文档库 最新最全的文档下载
当前位置:文档库 › 桥壳应力分析报告

桥壳应力分析报告

桥壳应力分析报告
桥壳应力分析报告

1.驱动桥桥壳单元模型的刚度验证

根据QC/T533-1999《汽车驱动桥台架试验方法》规定,驱动桥垂直弯曲刚性试验要求:(1)把装有减速器壳和后盖的桥壳安装在支架上,桥壳必须放平,如力点为二钢板弹簧中心,则支点为该桥轮距的响应点,或者将力点和支点位置互换;(2)安装时加力方向与桥壳轴管中心线垂直,支点应能滚动,以适应加载变形不致运动干涉;(3)测点位置如图1所示:

图1 桥壳垂直弯曲刚性试验力点、支点及测点位置简图对应的有限元模型做如下处理:约束驱动桥左侧轮距位置处12346自由度,约束驱动桥右侧轮距位置处2346自由度,在驱动桥左右弹簧座位置分别施加15t的竖直向下的载荷,如图2所示

图2 桥壳有限元模型中载荷和约束的加载方式经Radioss求解器求解,得到试验工况下桥壳位移云图和应力云

图分别如图3(a)和图3(b)所示:

图3(a)试验工况桥壳位移云图

图3(b)试验工况桥壳应力云图

桥壳满载轴荷时,桥壳最大变形为 2.054mm,而驱动桥轮距为3204mm,因此,每米轮距最大变形为0.641mm/m。根据QC/T534-1999《汽车驱动桥台架试验评价指标》对驱动桥桥壳垂直弯曲刚性试验的评价指标:满载轴荷时每米轮距最大变形不超过1.5mm得知此款驱动桥桥壳满足刚度要求。

2驱动桥桥壳极限工况静力分析

2.1不平路面冲击载荷工况

2.1.1驱动桥桥壳不平路面冲击载荷工况受力分析

汽车静止时,驱动桥桥壳两端经轮毂轴承支撑在车轮上,在钢板弹簧座处桥壳受汽车的簧上质量,而沿左右轮胎的中心线,地面给轮胎反力G2/2(双轮胎时,则沿双轮胎的中心),桥壳则承受地面给轮胎反力与车轮重力g w的差值,即(G2/2-g w),当汽车在不平路面上高速行驶时,桥壳除承受静止状态下的那部分载荷外,还要承受附加的冲击载荷,以动载荷系数来考虑。桥壳受力简图如图4所示:

图4 驱动桥壳不平路面冲击载荷工况受力简图

2.1.2驱动桥桥壳不平路面冲击载荷工况有限元仿真边界条件

根据不平路面冲击载荷工况下驱动桥桥壳的受力分析,得出驱动桥桥壳所承受的载荷为:

垂向载荷:在半轴套管上左右轮胎中心线位置施加竖直向上的载荷F v,其大小为:

F v=k d(G2/2-g w)≈k d G2/2=367500N

式中,G2---汽车满载静止于水平路面时驱动桥给地面的载荷,单位

N,按驱动桥满载轴荷计算;

g w---单侧车轮重量(包括轮毂、轮边减速器、制动器等),单

位N,由于g w远小于G2/2,计算时可以忽略不计;

k d---动载荷系数,对载货汽车取2.5。

2.1.3 约束

参考相关文献,选择约束左钢板弹簧座处234自由度,右钢板弹簧座处1234自由度。有限元模型中边界条件的施加如图5所示:

图5 驱动桥桥壳不平路面冲击载荷工况边界条件示意图

2.1.4有限元分析结果

将模型离散化以后,按照上述边界条件和载荷施加在离散的桥壳模型上,利用Radioss求解器求解,得出驱动桥桥壳不平路面冲击载荷工况应力及位移云图分别如图6(a)、6(b)所示:

图6(a)驱动桥桥壳不平路面冲击载荷工况位移云图

图6(b)驱动桥桥壳不平路面冲击载荷工况应力云图

最大应力为225.6MPa,位于桥壳右侧弹簧座处;最大位移为1.415mm,位于半轴套管最左侧。

而半轴套管应力云图如图7所示,其最大应力为214.2MPa,位于半轴套管与桥壳螺栓孔处,如图7所示。

图7 不平路面冲击载荷工况半轴套管应力云图

2.2 最大牵引力行驶工况

2.2.1驱动桥桥壳最大牵引力行驶工况受力分析

不考虑侧向力的作用,仅按汽车作直线行驶时的情况来计算。汽车加速行驶时,汽车质量会向后方转移,地面给左右驱动车轮的垂直反力为k2G2/2,因此每侧钢板弹簧座处承受k2G2/2-g w的载荷;作用在左右驱动车轮上的转矩引起的地面对左右驱动轮的最大切向反力各为P max/2;桥壳还承受因驱动桥传递转矩而引起的反作用力矩T。桥壳受力简图如图8所示:

图8 驱动桥桥壳最大牵引力行驶工况受力简图

2.2.2驱动桥桥壳最大牵引力行驶工况有限元仿真边界条件

根据最大牵引力行驶工况下驱动桥桥壳的受力分析,得出驱动桥桥壳所承受的载荷为

垂向载荷:在半轴套管上左右轮胎中心线位置施加竖直向上的载荷Fv,其大小为

F v=k2(G2/2-g w)≈k2G2/2=191100 N

纵向载荷:在半轴套管上左右轮胎中心线位置施加平行于汽车前进方向的载荷F h,按地面对轮胎能提供的附着力计算,

其大小为

F h=φk2G2/2=152880 N

转矩:轮边减速器齿圈通过齿圈支架与半轴套管固定,行星架与车轮相连。动力传递路线为:半轴---太阳轮---行星轮---行星架---车轮。太阳轮顺时针旋转,而齿圈受到逆时针方向的反力矩,齿圈与半轴套管固联,此力矩作用在半轴套管上,即在半轴套管上左右轮胎中心线位置附近施加绕半轴套管中心线的转矩T,其大小为:

T=φk2G2r r/2=129948000 N·mm

式中,G2---汽车满载静止于水平路面时驱动桥给地面的载荷,单位N;

k2---汽车加速行驶时的质量转移系数,对载货汽车驱动桥取

1.1~1.3,本文取1.3;

φ---地面附着系数,在良好的混凝土上或沥青路面上,路面干燥时为0.7~0.8,本文取0.8

r r---驱动车轮滚动半径,单位mm,其值为850mm。

2.2.3约束

参考相关文献,选择约束左钢板弹簧座处234自由度,右钢板弹簧座处1234自由度。有限元模型中边界条件的施加如图9所示:

图9 驱动桥桥壳最大牵引力行驶工况受力简图

2.2.4有限元仿真结果及分析

驱动桥桥壳最大牵引力行驶工况应力和位移云图分别如图10(a)、(b)所示。最大应力为291MPa,位于右侧半轴套管上。最大位移为1.203mm,位于右侧半轴套管端部。

图10(a)驱动桥桥壳最大牵引力工况应力云图

图10(b)驱动桥桥壳最大牵引力工况位移云图桥壳本体应力云图如图11所示,其最大应力为187.5MPa,位于右侧钢板弹簧约束位置处。

图11 驱动桥桥壳本体最大牵引力工况应力云图

2.3紧急制动行驶工况

2.3.1驱动桥桥壳紧急制动行驶工况受力分析

汽车紧急制动行驶时,汽车质量会向前方转移,左右驱动车轮承受地面的垂向反力为k2’G2/2,因此每侧钢板弹簧座处承受k2’G2/2-g w 的载荷;同时,地面对左右驱动车轮的制动力移制导桥壳上为汽车前进方向平行的纵向载荷和绕桥壳中心轴线的转矩。桥壳受力简图如图12所示:

图12 驱动桥桥壳紧急制动行驶工况受力简图

2.3.2驱动桥桥壳紧急制动行驶工况有限元仿真边界条件

根据紧急制动行驶工况下驱动桥桥壳的受力分析,得出驱动桥桥壳所承受的载荷为:

垂向载荷:在半轴套管上左右轮胎中心线位置施加竖直向上的载荷F v,其大小为

F v=k2’G2/2=139650N

纵向载荷:在半轴套管上左右轮胎中心线位置施加与汽车前进方向相反的载荷F h,按地面对轮胎能提供的附着力计算,其大小为:

F h= φk2’G2/2=111720N

转矩:制动蹄套在与制动地板相连的制动蹄支销上,而制动地板通过螺栓与桥壳固定,与汽车制动时,制动蹄与制动鼓摩擦,制动力矩最终会作用在桥壳上。因此在桥壳法兰盘上施加绕桥壳中心线的力矩T,其大小为

T=φk2’G2r r/2=94962000N·mm

式中,G2---汽车满载静止于水平路面时驱动桥给地面的载荷,单位N;

k2’---汽车紧急制动时的质量转移系数,对载货汽车驱动桥取

0.75~0.95,本文取0.95;

φ---地面附着系数,其值同最大牵引力行驶工况;

r r---驱动车轮滚动半径,单位mm,其值同最大牵引力行驶工况。

2.3.3约束

选择约束左钢板弹簧座处234自由度,右钢板弹簧座处1234自由度。有限元模型中边界条件的施加如示意图13所示:

图13 驱动桥桥壳紧急制动行驶工况边界条件示意图

2.3.4 有限元仿真结果与分析

驱动桥桥壳紧急制动行驶工况应力和位移云图分别如图14(a)、(b)所示,最大应力为212.6MPa,位于右侧半轴套管处;最大位移为0.879mm,位于右侧半轴套管端部。

图14(a)驱动桥桥壳紧急制动行驶工况应力云图

图14(b)驱动桥桥壳紧急制动行驶工况位移云图而驱动桥桥壳本体在紧急制动行驶工况下的最大应力为137MPa,位于右侧钢板弹簧位置处,应力云图如图15所示:

图15 驱动桥桥壳本体紧急制动行驶工况应力云图

2.4最大侧向力行驶工况

2.4.1驱动桥桥壳最大侧向力行驶工况受力分析

当汽车满载、高速急转弯时,会产生一个作用于汽车质心处的相

当大的离心力。当汽车所承受的侧向力达到地面给轮胎的侧向附着力时,汽车处于侧滑临界状态,侧向力一旦超过侧向附着力,汽车发生侧滑。考虑驱动桥全部荷重由侧滑方向一侧的驱动车轮承担这种极端情况,此时左侧车轮承受地面垂向反力G2和侧向反力,那么在驱动桥壳上会产生垂向反力、沿驱动桥中心轴线的力、绕前进方向的转矩。桥壳受力简图如图16所示:

图16 驱动桥桥壳最大侧向力行驶工况受力简图

2.4.2驱动桥桥壳最大侧向力行驶工况有限元仿真边界条件

根据驱动桥桥壳最大侧向力行驶工况受力分析,得出桥壳所收载荷为

垂向载荷:在半轴套管上左侧轮胎中心线位置施加竖直向上的载荷F v,其大小为:

F v=G2=294000N

横向载荷:在半轴套管上左轮胎中心线位置施加与汽车前进方向垂直的载荷F h,根据地面对轮胎能提供的侧向附着力

计算,其大小为:

F h=φ’G2=176400N

转矩:作用在左侧车轮上的侧向力会使桥壳承受绕前进方向的转矩因为此款驱动桥为全浮式半轴支撑,所以在半轴套管上两轴承支撑位置施加绕前进方向的转矩T,其大小为:

T=φ’G2r r=149940000N·mm

式中,G2---汽车满载静止于水平路面时驱动桥给地面的载荷,单位N;

φ’---地面的侧向附着系数,根据汽车理论关于重型货车侧翻阈值为0.4~0.6,取0.6;

r r---驱动车轮滚动半径,单位mm,其值同最大牵引力行驶工况。

2.4.3约束

选择约束左钢板弹簧座处234自由度,右钢板弹簧座处1234自由度。有限元模型中边界条件的施加如示意图17所示:

图17 驱动桥桥壳最大侧向力行驶工况边界条件示意图

2.4.4有限元仿真结果与分析

驱动桥桥壳最大侧向力行驶工况应力和位移云图分别如图18(a)、(b)所示。最大应力为349.1MPa,位于右侧半轴套管上;最大位移为1.569mm,位于右侧半轴套管端部。

图18(a)驱动桥桥壳最大侧向力行驶工况应力云图

图18(b)驱动桥桥壳最大侧向力行驶工况位移云图而驱动桥桥壳本体应力云图如图19所示,其最大应力为239MPa,位于右侧钢板弹簧约束位置处。

图19 驱动桥桥壳本体最大侧向力行驶工况应力云图

桩身应力测试分析报告

精心整理第一章工程概况

根据**院提供的岩土工程勘察报告,该场地工程地质条件如下:

