均用来传输数据,每个符号的持续时间为Ts。每个符号由数据部分和

,保护间隔持续时间长度保护间隔部分组成。传输数据部分的持续时间长度为T

U

为T

,这也是本文前面所提到的在OFDM系统中起到很大作用的循环前缀所占的g

时间段。OFDM信号包含许多独立调制的载波,所以可以认为每一个OFDM符号是

由许多个片组成,每一个符号中的一片可被看作是被调制在相应的子载波上。

OFDM系统参数见表2-1。

表2-1 OFDM系统参数

2.2系统仿真流程

图2-1给出了本次实验仿真的流程图。实验假设待传数据已经经过信源编码和信道编码,因此仿真从QPSK调制待传数据开始。下面根据流程图详细介绍仿真的具体过程。

图2-1 仿真流程图

2.3串并变换

624个0、1代码要使用OFDM系统进行传输,因为子载波数为52,所以

要通过串并变换变为52行、12列的数据。

2.4 QPSK调制

数字基带信号的频谱集中分布在低频段,不适合直接在带通信道中传输,为了在带通信道中传输数字信号,必须采用数字调制技术将基带信号的频谱搬移到适合信道传输的频段再进行传输,这种通信方式称为数字信号的载波传输。QPSK 调制的原理是把相继两个码元的四种组合(00,01,10,11)对应于正弦波的四个

相位。S

i (t)=cos(ωct+Q

i

);(i=1,2,3,4);(-T/2 ≤ t ≤ T/2)

当Q

i =0,±π/2,π,±π/4,±3π/4时,S

i

(t)=b

cosωct+b

1

sinωct,

相应的当Q

i 是±π/4,±3π/4时,( b

0 ,

b

1

)=(1,1)(1,-1)(-1,1)(-1,-1)。

图2-2 QPSK格雷码映射星座图

通过上面的星座图可以发现,0映射为-1。所以仿真时只要将相邻的两列数据分别映射到I信道和Q信道上,并将0映射为-1,并将此二列进行复数相加,再乘以归一化因子,即可得到调制结果。对于QPSK,本实验调制结果为52行6列的复数。解调时,只要进行相反的过程,并将0作为判决电平,即可实现数据的解调恢复。

2.5 IFFT

将实验调制后所得数据送入到 IFFT 的端口。

在实际应用中,对一个 OFDM 符号进行 N 次采样,或者 N 点IFFT运算所得到的N个输出样值往往不能真正地反映连续OFDM符号的变化特性。其原因在于,没有使用过采样。当这些样值点被送到模数转换器时,就有可能导致生成伪信号,这是系统中所不能允许的。这种伪信号的表现就是,当采样点数较少时,当采样值被还原之后,信号中将不再含有原有信号中的高频成分,呈现出虚假的低频信号。因此针对这种伪信号现象,一般都需要对OFDM符号进行过采样,即在原有的采样点之间在添加一些采样点、构成更多个采样值。这种过采样的实施也可以通过利用IFFT/FFT的方法来实现实施。IFFT运算时,需要在原始的N 个输入值中添加一些零即可。在本次试验中,采用了matlab工具中自带的IFFT 函数,当过采样时,他会自动在信号的尾部补零。

2.6 加入保护间隔和并串变换

802.11a的保护间隔长度为FFT时间的1/4,所以只需要将FFT的输出结果I信道和Q信道的数据后1/4的部分拷贝到前端即可。加保护间隔后的I信道和

Q信道数据经过并串转换后,在实际传输过程中调制到一个高频载波上进入信

道。

2.7 AWGN信道

我们定义传输信号、高斯白噪声和接收信号分别为s(t),n(t),r(t)。其间

的关系为:

r(t)=s(t)+n(t)。 (2-1)

n(t)是AWGN过程的样本函数,概率密度函数和功率谱密度的关系如下:

Φnn(f)=(1/2)N0[W/Hz] (2-2)

N

是常数,通常被叫做噪声功率密度。在用 MATLAB 仿真时,我们使用内建0

函数randn。由此可以产生随机数矩阵,其均值为0,方差为1。所以,如果我

们给带有同相和正交信道的数字调制信号idata和qdata加入带有功率1的AWGN

噪声时可得

(2-3)

然而,仿真时我们通常计算不同噪声功率时的BER表现,我们把噪声功率定义为变量npow,但是idata和qdata是电压,所以我们必须把变量npow换算成电压,我们定义变量attn,其与npow的关系为:

(2-4)所以修改后,受功率为 npow 的噪声影响的输出数据为:

(2-5)

在OFDM系统中,信噪比与噪声功率npow、每个载波上的信号功率spow、每个载波的比特率br和OFDM符号率sr有如下关系:

则,当我们知道信噪比、比特率和符号率时,就可根据上式计算出attn以及npow。

2.8 串并转换去保护间隔

经信道后的串行数据在实际传输中,从射频波上解调下后,重新恢复成I

信道和Q信道两路数据。再经过串并转换后,变成并行数据。I、Q两路数据在QPSK下为80×6矩阵。然后将前 1/4 的保护间隔去除,对于QPSK则变为64×6矩阵。

2.9 FFT

在进行FFT时,先将I信道和Q信道两路数据复数相加,然后进行FFT变换。变换后的数据再将实部、虚部分别取出,按照IFFT的自动插零方式,将数据尾部的补零全部删除,再存入I信道和Q信道。这样,I信道和Q信道的数据在QPSK 下变为52×6矩阵。然后将此两路数据送入解调模块,分别除以归一化因子后按照进行解调,解调输出为52×12的数据。