三、检测桩位示意图 四、钢筋应力计在桩身埋设位置示意图 钢筋应力计在各试桩中位置示意图

二、测试设备及钢筋测力计的埋设 1、每桩钢筋应力计设置在各土层交界面处,每一个截面设2只钢筋测力计(基本呈180°对称布置),各钢筋应力计埋设截面的平、剖面图如前图; 2、JTM-V1000振弦式钢筋应力计采用焊接法固定在钢筋笼主筋上,并与桩身纵轴线平行;

3、连接在应力计的电缆线用柔性材料保护,绑扎在钢筋笼内侧并 引至地面; 4、所有应力计均用明显标记编号; 5、仪器设备:检测仪器设备采用JTM-V1000振弦式钢筋应力计、JTM-V10B 型频率读数仪、集线箱等组成。 三、测试原理 1位2ε c1j = εεs1j 3E cj 、E sj —砼弹性模量、钢筋弹性模量[E s 取2.0×108(kPa)] A cj 、A sj —同一截面处砼面积、钢筋总面积。 εcj 、εsj —同一截面处砼与钢筋的应变 4、钢筋应力计受力的计算公式: ) 2()(' 2 02 ----------------??=-?=Si Sij S i ij Sij A E F F k P ε

式中: P Sij —第i 量测截面处在j 级荷载下应力计所受轴向力(kN ) F ij —第i 量测截面处在j 级荷载下应力计的实测频率值(Hz) F i0—i 截面处钢筋应力计的初始频率值(Hz ) K A si ’—56f ij P ij —i A i 12、弦式钢筋应力计宜放在两种不同性质土层的界面处,以测量桩在不同土层中的分层摩阻力。在地面处(或以上)应设置一个测量断面作为钢筋应力计传感器标定断面。钢筋应力计埋设断面距桩顶和桩底的距离不宜小于1倍桩径。在同一断面处对称设置2个钢筋应力计。钢筋计应按主筋直径大小选择。仪器的可测频率范围应大于桩在最大加载时的频率的1.2倍; 3、使用前应对钢筋计逐个标定,得出压力(拉力)与频率之间的关系。带有接长 ) 3()(' -------------------------?= Si S Sij Sij A E P ε

局部应力应变分析法

1.局部应力应变分析法、名义应力疲劳设计法、疲劳可靠性设计法、损伤容限设计法 2.磨损、腐蚀、断裂 3.交变应力水平低、脆性断裂、损伤积累过程、断口在宏观和微观上有特征 4.表面应力水平比内部高、表面晶体束缚少,易发生滑移、表面易发生环境介质腐蚀、表面的加工痕迹或划痕会降低零件疲劳强度 5.材料在循环应力、应变作用下,某点或某些点发生局部永久性结构变形,在经过一定循环次数后产生裂纹或发生断裂的过程。 6.外加应力水平和标准试样疲劳寿命之间关系的曲线 7.疲劳寿命无穷大时的中值疲劳强度 8.在各级应力水平下的疲劳寿命分布曲线上可靠度相等的点连成曲线就能得到给定可靠度的一组SN曲线 9.理论应力:局部应力与名义应力的比值Kt=6t/6n 10.在应力集中和终加工相同的情况下,尺寸为d的零件的极限寿命与标准直径试样的极限寿命的比值 11.史密斯图、海夫图、等寿命图(相同寿命时在不同应力下的疲劳极限间关系的线图) 12.线性积累损伤理论: 13.载荷随时间变化的历程应力随时间变化的历程 14.零件的疲劳破损都是从应变集中部位最大局部应变处开始的 裂纹萌生以前,一般都会产生塑性变形 塑性变形是裂纹萌生和扩展的先决条件 零件的疲劳强度和寿命由应变集中部位的最大局部应力应变决定 15参数应力(名义应力)应变(局部应变) 特征应力疲劳应变疲劳 范围104-105-5*106 103-104-105 寿命总寿命裂纹形成寿命 曲线SN曲线古德曼曲线EN曲线,循环应力应变曲线 变形弹性变形应力应变成正比塑性变形较大 16真实应力 17材料在循环载荷作用下的应力应变响应循环应力应变曲线 18循环硬化:应力幅6a为常数,应变幅Ea随着循环次数增加而减少,最后趋于稳定 循环软化:应变幅Ea为常数,应力幅6a随着循环次数增加而逐渐减少 19.漫森四点:应变寿命曲线的弹性线上取2点,塑性线上取2点,通用斜率法 20.雨流法:Y方向为时间,X方向为应力大小 21.在循环加载作用下应力应变响应称为循环应力应变曲线 在循环加载作用下应力应变轨迹线称为应力应变迟滞回线 件加载拉伸到A卸载到O加载压缩到B加载拉伸到C(与A重合)形成的环线 22.损伤容限设计:以断裂力学理论为基础 以无损检测技术和断裂韧性与疲劳裂纹扩展速率的测定技术为手段 以有初始缺陷的寿命估算为中心 以断裂控制为保障 确保零件在使用期内能够安全使用的一种疲劳计算方法 23.应力强度因子:K是度量裂纹端部应力场强弱程度的一个参数 24.断裂韧度:应力强度因子的临界值,发生脆断时的应力强度因子。 25.性能、可靠性(规定条件规定时间完成规定功能)、维修性指标(规定条件时间程序方法恢复到规定状态) 26.广义可靠性=狭义可靠性(不可维修产品的可靠性)+可维修性 27.故障和失效(产品不能完成其规定功能的状态) 28.可靠度(规定条件时间完成规定功能的概率)

桥壳项目报告.

《汽车制造工艺》 三级项目报告书 载荷1.5吨桥壳结构设计及制造工艺制定 班级:12级车辆工程卓越班 组员:梁宏宇陈尔康黄业兴 指导教师:董国疆 日期:2014年12月22日

一、汽车桥壳的功能及特征分析 (1)驱动桥壳的功用 1、和从动桥一起承受汽车质量 2、使左、右驱动车轮的轴向相对位置固定 3、汽车行驶时,其作为行驶系的组成部分时功用主要是安装悬架或轮毂,支撑汽车悬架以上各部分重量,承受驱动轮传来的反力和力矩,并在驱动轮与悬架之间传力 (2)桥壳的特征 桥壳是安装主减速器、差速器、半轴、轮毂和悬架的基础件,主要作用是支承并保护主减速器、差速器和半轴等。同时,桥壳又是行驶系的主要组成件之一。 驱动桥壳应有足够的强度和刚度,质量小,并便于主减速器的拆装和调整。 (3)驱动桥壳的设计要求 ⑴应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力。 ⑵在保证强度和刚度的前提下,尽量减轻质量以提高行驶的平顺性。 ⑶结构工艺性好,成本低。 ⑷拆装、调整、维修方便 ⑸保护装于其上的传动系部件和防止泥水侵入。 ⑹保证足够的离地间隙。