第三章 OFDM系统仿真及实验结果

3.1 计算机仿真

3.11 仿真平台

?硬件

CPU: Core(TM) i5 M430 2.27GHz

内存: 2.00GB RAM

?软件

操作系统: Microsoft Windows 7

仿真软件: The MadiWorks Inc. Matlab版本R2011b 7.13

Matlab是一种强大的工程计算软件,是功能强、效率高、便于进行科学和工程计算的交互式软件包。其工具箱中包括:数值分析、矩阵运算、通信、数字信号处理、建模和系统控制等应用工具程序,并集应用程序和图形于一便于使用的集成环境中。在此环境下所解问题的Matlab语言表述形式和其数学表达形式相同,不需要按传统的方法编程。Matlab的特点是编程效率高,用户使用方便,扩充能力强,语句简单,内涵丰富,高效方便的矩阵和数组运算,方便的绘图功能。

3.12 仿真流程

预设该基带OFDM系统的仿真参数如下:

带宽:20 MHz

载波数:52

IFFT长度:64

OFDM符号持续时间:4μs

保护间隔持续时间:0.8μs

OFDM符号速率:250000 symbol/s

本仿真要在信道解码前后分别计算误码率BER。由于实验中并没有经过信道编码的过程,因此BER误码率表示的是没经过信道编码时的系统误码率,可以反映OFDM系统原始的抗干扰能力。

图3-1 仿真流程图

3.2 系统性能分析

传输系统的性能指标是描述传输系统性能的参数,也是考核传输系统和设备优劣的主要依据,系统的性能指标主要有下面几个。

3.21 比特率

比特率是指二元数字码流的信息传输速率,单位是bit/s,表示每秒可传输二元比特的数量。在本系统结构中,OFDM系统内信息都以二元数字信号表示,因此其中各环节传输和处理信息的速率用比特率表示。系统传输的比特率计算公式为:比特率=OFDM符号速率×子载波数×每个载波的比特数,对于QPSK调制每个载波的比特数为2。

对于QPSK调制,比特率:250000×52×2=26Mbit/s

3.22 频谱效率

通信系统的有效性是以信号的频谱效率来描述的。频谱效率的单位是bit/s/Hz,代表每赫兹带宽的传输频道上可以传输比特率为多高的数字信息。频谱效率主要用于衡量各种数字调制技术的效率,在数量上等效于每个调制符号所映射的比特数。对于BPSK或2ASK等低容量调制技术,所能够实现的理论最高频谱效率为1bit/s/Hz;而QPSK所能够实现的理论最高频谱效率为2bit/s/Hz;对于64QAM这样的高容量调制技术,所能够实现的理论最高频谱效率达6bit/s/Hz。频谱效率越高,在相同的带宽、相同的时间内可以传输的数字信息就越多。

对于QPSK,频谱效率:26/20=1.3 bit/s/Hz

3.23 误比特率

数字通信系统的可靠性能是用误码率来表示的。误码率是指在经过通信系统的传输后,送给用户的接收数字码流与信源发送出的原始码流相比,发生错误的码字数占信源发送出的总码字数的比例。

3.3 实验数据和分析

3.31 待传数据的产生

为仿真OFDM系统,需要先设置生成待接收解调的OFDM信号,按照上文参数设置的要求,产生相应的OFDM信号。以待测试仿真接收系统的性能,产生OFDM信号的MATLAB程序如下:

运行程序后,可产生一包括52*2*6=624个0、1的一维数组,这个一维数组作为实验的待传数据,其波形入图3-2所示。

图3-2 随机二元信号

3.32 串并变换 QPSK调制

将随机二元信号进行串并变换,用52*12的数组存放信号,再将信号进行QPSK调制。在QPSK调制中,我选择了B方式规定四个相位,分别为pi/4、3*pi/4、5*pi/4和7*pi/4。进行调制时,每次输入矩阵的两列相邻数据,当数据为00时对应5*pi/4,为01时对应3*pi/4、10时对应7*pi/4、11时对应pi/4。

调制程序如下:

经过调制后,52*12的矩阵变成52*6的复数矩阵,信号图如3-3所示。

图3-3 QPSK调制星座图

3.33 IFFT

将调制后的数据送入IFFT端口进行IFFT变换,程序为:

变换后的OFDM时域图像如下图3-4示。

图3-4 OFDM信号时域图

图中的六幅图分别表示一帧OFDM信号里的六个符号的时域图。

3.34 添加循环前缀

802.11a标准规定,保护间隔长度应为IFFT时间的四分之一,因此只需将数据后面的四分之一部分移到原有数据的前面即可。程序如下:

加入循环前缀后,OFDM信号的时域图发生了变化,其波形如图3-5示。

图3-5 添加循环前缀的OFDM信号时域图

3.35 生成发送信号并串变换

将加入了循环前缀的信号进行并串变换,然后送入信道进行传送。

运行程序后,可得一帧OFDM信号的时域图3-6。

基于matlab实现OFDM的编码.

clc; clear all; close all; fprintf('OFDM系统仿真\n'); carrier_count=input('输入系统仿真的子载波数: \n');%子载波数128,64,32,16 symbols_per_carrier=30;%每子载波含符号数 bits_per_symbol=4;%每符号含比特数,16QAM调制 IFFT_bin_length=1024;%FFT点数 PrefixRatio=1/4;%保护间隔与OFDM数据的比例1/6~1/4 GI=PrefixRatio*IFFT_bin_length ;%每一个OFDM符号添加的循环前缀长度为1/4*IFFT_bin_length ,即256 beta=1/32;%窗函数滚降系数 GIP=beta*(IFFT_bin_length+GI);%循环后缀的长度40 SNR=10; %信噪比dB %================信号产生=================================== baseband_out_length=carrier_count*symbols_per_carrier*bits_per_symbol;%所输入的比特数目 carriers=(1:carrier_count)+(floor(IFFT_bin_length/4)-floor(carrier_count/2));%共轭对称子载波映射复数数据对应的IFFT点坐标 conjugate_carriers = IFFT_bin_length - carriers + 2;%共轭对称子载波映射共轭复数对应的IFFT点坐标 rand( 'twister',0); %每次产生不相同得伪随机序列 baseband_out=round(rand(1,baseband_out_length));%产生待调制的二进制比特流figure(1); stem(baseband_out(1:50)); title('二进制比特流') axis([0, 50, 0, 1]); %==============16QAM调制==================================== complex_carrier_matrix=qam16(baseband_out);%列向量 complex_carrier_matrix=reshape(complex_carrier_matrix',carrier_count,symbols_per