二、汽车桥壳制造方法的确定 驱动桥壳可分为整体式桥壳和分段式桥壳,分段式桥壳一般分为两段,因而易于铸造加工,但检修及拆卸很不方便。目前较少采用分段式桥壳,使用较为广泛的是整体式桥壳。 常见的整体式桥壳制造方式有整体铸造式、钢板冲压焊接式、钢管扩张成形式以及液压涨形式等. 1.整体铸造式 整体铸造式桥壳的主要优点在于刚性好、塑性变形小、强度高、易铸成等强度梁,可根据各截面不同的强度要求设计铸造不一样的壁厚。其缺点是弹性及韧性较冲焊桥壳差、铸造质量不易保证,且整体质量大、成本较高,不适合整车进行轻量化及降成本设计。整体铸造式桥壳在现今的汽车工业市场上仍有大量的应用,世界范围内的重型车辆上仍普遍采用铸造桥壳,只是材料及结构作了一些变化,包括采用高强度QT及高牌号铸钢,结构设计更加合理等。 铸造整体桥壳通常采用球墨铸铁、可锻铸铁或铸钢铸造。铸造整体桥壳的主要优点在于可制成复杂面和理想的形状,壁厚可以变化,易得到理想的应力分布,其强度及刚度均较好,工作可靠,故要求负载较大的中型重型汽车,适于采用这种。然而由于其质量大、加工面多、制造工艺复杂。且需要相当规模的铸造设备,在铸造时质量不易控制,也容易出现废品,故仅用于载荷大的重型汽车,不适用于载重1.5吨的货车。 2.钢板冲压焊接式 钢板冲压焊接式桥壳具有质量小、制造工艺简单、材料利用率

驱动桥壳有限元分析

驱动桥壳有限元分析 汽车驱动桥壳的功用是支承并保护主减速器,差速器和半轴等,使左右驱动车轮的轴向相对位置固定,并且支承车架及其上的各总成质量。 1 驱动桥壳设计要求 在设计选用驱动桥壳时,要满足以下设计要求: (1)应该具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力。 (2)在保证强度和刚度的情况下,尽量减小质量以提高汽车行驶的平顺性。 (3)保证足够的离地间隙。 (4)结构工艺性好,成本低。 (5)保护装于其中的传动系统部件和防止泥水浸入。 (6)拆装,调整,维修方便。 2 驱动桥壳类型确定和材料选择 驱动桥壳通常分为整体式桥壳、分段式桥壳,前者强度和钢度较大,便于主减速的装配、调整和维修。普遍用于各类汽车上;多段式桥壳较整体式易于铸造,加工简便,但维修保养不便,汽车较少采用。 本设计选用整体式桥壳。后桥壳体为整体铸造,半轴套管从两端压入桥壳中。后桥壳前部和主减速器连接,后部为可拆式后盖,后桥壳上装有通气塞。 图1 驱动桥壳结构尺寸 1 1

2 本设计中的驱动桥壳总长为1800mm ,簧板距为970mm ,桥壳厚度为8mm ,选用材料为可锻铸铁,牌号为KT350-10,弹性模量为Mpa 61055.1 ,泊松比为0.23,密度为3/7200m kg ,抗拉强度为350Mpa ,屈服强度为200Mpa 。 这种材料有着较高的强度、塑性和冲击韧度,可用于承受较高的冲击,振动及扭转载荷下工作的零件。 3 对驱动桥壳进行有限元分析 ABAQUS 是一套功能强大的有限元分析软件,特别是在非线性分析领域,其技术和特点更是突出,它融结构、流体、传热学、声学、电学及热固耦合、流固耦合等于一体,由于其功能强大,再加上其操作界面人性化,越来越受到人们的欢迎。 在对桥壳进行有限元分析,首先将CATIA 软件设计的驱动桥壳模型导入ABAQUS 软件中,并将上述材料属性添加到模型。 图2 将模型导入ABAQUS 并赋予属性 由于本设计的桥壳为整体式桥壳,整体式桥壳与轮辋在凸缘盘外侧位置通过轴承相连接,因此可以将此处位置的约束看成全自由度约束。桥壳通过板簧座位置与车体相连接,此处位置承受车体载荷。 本设计中车体满轴载荷(后)为6910kg ,考虑到车满载状况下行驶通过不平路面,将受冲击载荷,所以取2.5倍满轴载荷加于板簧座上,即总质量为17275kg ,每个板簧座承受86375kg 。

基于元ANS的压力容器应力分析报告

压力容器分析报告

目录 1 设计分析依据 0 1.1 设计参数 0 1.2 计算及评定条件 0 1.3 材料性能参数 0 2 结构有限元分析 (1) 2.1 理论基础 (1) 2.2 有限元模型 (1) 2.3 划分网格 (1) 2.4 边界条件 (2) 3 应力分析及评定 (2) 3.1 应力分析 (2) 3.2 应力强度校核 (2) 4 分析结论 (3) 4.1 上封头接头外侧 (4) 4.2 上封头接头内侧 (5) 4.3 上封头壁厚 (7) 4.4 筒体上 (9) 4.5 筒体左 (10) 4.6 下封头接着外侧 (12) 4.7 下封头壁厚 (14)

1 设计分析依据 (1)压力容器安全技术监察规程 (2)JB4732-1995 《钢制压力容器-分析设计标准》-2005确认版 1.1 设计参数 表1 设备基本设计参数 1.2 计算及评定条件 (1)静强度计算条件 表2 设备载荷参数 载荷进行计算,故采用设计载荷进行强度分析结果是偏安全的。 1.3 材料性能参数 材料性能参数见表3,其中弹性模型取自JB4732-95表G-5,泊松比根据JB4732-95的公式(5-1)计算得到,设计应力强度分别根据JB4732-95的表6-2、表6-4、表6-6确定。 表3 材料性能参数性能

2 结构有限元分析 2.1 理论基础 传统的压力容器标准与规范,一般属于“常规设计”,以弹性失效准则为理论基础,由材料力学方法或经验得到较为简单的适合于工程应用的计算公式,求出容器在载荷作用下的最大主应力,将其限制在许用值以内,即可确认容器的壁厚。对容器局部区域的应力、高应力区的应力不做精细计算,以具体的结构形式限制,在计算公式中引入适当的系数或降低许用应力等方法予以控制,这是一种以弹性失效准则为基础,按最大主应力理论,以长期实践经验为依据而建立的一类标准。 塑性理论指出,由于弹性应力分析求得的各类名义应力对结构破坏的危险性是不同的,随着工艺条件的苛刻和容器的大型化,常规设计标准已经不能满足要求,尤其是在应力集中区域。若不考虑应力集中而只按照简化公式进行设计,不是为安全而过分浪费材料就是安全系数不够。基于各方面的考虑,产生了“分析设计”这种理念。采用以极限载荷、安定载荷和疲劳寿命为界限的“塑性失效”与“弹性失效”相结合的“弹塑性失效”准则,要求对容器所需部位的应力做详细的分析,根据产生应力的原因及应力是否有自限性,分为三类共五种,即一次总体薄膜应力( Pm) 、一次局部薄膜应力( Pc) 、一次弯曲应力( Pb) 、二次应力( Q) 和峰值应力( F) 。 对于压力容器的应力分析,重要的是得到应力沿壁厚的分布规律及大小,可采用沿壁厚方向的“校核线”来代替校核截面。而基于弹性力学理论的有限元分析方法,是一种对结构进行离散化后再求解的方法,为了获得所选“校核线”上的应力分布规律及大小,就必须对节点上的应力值进行后处理,即应力分类,根据对所选“校核线”上的应力进行分类,得出各类应力的值,若满足强度要求,则所设计容器是安全的。 按照JB4732-1995进行分析,整个计算采用ANSYS13.0软件,建立有限元模型,对设备进行强度应力分析。 2.2 有限元模型 由于主要关心容器开孔处的应力分布规律及大小,为减少计算量,只取开孔处作为分析对象,且取其中较为关心的大孔进行分析校核。分析设计所用的几何模型如图1所示。在上下封头和筒体之间存在不连续的壁厚,由于差距和影响量较小,此处统一采用上下封头的设计厚度。 图1 压力容器模型 2.3 划分网格 在结构的应力分析中,采用ANSYS13.0中的solid187单元进行六面体划分,如图2所示。图3~图5

下承式钢箱系杆拱桥拱脚局部受力分析

下承式钢箱系杆拱桥拱脚局部受力分析 叶梅新,李一可 (中南大学土木建筑学院,湖南长沙410075) 摘 要:采用大型通用有限元软件ANS YS ,运用有限元两步分析法,针对正在设计中的客运专线下 承式钢箱系杆拱桥拱脚局部结构的局部应力分布特征及其传力特性,对该拱脚的结构构造及其细节的合理性做出了对比分析和综合评价。 关键词:下承式钢箱系杆拱;拱脚;有限元;应力中图分类号:U441 文献标识码:A 文章编号:1004—5716(2007)07—0165—05 1 概述 本文所述设计中客运专线下承式钢箱系杆拱桥,矢跨比为1/4.67,拱肋中心距16m ,拱轴线型采用二次抛物线;拱肋结构采用双肋平行变截面钢箱,钢箱截面宽为2m ,高 拱脚处为4.5m ,拱顶处3m ,中间截面高按内线直插;桥面系采用纵横梁与混凝土板半结合结构体系。混凝土板宽13.4m ,厚30cm ,全桥共设4片纵梁,19根横梁,2×15根吊杆,5根横撑。全桥轮廓尺寸见图1 。 图1 全桥轮廓图 ②钢丝直径不均、偏小。 (3)回缩: ①夹片应力不足。②夹片纹路纹理过浅。③夹片外壁及锚环内壁光洁度不足,摩擦力过大,导致挤压力不足。5 影响因素 影响钢绞线与锚具锚固效果的因素有以下几种:(1)锥面倾角α。在一定的范围内,α越小,挤压力越大。 (2)摩擦系数f 。锚环与夹片之间的摩擦力对锚环起反作用,保持接触面光滑可提高锚固性能。 (3)钢绞线与夹片的硬度。合理确定两者的相对硬度是维持咬合力的基础。 (4)夹片内螺纹。合理设计夹片内螺纹的几何尺寸,并在生产中保持其均匀性,有利于提高锚固性能,在 充分考虑锚环与夹片强度的前提下,控制与调整以上因素对设计和施工都具有十分重要的意义。6 预防措施 (1)保持预应力管道的顺畅,减少摩阻力。 (2)选用质量合格的锚具,使用前检查并剔除不合格的锚具和夹片。 (3)若锚环与夹片接触面较粗糙,涂抹黄油。7 结束语 通过对预应力施工过程中出现断丝、滑丝、回缩等故障原因的分析,及时地采取了相应的处理措施,为优质、高效地完成江溪塔大桥的施工提供保障。 参考文献: [1] 邵容光.结构设计原理[M ].人民交通出版社.[2] 范立础.桥梁工程[M ].人民交通出版社.

管道应力分析报告概述

管道应力分析概述 CAESARII软件介绍 CAESARII管道应力分析软件是由美国COADE公司研发的压力管道应力分析专业软件。它既可以分析计算静态分析,也可进行动态分析。CAESARII向用户提供完备的国际上的通用管道设计规范,使用方便快捷。交互式数据输入图形输出,使用户可直观查看模型(单线、线框,实体图)强大的3D计算结果图形分析功能,丰富的约束类型,对边界条件提供最广泛的支撑类型选择、膨胀节库和法兰库,并且允许用户扩展自己的库。钢结构建模,并提供多种钢结构数据库.结构模型可以同管道模型合并,统一分析膨胀节可通过标准库选取自动建模、冷紧单元/弯头,三通应力强度因子(SIF)的计算、交互式的列表编辑输入格式用户控制和选择的程序运行方式,用户可定义各种工况。 一、管道应力分析的原则 管道应力分析应保证管道在设计条件下具有足够的柔性,防止管道因热胀冷缩、管道支承或端点附加位移造成应力问题。 二、管道应力分析的主要内容 管道应力分析分为静力分析和动力分析。 静力分析包括: 1)压力荷载和持续荷载作用下的一次应力计算——防止塑性变形破坏; 2)管道热胀冷缩以及端点附加位移等位移荷载作用下的二次应力计算——防止疲劳破坏; 3)管道对设备作用力的计算——防止作用力太大,保证设备正常运行; 4)管道支吊架的受力计算——为支吊架设计提供依据; 5)管道上法兰的受力计算——防止法兰汇漏。 动力分析包括:

l)管道自振频率分析——防止管道系统共振; 2)管道强迫振动响应分析——控制管道振动及应力; 3)往复压缩机(泵)气(液)柱频率分析——防止气柱共振; 4)往复压缩机(泵)压力脉动分析——控制压力脉动值。 三、管道上可能承受的荷载 (1)重力荷载:包括管道自重、保温重、介质重和积雪重等; (2)压力荷载:压力载荷包括内压力和外压力; (3)位移荷载:位移载荷包括管道热胀冷缩位移、端点附加位移、支承沉降等; (4)风荷载; (5)地震荷载; (6)瞬变流冲击荷载:如安全阀启跳或阀门的快速启闭时的压力冲击: (7)两相流脉动荷载; (8)压力脉动荷载:如往复压缩机往复运动所产生的压力脉动; (9)机械振动荷载:如回转设备的振动。 四、管道应力分析的目的 1)为了使管道和管件内的应力不超过许用应力值; 2)为了使与管系相连的设备的管口荷载在制造商或国际规范(如 NEMA SM-23、API-610、API-6 17等)规定的许用范围内; 3)为了使与管系相连的设备管口的局部应力在 ASME Vlll的允许范围内; 4)为了计算管系中支架和约束的设计荷载;