通信原理课程设计报告(基于Matlab)

2DPSK调制与解调系统的仿真 设计原理 (1) 2DPSK信号原理 1.1 2DPSK信号原理 2DPSK方式即是利用前后相邻码元的相对相位值去表示数字信息的一种方式。现假设用Φ表示本码元初相与前一码元初相之差,并规定:Φ=0表示0码,Φ=π表示1码。则数字信息序列与2DPSK信号的码元相位关系可举例表示如2PSK信号是用载波的不同相位直接去表示相应的数字信号而得出的,在接收端只能采用相干解调,它的时域波形图如图2.1所示。 图1.1 2DPSK信号 在这种绝对移相方式中,发送端是采用某一个相位作为基准,所以在系统接收端也必须采用相同的基准相位。如果基准相位发生变化,则在接收端回复的信号将与发送的数字信息完全相反。所以在实际过程中一般不采用绝对移相方式,而采用相对移相方式。定义为本码元初相与前一码元初相之差,假设: →数字信息“0”; →数字信息“1”。 则数字信息序列与2DPSK信号的码元相位关系可举例表示如下: 数字信息: 1 0 1 1 0 1 1 1 0 1 DPSK信号相位:0

或 : 1.2 2DPSK 信号的调制原理 一般来说,2DPSK 信号有两种调试方法,即模拟调制法和键控法。2DPSK 信号的的模拟调制法框图如图1.2.1所示,其中码变换的过程为将输入的单极性不归零码转换为双极性不归零码。 图1.2.1 模拟调制法 2DPSK 信号的的键控调制法框图如图1.2.2所示,其中码变换的过程为将输入的基带信号差分,即变为它的相对码。选相开关作用为当输入为数字信息“0” 时接相位0,当输入数字信息为“1”时接pi 。 图1.2.2 键控法调制原理图 1.3 2DPSK 信号的解调原理 2DPSK 信号最常用的解调方法有两种,一种是极性比较和码变换法,另一种是差分相干解调法。 码变换 相乘 载波 s(t) e o (t)

通信原理实验--数字基带传输仿真实验

数字基带传输实验 实验报告

一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、系统框图及编程原理 1.带限信道的基带系统模型(连续域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器―― 或或 ?发送滤波器输出――

?信道输出信号或接收滤波器输入信号 (信道特性为1) ?接收滤波器―― 或或 ?接收滤波器的输出信号 其中 (画出眼图) ?如果位同步理想,则抽样时刻为 ?抽样点数值为(画出星座图) ?判决为 2.升余弦滚降滤波器 式中称为滚降系数,取值为, 是常数。时,带宽为Hz;时,带宽为Hz。此频率特性在内可以叠加成一条直线,故系统无码间干扰传输的最小符号间隔为s,或无码间干扰传输的最大符号速率为Baud。

相应的时域波形为 此信号满足 在理想信道中,,上述信号波形在抽样时刻上无码间干扰。 如果传输码元速率满足,则通过此基带系统后无码间干扰。 3.最佳基带系统 将发送滤波器和接收滤波器联合设计为无码间干扰的基带系统,而且具有最佳的抗加性高斯白噪声的性能。 要求接收滤波器的频率特性与发送信号频谱共轭匹配。由于最佳基带系统的总特性是确定的,故最佳基带系统的设计归结为发送滤波器和接收滤波器特性的选择。 设信道特性理想,则有

(延时为0) 有 可选择滤波器长度使其具有线性相位。 如果基带系统为升余弦特性,则发送和接收滤波器为平方根升余弦特性。 由模拟滤波器设计数字滤波器的时域冲激响应 升余弦滤波器(或平方根升余弦滤波器)的带宽为,故其时域抽样速率至少为,取,其中为时域抽样间隔,归一化为1。 抽样后,系统的频率特性是以为周期的,折叠频率为。故在一个周期内 以间隔抽样,N为抽样个数。频率抽样为,。 相应的离散系统的冲激响应为 将上述信号移位,可得因果系统的冲激响应。 5.基带传输系统(离散域分析) ?输入符号序列―― ?发送信号―― ――比特周期,二进制码元周期 ?发送滤波器――

OFDM技术仿真(MATLAB代码)

第一章绪论 1.1简述 OFDM是一种特殊的多载波传输方案,它可以被看作是一种调制技术,也可以被当作一种复用技术。多载波传输把数据流分解成若干子比特流,这样每个子数据流将具有低得多的比特速率,用这样的低比特率形成的低速率多状态符号再去调制相应的子载波,就构成多个低速率符号并行发送的传输系统。正交频分复用是对多载波调制(MCM,Multi-Carrier Modulation)的一种改进。它的特点是各子载波相互正交,所以扩频调制后的频谱可以相互重叠,不但减小了子载波间的干扰,还大大提高了频谱利用率。 符号间干扰是多径衰落信道宽带传输的主要问题,多载波调制技术包括正交频分复用(OFDM)是解决这一难题中最具前景的方法和技术。利用OFDM技术和IFFT方式的数字实现更适宜于多径影响较为显著的环境,如高速WLAN 和数字视频广播DVB等。OFDM作为一种高效传输技术备受关注,并已成为第4代移动通信的核心技术。如果进行OFDM系统的研究,建立一个完整的OFDM 系统是必要的。本文在简要介绍了OFDM 基本原理后,基于MATLAB构建了一个完整的OFDM动态仿真系统。 1.2 OFDM基本原理概述 1.2.1 OFDM的产生和发展 OFDM的思想早在20世纪60年代就已经提出,由于使用模拟滤波器实现起来的系统复杂度较高,所以一直没有发展起来。在20世纪70年代,提出用离散傅里叶变换(DFT)实现多载波调制,为OFDM的实用化奠定了理论基础;从此以后,OFDM在移动通信中的应用得到了迅猛的发展。 OFDM系统收发机的典型框图如图1.1所示,发送端将被传输的数字信号转换成子载波幅度和相位的映射,并进行离散傅里叶变换(IDFT)将数据的频谱表达式变换到时域上。IFFT变换与IDFT变换的作用相同,只是有更高的计算效

通信原理基于matlab的计算机仿真_源代码

例错误!文档中没有指定样式的文字。-1 %周期信号(方波)的展开,fb_jinshi.m close all; clear all; N=100; %取展开式的项数为2N+1项 T=1; fs=1/T; N_sample=128; %为了画出波形,设置每个周期的采样点数 dt = T/N_sample; t=0:dt:10*T-dt; n=-N:N; Fn = sinc(n/2).*exp(-j*n*pi/2); Fn(N+1)=0; ft = zeros(1,length(t)); for m=-N:N ft = ft + Fn(m+N+1)*exp(j*2*pi*m*fs*t); end plot(t,ft) 例错误!文档中没有指定样式的文字。-4 利用FFT计算信号的频谱并与信号的真实频谱的抽样比较。 脚本文件T2F.m定义了函数T2F,计算信号的傅立叶变换。 function [f,sf]= T2F(t,st) %This is a function using the FFT function to calculate a signal's Fourier %Translation %Input is the time and the signal vectors,the length of time must greater %than 2 %Output is the frequency and the signal spectrum dt = t(2)-t(1); T=t(end); df = 1/T; N = length(st); f=-N/2*df:df:N/2*df-df; sf = fft(st); sf = T/N*fftshift(sf); 脚本文件F2T.m定义了函数F2T,计算信号的反傅立叶变换。 function [t st]=F2T(f,sf) %This function calculate the time signal using ifft function for the input %signal's spectrum

OFDM系统设计及其Matlab实现

课程设计 。 课程设计名称:嵌入式系统课程设计 专业班级: 07级电信1-1 学生姓名:__王红__________ 学号:_____107_____ 指导教师:李国平,陈涛,金广峰,韩琳 课程设计时间:— |

1 需求分析 运用模拟角度调制系统的分析进行频分复用通信系统设计。从OFDM系统的实现模型可以看出,输入已经过调制的复信号经过串/并变换后,进行IDFT或IFFT和并/串变换,然后插入保护间隔,再经过数/模变换后形成OFDM调制后的信号s(t)。该信号经过信道后,接收到的信号r(t)经过模/数变换,去掉保护间隔,以恢复子载波之间的正交性,再经过串/并变换和DFT或FFT后,恢复出OFDM的调制信号,再经过并/串变换后还原出输入符号 2 概要设计 1.简述OFDM通信系统的基本原理 2.简述OFDM的调制和解调方法 3.概述OFDM系统的优点和缺点 4.基于MATLAB的OFDM系统的实现代码和波形 : 3 运行环境 硬件:Windows XP 软件:MATLAB 4 详细设计 OFDM基本原理 一个完整的OFDM系统原理如图1所示。OFDM的基本思想是将串行数据,并行地调制在多个正交的子载波上,这样可以降低每个子载波的码元速率,增大码元的符号周期,提高系统的抗衰落和干扰能力,同时由于每个子载波的正交性,大大提高了频谱的利用率,所以非常适合移动场合中的高速传输。

在发送端,输入的高比特流通过调制映射产生调制信号,经过串并转换变成N条并行的低速子数据流,每N个并行数据构成一个OFDM符号。插入导频信号后经快速傅里叶反变换(IFFT)对每个OFDM符号的N个数据进行调制,变成时域信号为: [ 式 式1中:m为频域上的离散点;n为时域上的离散点;N为载波数目。为了在接收端有效抑制码间干扰(InterSymbol Interference,ISI),通常要在每一时域OFDM符号前加上保护间隔(Guard Interval,GI)。加保护间隔后的信号可表示为式,最后信号经并/串变换及D/A转换,由发送天线发送出去。 式 接收端将接收的信号进行处理,完成定时同步和载波同步。经A/D转换,串并转换后的信号可表示为:

通信原理实验报告-含MATLAB程序

通信原理实验报告 实验一 数字基带传输实验 一、实验目的 1、提高独立学习的能力; 2、培养发现问题、解决问题和分析问题的能力; 3、学习Matlab 的使用; 4、掌握基带数字传输系统的仿真方法; 5、熟悉基带传输系统的基本结构; 6、掌握带限信道的仿真以及性能分析; 7、通过观测眼图和星座图判断信号的传输质量。 二、实验原理 1. 带限信道的基带系统模型(连续域分析) 输入符号序列 ————{al } 发送信号 ————1 0()()L l d t al t lTb δ-==-∑ Tb 是比特周期,二进制码元周期 发送滤波器 ————GT(w)或GT (t )

发送滤波器输出 ———— 11 00()()*()()*()()L L l b T l T b T l l x t d t t a t lT g t a g t lT g δ--====-=-∑∑ 信道输出信号或接收滤波器输入信号()()()y t x t n t =+ 接收滤波器 ()R G ω或()R G f 接收滤波器输出信号 1 0()()*()()*()*()()*()()()L R T R R l b R l r t y t g t d t g t g t n t g t a g t lT n t -===+=-+∑ 其中2()()()j ft T R g t G f G f e df π∞ -∞=? 如果位同步理想,则抽样时刻为b l T ? 0 1l L =- 判决为 '{}l a 2. 升余弦滚降滤波器 1()||2s s H f T f T α-=≤; ()H f =111[1cos (||)]||2222s s s s s T T f f T T T παααα--++-<≤ ()H f = 10||2s f T α+> 式中α 称为滚降系数,取值为0 <α ≤1, T s 是常数。α = 0时,带宽为1/ 2T s Hz ;α =1时, 带宽为1/T s Hz 。此频率特性在(?1/(2T s ),1/(2T s ))内可以叠加成一条直线,故系统无码间干 扰传输的最小符号间隔为T s s ,或无码间干扰传输的最大符号速率为1/T s Baud 。相应的时 域波形h (t )为 222sin /cos /()/14/s s s s t T t T h t t T t T παππα=?- 此信号满足