汽车桥壳的结构设计及制造工艺制定

《汽车制造工艺》课程三级项目 6.5t汽车桥壳的结构设计及制造工艺制定 2016年11月6日

目录 一、汽车桥壳的功能及特征分析 (3) 1.汽车桥壳的主要功能 (3) 2.汽车桥壳的种类及特征 (3) 二、汽车桥壳冲压焊接制造方法简述 (5) 三、汽车桥壳冲压焊接工艺设计 (6) 四、汽车桥壳冲压焊接工艺工序图的绘制 (9) 五、材料利用率计算及成本预测 (10) 1.材料利用率计算 (10) 2.成本预测 (10) 六、汽车桥壳的强度计算及校核 (10) 七、汽车桥壳的结构设计 (13) 八、项目心得体会 (14) 九、参考资料 (15)

一、汽车桥壳的功能及特征分析 1.汽车桥壳的主要功能 1、和从动桥一起承受汽车质量 2、使左、右驱动车轮的轴向相对位置固定 3、汽车行驶时,其作为行驶系的组成部分时功用主要是安装悬架或轮毂,支撑汽车悬架以上各部分重量,承受驱动轮传来的反力和力矩,并在驱动轮与悬架之间传力 2.汽车桥壳的种类及特征 1、铸造式桥壳 整体铸造式桥壳是汽车发展史上最早采用的结构,整体铸造桥壳优缺点都较为明显。整体铸造式桥壳可采用可锻铸铁、球墨铸铁以及铸钢铸造,为进一步提高整体铸造式桥壳的刚度和强度,还可以在整体铸造式桥壳两端压入较长的无缝钢管作为半轴套管,并用销钉固定。整体铸造式桥壳的主要优点在于刚性好、塑性变形小、强度高、易铸成等强度梁,可根据各截面不同的强度要求设计铸造不一样的壁厚。其缺点是弹性及韧变较冲焊桥壳差、铸造质量不易保证,且整体质量大、成本较高,不适合整车进行轻量化及降低成本设计。 2、冲压焊接式 钢板冲压焊接式整体桥壳主要组成部分包括上下对焊的一对桥壳主件、两个突缘、四块三角钢板、两个半轴套管、加强圈、一个后盖以及两个钢板弹簧座,整体沿其间接缝组焊而成。桥壳主件是由钢板冲压而成的上下两半桥壳,具体焊

有限元分析报告样本

《有限元分析》报告基本要求: 1. 以个人为单位完成有限元分析计算,并将计算结果上交;(不允许出现相同的分析模型,如相 同两人均为不及格) 2. 以个人为单位撰写计算分析报告; 3. 按下列模板格式完成分析报告; 4. 计算结果要求提交电子版,报告要求提交电子版和纸质版。(以上文字在报告中可删除) 《有限元分析》报告 一、问题描述 (要求:应结合图对问题进行详细描述,同时应清楚阐述所研究问题的受力状况和约束情况。图应清楚、明晰,且有必要的尺寸数据。) 一个平面刚架右端固定,在左端施加一个y 方向的-3000N 的力P1,中间施加一个Y 方向的-1000N 的力P2,试以静力来分析,求解各接点的位移。已知组成刚架的各梁除梁长外,其余的几何特性相同。 横截面积:A=0.0072 m2 横截高度:H=0.42m 惯性矩:I=0.0021028m4x 弹性模量: E=2.06x10n/ m2/ 泊松比:u=0.3 二、数学模型 (要求:针对问题描述给出相应的数学模型,应包含示意图,示意图中应有必要的尺寸数据;如进行了简化等处理,此处还应给出文字说明。) (此图仅为例题)

三、有限元建模(具体步骤以自己实际分析过程为主,需截图操作过程) 用ANSYS 分析平面刚架 1.设定分析模块 选择菜单路径:MainMenu—preference 弹出“PRreferences for GUI Filtering”对话框,如图示,在对话框中选取:Structural”,单击[OK]按钮,完成选择。 2.选择单元类型并定义单元的实常数 (1)新建单元类型并定 (2)定义单元的实常数在”Real Constants for BEAM3”对话框的AREA中输入“0。0072”在IZZ 中输入“0。0002108”,在HEIGHT中输入“0.42”。其他的3个常数不定义。单击[OK]按 钮,完成选择 3.定义材料属性 在”Define Material Model Behavier”对话框的”Material Models Available”中,依次双击“Structural→Linear→Elastic→Isotropic”如图

拱桥局部应力分析报告

目录 1工程概况 (2) 2分析方法 (4) 2.1受力特点 (4) 2.2分析方法 (4) 2.3分析软件 (4) 3计算模型 (4) 3.1整体杆系分析模型 (4) 3.2局部实体分析模型 (4) 3.3边界荷载 (5) 3.4边界位移约束 (6) 3.5工况组合 (6) 4主要计算结果 (6) 4.1主拱座主拉应力云图 (6) 4.2主拱座主压应力云图 (8) 4.3主拉应力等值面图 (9) 4.4横向正应力图 (9) 4.5纵向正应力图 (11) 4.6预埋板及钢管范梅塞斯应力云图 (12) 5结论及建议 (22)

1.工程概况主桥立面图如下:

图1-1 主桥立面图 2

2.分析方法 2.1 受力特点 11号、12号主桥中间主墩区域从构造角度来看,该处不仅是主跨两幅拱肋共同作用处,也是边跨两幅拱肋共同作用处,其上还承受着立柱的作用。因此该处构造复杂,是设计的关键部位。从受力角度来看,拱肋产生的巨大推力,都要通过主拱座传递给承台。综合以上因素,由于该处构造的复杂性导致受力的复杂性,并且容易产生局部应力集中,因此对主拱座的应力分布状况和应力大小进行计算分析是十分必要的。 2.2 分析方法 由于拱脚处结构构造复杂,采用考虑了剪切变形的三维Timoshenko梁单元也无法对其受力状况进行准确和仔细的模拟,因此需要采用空间实体有限元进行分析才能得到较真实的结构受力状态和应力分布。具体分析方法为建立局部模型,利用圣维南原理通过整体模型的分析结果来设置适当的边界条件以反映结构真实的受力状况。 2.3 分析软件 采用midas FEA,midas Civil。

14断开式桥壳有限元分析方法--王希诚

断开式驱动桥有限元研究 王希诚 东风汽车公司技术中心

断开式驱动桥有限元研究 The Finite Element Analysis Method of the Divide Axle 王希诚 (东风汽车集团技术中心) 摘要:本文以某越野车断开式驱动桥为研究对象,利用HyperWorks进行仿真计算。通过与该桥壳破坏试验结果的对比分析,验证该断开式桥壳分析方法的可行性。 关键词:有限元断开式桥壳 Abstract By using the HyperWorks simulation, the paper is studied the divide axle. Compared with the result of the destructive test, confirms the feasibility of the analysis method. Keyword:FEM,Divide Axle 1 前言 断开式驱动桥总是与独立悬挂相匹配,又称为独立悬挂驱动桥。断开式驱动桥的簧下质量较小,又与独立悬挂相配合,致使驱动车轮与地面的接触情况与对各种地形的适应性比较好,由此可大大地减小汽车在不同路面上行驶时的振动和车厢倾斜;提高汽车的行驶平顺性和平均行驶速度;减小车轮和车桥上的动载荷及零件的损坏,提高其可靠性及使用寿命。由于断开式驱动桥及与其相配的独立悬挂的结构复杂,故这种结构主要见于对平顺性要求较高的一部分轿车及一些越野车。越野车对越野性能要求比较高,开发的新一代越野车多采用断开式驱动桥。 鉴于目前重型货车多采用非断开式驱动桥,CAE仿真分析的工作者就非断开式驱动桥展开了很多工作;但断开式驱动桥的有限元分析工作却仅在各单位内部开展。为了丰富各种桥壳的分析方法,特写此文,希望能达到抛砖引玉的作用。 2 模型介绍 2.1 处理软件说明

球罐应力分析报告模板

XXX球罐应力分析报告 设备名称:XXX球罐 设备位号:XXX 应力分析报告

目录 1基本设计参数 (4) 2计算数据 (6) 2.1 计算条件 (6) 2.2材料性能数据 (7) 3主要受压元件计算 (8) 4整体结构分析计算 (9) 4.1 力学模型和有限元模型 (9) 4.2 载荷工况分析 (11) 4.3 载荷边界条件 (12) 4.4 位移边界条件 (15) 4.5 应力强度分布云图及路径选取 (15) 4.6 应力线性化及强度评定 (20) 4.7 整体结构强度评定汇总 (33) 5局部结构分析计算 (34) 5.1 人孔与接管N1/N4局部结构分析 (34) 5.1.1 力学模型和有限元模型 (34) 5.1.2载荷边界条件 (36) 5.1.3位移边界条件 (38) 5.1.4应力分布云图及路径选取 (39) 5.1.5 应力线性化及强度评定 (40) 5.1.6 人孔与接管N1/N4应力线性化及强度评定 (48) 5.2 人孔与接管V1/K3/K4局部结构分析 (48) 5.2.1 力学模型和有限元模型 (48) 5.2.2载荷边界条件 (51) 5.2.3位移边界条件 (53) 5.2.4应力分布云图及路径选取 (54) 5.2.5 应力线性化及强度评定 (55)

5.2.6 人孔与接管V1/K3/K4应力线性化及强度评定 (63) 5.3 人孔与接管K1/K2局部结构分析 (63) 5.3.1 力学模型和有限元模型 (63) 5.3.2载荷边界条件 (66) 5.3.3位移边界条件 (68) 5.3.4应力分布云图及路径选取 (69) 5.3.5 应力线性化及强度评定 (70) 5.3.6 人孔与接管K1/K2应力线性化及强度评定 (78) 5.4 人孔与接管N2局部结构分析 (78) 5.4.1 力学模型和有限元模型 (78) 5.4.2载荷边界条件 (81) 5.4.3位移边界条件 (83) 5.4.4应力分布云图及路径选取 (84) 5.4.5 应力线性化及强度评定 (85) 5.4.6 人孔与接管N2应力线性化及强度评定 (93) 5.5 人孔与接管N5局部结构分析 (93) 5.5.1 力学模型和有限元模型 (93) 5.5.2载荷边界条件 (96) 5.5.3位移边界条件 (99) 5.5.4应力分布云图及路径选取 (100) 5.5.5 应力线性化及强度评定 (101) 5.5.6 人孔与接管N5应力线性化及强度评定 (109) 6结论 (109) 附录 (109) 球罐SW6计算文件

车桥桥壳参数计算方法

3.2 挖掘机后桥桥壳设计 3.2.1 桥壳类型选择 由于轮式挖掘机后桥桥壳是挖掘机上的主要部件,起着支承汽车荷重的作用,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力和垂向力也是经过桥壳传到车架和车厢上。因此。轮式挖掘机桥壳既是承载件又是传力件。同时它又是主减速器、差速器及驱动车轮传动装置的外壳,而且工作负载高,负荷变化大,行驶路况多变,工作环境恶劣,综合各项因素接合毕业设计要求我决定使用三段可分式桥壳作为设计目标。 3.2.2 桥壳设计及计算 1.桥壳设计 桥壳的设计是一个参数探索的过程,对于一款桥壳的设计首先是参考一款目前已经成熟的桥壳参数,并根据设计目标进行参数修正,将参数修正后的结果进行理论和有限元分析,查看是否满足要求,如不满足,就继续修正参数,直到最终达到设计要求,对于本次设计的目标,参考了某公司7吨轮式挖掘机驱动桥的参数,并根据实际需要进行了多次参数修正和分析,最终得到设计模型。 2桥壳的静弯曲应力计算 桥壳犹如一空心横梁,两端经轮毂轴承支承于车轮上,在平板座处桥壳承受汽车的簧上质量,而沿左右轮胎中心线,地面给轮胎以反力2G /2(双胎时则沿双胎之中心),桥壳则承受此力与车轮重力w g 之差值,即()2G w g -,计算简图 如下图所示。