通信原理MATLAB验证低通抽样定理实验报告

通信原理实验报告 一、实验名称 MATLAB验证低通抽样定理 二、实验目的 1、掌握抽样定理的工作原理。 2、通过MATLAB编程实现对抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 3、了解MATLAB软件,学习应用MATLAB软件的仿真技术。它主要侧重于某些理论知识的灵活运用,以及一些关键命令的掌握,理解,分析等。 4、计算在临界采样、过采样、欠采样三种不同条件下恢复信号的误差,并由此总结采样频率对信号恢复产生误差的影响,从而验证时域采样定理。 三、实验步骤及原理 1、对连续信号进行等间隔采样形成采样信号,采样信号的频谱是原连续信号的频谱以采样频率为周期进行周期性的延拓形成的。 2、设连续信号的的最高频率为Fmax,如果采样频率Fs>2Fmax,那么采样信号可以唯一的恢复出原连续信号,否则Fs<=2Fmax会造成采样信号中的频谱混叠现象,不可能无失真地恢复原连续信号。 四、实验内容 1、画出连续时间信号的时域波形及其幅频特性曲线,信号为 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t) 2、对信号进行采样,得到采样序列,画出采样频率分别为10Hz,20 Hz,50 Hz时的采样序列波形; 3、对不同采样频率下的采样序列进行频谱分析,绘制其幅频曲线,对比各频率下采样序列和的幅频曲线有无差别。 4、对信号进行谱分析,观察与3中结果有无差别。 5、由采样序列恢复出连续时间信号,画出其时域波形,对比与原连续时间信号的时域波形。 五、实验仿真图 (1) x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t)的时域波形及幅频特性曲线。clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df;

无线通信原理 基于matlab的ofdm系统设计与仿真..

基于matlab的ofdm系统设计与仿真

摘要 OFDM即正交频分复用技术,实际上是多载波调制中的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到相互正交且重叠的多个子载波上同时传输。该技术的应用大幅度提高无线通信系统的信道容量和传输速率,并能有效地抵抗多径衰落、抑制干扰和窄带噪声,如此良好的性能从而引起了通信界的广泛关注。 本文设计了一个基于IFFT/FFT算法与802.11a标准的OFDM系统,并在计算机上进行了仿真和结果分析。重点在OFDM系统设计与仿真,在这部分详细介绍了系统各个环节所使用的技术对系统性能的影响。在仿真过程中对OFDM信号使用QPSK调制,并在AWGN信道下传输,最后解调后得出误码率。整个过程都是在MATLAB环境下仿真实现,对ODFM系统的仿真结果及性能进行分析,通过仿真得到信噪比与误码率之间的关系,为该系统的具体实现提供了大量有用数据。

第一章 ODMF 系统基本原理 1.1多载波传输系统 多载波传输通过把数据流分解为若干个子比特流,这样每个子数据流将具有较低的比特速率。用这样的低比特率形成的低速率多状态符号去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。在单载波系统中,一次衰落或者干扰就会导致整个链路失效,但是在多载波系统中,某一时刻只会有少部分的子信道会受到衰落或者干扰的影响。图1-1中给出了多载波系统的基本结构示意图。 图1-1多载波系统的基本结构 多载波传输技术有许多种提法,比如正交频分复用(OFDM)、离散多音调制(DMT)和多载波调制(MCM),这3种方法在一般情况下可视为一样,但是在OFDM 中,各子载波必须保持相互正交,而在MCM 则不一定。 1.2正交频分复用 OFDM 就是在FDM 的原理的基础上,子载波集采用两两正交的正弦或余弦函数集。函数集{t n ωcos }, {t m ωsin } (n,m=0,1,2…)的正交性是指在区间(T t t +00,)内有正弦函数同理:)0()()(2/0cos *cos 00===≠?? ???=? +m n m n m n T T tdt m t n T t t ωω 其中ωπ2=T (1-1)

通信原理matlab实验1

实验一 设计任务: 用MatLib仿真一个BFSK通信系统,基本参数: 1)fc=1000Hz; 2)Rb=100bps; 3)信息序列:“Hello world”的ASCII 实验与报告基本要求: 1)Matlab程序,要点旁注(可打印后手写); 2)绘出信号波形,绘出信号PSD; 3)给出解调后的信息序列; 4)将信息重复3遍以上,FSK信号保存为WAV文件格式,使用音频播放,聆听;M文件: wave.m function[t,mt]=wave(m,dt,fs) l=length(m); mt=[]; ddt=1/fs; n=floor(dt*fs); m_add=ones(1,n); for i=1:l if(m(i)) mt=[mt,m(i),m_add]; else mt=[mt,m(i),m_add*0]; end t=(1:((n+1)*l))*ddt; end my_filter.m function[num,den]=my_filter(wp,ws,ap,as) if nargin<4 as=15; end if nargin<4 ap=3; end [n,wn]=buttord(wp,ws,ap,as); [num,den]=butter(n,wn); end 代码:

f0=800;%‘0’码载波频率 f1=1200;%‘1’码载波频率 fs=4000;%采样频率 Rb=100;%比特率 dt=1/Rb;%一个比特发送时间 A0=2;%调制幅度 A1=2;%相干解调幅度 miu=0;sigma=0.3;%miu:高斯白噪声均值,sigma:高斯白噪声均方差 str='Hello world';%信号字符串 m_dec=abs(str);%将信号字符串转换成ASCII码(十进制) m_bin=dec2bin(m_dec,8); m_bin=abs(m_bin)-48;%将十进制转换成8比特二进制矩阵 m=[]; for i=1:size(m_bin,1) m=[m,m_bin(i,:)]; end%将二进制转换成行向量 [t,m]=wave(m,dt,fs);%对信号采样 mt_f1=m.*cos(2*pi*f1*t)*A0;%频率f1调制 mt_f0=(~m).*cos(2*pi*f0*t)*A0;%频率f0调制 mt=mt_f1+mt_f0;%发送信号 l=length(mt); subplot(2,1,1);plot(t,mt); grid on;xlabel('t/s');title('m(t)');%发送信号波形subplot(2,1,2);periodogram(mt,[],l,fs);grid on;%发送信号PSD

用MATLAB实现OFDM仿真分析

3.1 计算机仿真 仿真实验是掌握系统性能的一种手段。它通过对仿真模型的实验结果来确定实际系统的性能。从而为新系统的建立或系统的改进提供可靠的参考。通过仿真,可以降低新系统失败的可能性,消除系统中潜在的瓶颈。优化系统的整体性能,衡量方案的可行性。从中选择最后合理的系统配置和参数配置。然后再应用于实际系统中。因此,仿真是科学研究和工程建设中不可缺少的方法。 3.1.1 仿真平台 ●硬件 CPU:Pentium III 600MHz 内存:128M SDRAM ●软件 操作系统:Microsoft Windows2000 版本5.0 仿真软件:The Math Works Inc. Matlab 版本6.5 包括MATLAB 6.5的M文件仿真系统。 Matlab是一种强大的工程计算软件。目前最新的6.x版本 (windows环境)是一种功能强、效率高、便于进行科学和工程计算的交互式软件包。其工具箱中包括:数值分析、矩阵运算、通信、数字信号处理、建模和系统控制等应用工具程序,并集应用程序和图形于一便于使用的集成环境中。在此环境下所解问题的Matlab语言表述形式和其数学表达形式相同,不需要按传统的方法编程。Matlab的特点是编程效率高,用户使用方便,扩充能力强,语句简单,内涵丰富,高效方便的矩阵和数组运算,方便的绘图功能。 3.1.2 基于MATLAB的OFDM系统仿真链路 根据OFDM 基本原理,本文给出利用MATLAB编写OFDM系统的仿真链路流程。串行数据经串并变换后进行QDPSK数字调制,调制后的复信号通过N点IFFT变换,完成多载波调制,使信号能够在N个子载波上并行传输,中间插入10训练序列符号用于信道估计,加入循环前缀后经并串转换、D /A后进入信道,接收端经过N点FFT变换后进行信道估计,将QDPSK解调后的数据并串变换后得到原始信息比特。 本文采用MATLAB语言编写M文件来实现上述系统。M文件包括脚本M文件和函数M文件,M文件的强大功能为MATLAB的可扩展性提供了基础和保障,使MATLAB能不断完善和壮大,成为一个开放的、功能强大的实用工具。M文件通过input命令可以轻松实现用户和程序的交互,通过循环向量化、数组维数预定义等提高M文件执行速度,优化内存管理,此外,还可以通过类似C++语言的面向对象编程方法等等。

通信原理课程设计:基于matlab的b4b编码与译码的设计与仿真

课程设计I(数据通信原理) 设计说明书 题目:3B4B编码与译码的设计与仿真 学生姓名樊佳佳 学号1318064017 班级网络工程1301班 成绩 指导教师贾伟

数学与计算机科学学院2015年 9 月 12 日

课程设计任务书 2015—2016学年第 1 学期 课程设计名 称: 课程设计I(数据通信原理) 课程设计题 目: 3B4B编码与译码的设计与仿真 完成期限:自 2015 年 8 月 11 日至 2015 年 9 月 11 日共2 周 设计内容: 设计一种数字基带传输中的一种编译码系统(HDB3、AMI、CMI、2B1Q、3B4B、曼切斯特、差分曼切斯特等选取一种)。 使用Matlab/Simulink仿真软件,设计所选择的基带传输的编码和译码系统。系统能根据随机信源输入的二进制信息序列给出对应的编码及译码结果,并以图形化的方式显示出波形,能观察各分系统的各级波形。 指导教师:教研室负责人: 课程设计评阅

摘要 设计一个码元信息传递系统,包括编码和译码两部分,这个系统可以高效地传递信息。该系统是基于matlab/simulik实现的,设计数字电路来实现码元由3bit一组到4bit一组的转换,提高信息的传输效率。 关键词: 3B4B ; 编码器; 译码器

目录 目录 (2) 1.课题描述 (3) 2.3B4B码编译码模块设计 (4) 2.1 3B4B码编译码原理 (3) 2.2 3B4B编码器原理及框图 (4) 2.3 3B4B译码器原理及框图 (5) 2.4 编译码程序图 (5) 3.3B4B编译码程序图的参数设置及其仿真结 (8) 3.1仿真系统中模块参数设置和仿真实验结果 (8) 4.总结 (11) 5.参考文献 (13)

北邮通信原理软件实验报告XXXX27页

通信原理软件实验报告 学院:信息与通信工程学院 班级: 一、通信原理Matlab仿真实验 实验八 一、实验内容 假设基带信号为m(t)=sin(2000*pi*t)+2cos(1000*pi*t),载波频率为20kHz,请仿真出AM、DSB-SC、SSB信号,观察已调信号的波形和频谱。 二、实验原理 1、具有离散大载波的双边带幅度调制信号AM 该幅度调制是由DSB-SC AM信号加上离散的大载波分量得到,其表达式及时间波形图为: 应当注意的是,m(t)的绝对值必须小于等于1,否则会出现下图的过调制: AM信号的频谱特性如下图所示: 由图可以发现,AM信号的频谱是双边带抑制载波调幅信号的频谱加上离散的大载波分量。 2、双边带抑制载波调幅(DSB—SC AM)信号的产生 双边带抑制载波调幅信号s(t)是利用均值为0的模拟基带信号m(t)和正弦载波 c(t)相乘得到,如图所示: m(t)和正弦载波s(t)的信号波形如图所示:

若调制信号m(t)是确定的,其相应的傅立叶频谱为M(f),载波信号c(t)的傅立叶频谱是C(f),调制信号s(t)的傅立叶频谱S(f)由M(f)和C(f)相卷积得到,因此经过调制之后,基带信号的频谱被搬移到了载频fc处,若模拟基带信号带宽为W,则调制信号带宽为2W,并且频谱中不含有离散的载频分量,只是由于模拟基带信号的频谱成分中不含离散的直流分量。 3、单边带条幅SSB信号 双边带抑制载波调幅信号要求信道带宽B=2W, 其中W是模拟基带信号带宽。从信息论关点开看,此双边带是有剩余度的,因而只要利用双边带中的任一边带来传输,仍能在接收机解调出原基带信号,这样可减少传送已调信号的信道带宽。 单边带条幅SSB AM信号的其表达式: 或 其频谱图为: 三、仿真设计 1、流程图:

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分析

2010年本科毕业设计:基于MATLAB的OFDM系统仿真及分 析 MATLABOFDM 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得 到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理 及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出 参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道 采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 : 正交频分复用;仿真;循环前缀;信道估计 I Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this

article OFDM basic principle is briefly introduced. This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation II

基于Matlab的OFDM系统仿真

论文题目: 基于MATLAB的OFDM系统仿真 学院: 专业年级: 学号: 姓名: 指导教师、职称: 2010 年 12 月 10 日

基于Matlab的OFDM系统仿真 摘要:正交频分复用(OFDM)是一种多载波宽带数字调制技术。相比一般的数字通信系统,它具有频带利用率高和抗多径干扰能力强等优点,因而适合于高速率的无线通信系统。正交频分复用OFDM是第四代移动通信的核心技术。论文首先简要介绍了OFDM 基本原理。在给出OFDM系统模型的基础上,用MATLAB语言实现了整个系统的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,对OFDM系统误码率影响的比较曲线,得出了较理想的结论,通过详细分析了了技术的实现原理,用软件对传输的性能进行了仿真模拟并对结果进行了分析。 介绍了OFDM技术的研究意义和背景及发展趋势,还有其主要技术和对其的仿真?具体如下:首先介绍了OFDM的历史背景?发展现状及趋势?研究意义和研究目的及研究方法和OFDM的基本原理?基本模型?OFDM的基本传输技术及其应用,然后介绍了本课题所用的仿真工具软件MATLAB,并对其将仿真的OFDM各个模块包括信道编码?交织?调制方式?快速傅立叶变换及无线信道进行介绍,最后是对于OFDM的流程框图进行分析和在不影响研究其传输性的前提下进行简化,并且对其仿真出来的数据图形进行分析理解? 关键词:OFDM;MATLAB;仿真 一、OFDM的意义及背景 现代通信的发展是爆炸式的。从电报、电话到今天的移动电话、互联网,人们从中享受了前所未有的便利和高效率。从有线到无线是一个飞跃,从完成单一的话音业务到完成视频、音频、图像和数据相结合的综合业务功能更是一个大的飞跃。在今天,人们获得了各种各样的通信服务,例如,固定电话、室外的移动电话的语音通话服务,有线网络的上百兆bit的信息交互。但是通信服务的内容和质量还远不能令人满意,现有几十Kbps传输能力的无线通信系统在承载多媒体应用和大量的数据通信方面力不从心:现有的通信标准未能全球统一,使得存在着跨区的通信障碍;另一方面,从资源角度看,现在使用的通信系统的频谱利用率较低,急需高效的新一代通信系统的进入应用。 目前,3G的通信系统己经进入商用,但是其传输速率最大只有2Mbps,仍然有多个标准,在与互联网融合方面也考虑不多。这些决定了3G通信系统只是一个对现有移动通信系统速度和能力的提高,而不是一个全球统一的无线宽带多媒体通信系统。因此,在全世界范围内,人们对宽带通信正在进行着更广泛深入的研究。 正交频分复用(OFDM, Orthogonal Frequency Division Multiplexing) 是一种特殊的多载波方案,它可以被看作一种调制技术,也可以被当作是一种复用技术。选择OFDM的一个主要原因在于该系统能够很好地对抗频率选择性衰落或窄带干扰。正交频分复用(OFDM)最早起源于20世纪50年代中期,在60年代就已经形成恶劣使用并行数据传输和频分复用的概念。1970年1月首次公开发表了有关OFDM的专利。 在传统的并行数据传输系统中,整个信号频段被划分为N个相互不重叠的频率子信道。每个子信道传输独立的调制符号,然后再将N个子信道进行频率复用。这种避免信道频谱重叠看起来有利于消除信道间的干扰,但是这样又不能有效利用宝贵频谱资源。为了解决这种低效利用频谱资源的问题,在20世纪60年代提出一种思想,即使用子信道频谱相互覆盖的频域距离也是如此,从而可以避免使用高速均衡,并且可以对抗窄带脉冲噪声和多径衰落,而且还可以充分利用可用的频谱资源。 常规的非重叠多载波技术和重叠多载波技术之间的差别在于,利用重叠多载波调制技术可以几乎节省50%的带宽。为了实现这种相互重叠的多载波技术,必须要考虑如何减少各个子信道之间的干扰,也就是要求各个调制子载波之间保持正交性。 1971年,Weinstein和Ebert把离散傅立叶变换(DFT)应用到并行传输系统中,作为调制和解调过程的一部分。这样就不再利用带通滤波器,同时经过处理就可以实现FDM。而且,这样在完成FDM的过程中,不再要求使用子载波振荡器组以及相关解调器,可以完全依靠执行快速傅立叶变换(FFT)的硬件来实施。

通信原理MATLAB仿真课程设计

《通信系统仿真》课程设计报告书 课题名称 Rayleigh 无线衰落信道的MATLAB 仿真 姓 名 伍伟 学 号 1312402-02 学 院 通信与电子工程学院 专 业 通信工程 指导教师 肖湘 2015年 12月19日 ※※※※※※※※※ ※※ ※ ※ ※※ ※※※※※※※※ ※ 2013级学生 通信系统仿真课程设计

Rayleigh 无线衰落信道的MATLAB 仿真 1 设计目的 (1) 对瑞利信道的数学分析,得出瑞利信道的数学模型。 (2) 利用MATLAB 对瑞利无线衰落信道进行编程。 (3) 针对服从瑞利分布的多径信道进行仿真,加深对多径信道特性的了解。 (4) 对仿真后的结果进行分析,得出瑞利无线衰落信道的特性。 2 设计要求 (1) 设计一个瑞利无线衰落信道; (2) 进一步地了解瑞利无线衰落信道对信号的影响; (3) 在设计无线多径信道时,对路径的多少一定要选择合理。 3 设计思路 (1) 分析出无线信道符合瑞利概率密度分布函数,写出数学表达式。 (2) 建立多径衰落信道的基本模型。 (3) 对符合瑞利信道的路径衰落进行分析,并利用MATLAB 进行仿真。 4 设计内容 4.1 理论分析及数学推导 无线信道大体可以分为4种:慢变瑞利衰落信道、快变瑞利衰落信道、慢变频率选择性信道、快变频率选择性信道。 在N 条路径的情况下,信道的输出为 1()()[()]N n n n y t a t x t t =τ=-∑ (4.1.1) 式中,()n a t 和()n t τ表示与第N 条多径分量相关的衰落和传播延迟,延迟和衰减都表示为时间的函数。 由于大量散射分量导致接收机输入信号的复包络是一个复高斯过程。在该

本科毕业设计:基于MATLAB的OFDM系统仿真及分析

摘要 正交频分复用(OFDM) 是第四代移动通信的核心技术。该文首先简要介绍了OFDM的发展状况及基本原理, 文章对OFDM 系统调制与解调技术进行了解析,得到了OFDM 符号的一般表达式,给出了OFDM 系统参数设计公式和加窗技术的原理及基于IFFT/FFT 实现的OFDM 系统模型,阐述了运用IDFT 和DFT 实现OFDM 系统的根源所在,重点研究了理想同步情况下,保护时隙(CP)、加循环前缀前后和不同的信道内插方法在高斯信道和多径瑞利衰落信道下对OFDM系统性能的影响。在给出OFDM系统模型的基础上,用MATLAB语言实现了传输系统中的计算机仿真并给出参考设计程序。最后给出在不同的信道条件下,研究保护时隙、循环前缀、信道采用LS估计方法对OFDM系统误码率影响的比较曲线,得出了较理想的结论。 关键词: 正交频分复用;仿真;循环前缀;信道估计

Title: MATLAB Simulation and Performance Analysis of OFDM System ABSTRACT OFDM is the key technology of 4G in the field of mobile communication. In this article OFDM basic principle is briefly introduced.This paper analyzes the modulation and demodulation of OFDM system, obtaining a general expression of OFDM mark, and giving the design formulas of system parameters, principle of windowing technique, OFDM system model based on IFFT/FFT, the origin which achieves the OFDM system by using IDFT and DFT. Then, the influence of CP and different channel estimation on the system performance is emphatically analyzed respectively in Gauss and Rayleigh fading channels in the condition of ideal synchronization. Besides, based on the given system model OFDM system is computer simulated with MATLAB language and the referential design procedure is given. Finally, the BER curves of CP and channel estimation are given and compared. The conclusion is satisfactory. KEYWORDS:OFDM; Simulation; CP; Channel estimation

通信原理MATLAB仿真

小学期报告 实习题目通信原理Matlab仿真专业通信与信息工程 班级 学号 学生姓名 实习成绩 指导教师 2010年

通信原理Matlab仿真 目录 一、实验目的------------------------------------------------------------------------------------------------2 二、实验题目------------------------------------------------------------------------------------------------2 三、正弦信号波形及频谱仿真------------------------------------------------------------------------2 (一)通信原理知识--------------------------------------------------------------------------------------2 (二)仿真原理及思路--------------------------------------------------------------------------------------2 (三)程序流程图------------------------------------------------------------------------------------------- 3 (四)仿真程序及运行结果------------------------------------------------------------------------------3 (五)实验结果分析---------------------------------------------------------------------------------------5 四、单极性归零波形及其功率谱密度仿真--------------------------------------------------------5 (一)通信原理知识--------------------------------------------------------------------------------------6 (二)仿真原理及思路------------------------------------------------------------------------------ -------6 (三)程序流程图-------------------------------------------------------------------------------------------6 (四)仿真程序及运行结果--------------------------------------------------------------------------------6 (五)实验结果分析-------------------------------------------------------------------------------- -------6 五、升余弦滚降波形的眼图及功率谱密度仿真-------------------------------------------------8 (一)通信原理知识--------------------------------------------------------------------------------------8 (二)仿真原理及思路------------------------------------------------------------------------------ -------9 (三)程序流程图------------------------------------------------------------------------------- -----------9 (四)仿真程序及运行结果------------------------------------------------------------------------------10 (五)实验结果分析---------------------------------------------------------------------------------------11 六、PCM编码及解码仿真-----------------------------------------------------------------------------12 (一)通信原理知识---------------------------------------------------------------------------------- ---12 (二)仿真原理及思路------------------------------------------------------------------------------ ------ 13 (三)程序流程图------------------------------------------------------------------------------- -----------14 (四)仿真程序及运行结果------------------------------------------------------------------------------15 (五)实验结果分析---------------------------------------------------------------------------------------18 七、实验心得---------------------------------------------------------------------------- -------------------18

相关文档
相关文档 最新文档