桥壳按静载荷计算时,在其两座之间的弯矩M 为 () 2G 2 w B s M g -=- N ·M 式中:2G ——汽车满载静止与水平路面时驱动桥给地面的载荷,N ; w g ——车轮(包括轮毂、制动器等)的重力,N ; B ——驱动车轮轮距,m; s ——驱动桥壳上两座中心距离,m. 由弯矩图可见,桥壳的危险断面通常在座附近。通常由于w g 远小于2G /2,且设计时不易准确预计,当无数据时可以忽略不计。而静弯曲应力wj σ则为 310wj V M W σ= ? MPa 式中:M ——见弯矩公式; V W ——危险断面处桥壳的垂向弯曲截面系数。 在不平路面冲击载荷作用下的桥壳强度计算 当汽车在不平路面上高速行驶时,桥壳除了承受静力状态下那部分荷载以外,还承受附加的冲击载荷。在这两种载荷总的作用下,桥壳所产生的弯曲应力 wd σ为 wd d =k wj σσ MPa

生活中的材料力学实例分析

生活中的材料力学实例分析 一意义 材料力学主要研究杆件的应力、变形以及材料的宏观力学性能的学科。材料力学是固体力学的一个基础分支。它是研究结构构件和机械零件承载能力的基础学科。其基本任务是:将工程结构和机械中的简单构件简化为一维杆件,计算杆中的应力、变形并研究杆的稳定性,以保证结构能承受预定的载荷;选择适当的材料、截面形状和尺寸,以便设计出既安全又经济的结构构件和机械零件。 二对象 材料力学的研究通常包括两大部分:一部分是材料的力学性能(或称机械性能)的研究,材料的力学性能参量不仅可用于材料力学的计算,而且也是固体力学其他分支的计算中必不可少的依据;另一部分是对杆件进行力学分析。杆件按受力和变形可分为拉杆、压杆受弯曲(有时还应考虑剪切)的粱和受扭转的轴等几大类。杆中的内力有轴力、剪力、弯矩和扭矩。杆的变形可分为伸长、缩短、挠曲和扭转。在处理具体的杆件问题时,根据材料性质和变形情况的不同,可将问题分为线弹性问题、几何非线性问题、物理非线性问题三类。 材料力学不仅在复杂机械工程中有重要的作用,在生活中也很常见。比如随处可见的桥梁,桥是一种用来跨越障碍的大型构造物。确切的说是用来将交通路线 (如道路、铁路、水道等)或者

其他设施 (如管道、电缆等)跨越天然障碍 (如

河流、海峡、峡谷等)或人工障碍 (高速公路、铁路线)的构造物。桥的目的是允许人、车辆、火车或船舶穿过障碍。桥可以打横搭着谷河或者海峡两边,又或者起在地上升高,槛过下面的河或者路,让下面交通畅通无阻。 三分析

如果在安全的前提下,将原来的四个桥墩和三个拱形拉索变为三个桥墩和两个拱形拉索。不仅可以节约大量的材料,降低成本,而且有美观。 四总结 因此,材料力学是一门很有用的学科,能够处理各种各样复杂的问题。只要注意观察,生活中处处有材料力学的踪影。利用材料力学的知识对我们身边的事物进行分析并加以改进,对我们的生活和社会的发展能起到积极的促进作用。 (注:专业文档是经验性极强的领域,无法思考和涵盖全面,素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

ANSYS基础教程——应力分析报告

ANSYS基础教程——应力分析 关键字:ANSYS 应力分析 ANSYS教程 信息化调查找茬投稿收藏评论好文推荐打印社区分享 应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析,应力分析包括如下几个类型:静态分析瞬态动力分析、模态分析谱分析、谐响应分析显示动力学,本文主要是以线性静态分析为例来描述分析,主要容有:分析步骤、几何建模、网格划分。 应力分析概述 ·应力分析是用来描述包括应力和应变在的结果量分析的通用术语,也就是结构分析。 ANSYS 的应力分析包括如下几个类型: ●静态分析 ●瞬态动力分析 ●模态分析 ●谱分析 ●谐响应分析 ●显示动力学 本文以一个线性静态分析为例来描述分析步骤,只要掌握了这个分析步骤,很快就会作其他分析。 A. 分析步骤 每个分析包含三个主要步骤:

·前处理 –创建或输入几何模型 –对几何模型划分网格 ·求解 –施加载荷 –求解 ·后处理 –结果评价 –检查结果的正确性 ·注意!ANSYS 的主菜单也是按照前处理、求解、后处理来组织的;

·前处理器(在ANSYS中称为PREP7)提供了对程序的主要输入; ·前处理的主要功能是生成有限元模型,主要包括节点、单元和材料属性等的定义。也可以使用前处理器PREP7 施加载荷。 ·通常先定义分析对象的几何模型。 ·典型方法是用实体模型模拟几何模型。 –以CAD-类型的数学描述定义结构的几何模型。 –可能是实体或表面,这取决于分析对象的模型。 B. 几何模型 ·典型的实体模型是由体、面、线和关键点组成的。 –体由面围成,用来描述实体物体。 –面由线围成,用来描述物体的表面或者块、壳等。 –线由关键点组成,用来描述物体的边。 –关键点是三维空间的位置,用来描述物体的顶点。

天然气管道穿孔局部应力应变分析

天然气管道穿孔局部应力应变分析 发表时间:2020-03-24T09:49:13.023Z 来源:《文化时代》2020年1期作者:张益 [导读] 本文主要以X70天然气管道为研究对象,针对穿孔管道的局部力学特性进行分析,通过模拟针对穿孔管道的局部等效应力和塑性应变分布状况进行分析。 中国石油天然气管道公司中原输油气分公司山东省德州市 253000 摘要:本文主要以X70天然气管道为研究对象,针对穿孔管道的局部力学特性进行分析,通过模拟针对穿孔管道的局部等效应力和塑性应变分布状况进行分析。 关键词:天然气管道;穿孔;局部应力;应变 引言 天然气是一种高效的清洁能源,目前在生产生活中的应用非常广泛,而管道运输是天然气输送的主要方式,这种推广方式具有安全、高效的特征。天然气管道在长期运行过程中不可避免的会受到腐蚀作用影响,腐蚀深度不断增加会最终导致天然气管道出现穿孔现象,进而引发天然气泄漏,造成不可挽回的后果。 1 天然气管道穿孔模型 1.1穿孔实验模型 天然气管道在出现腐蚀现象后,随着时间的不断推移,发生腐蚀的位置会逐渐扩散,最终会形成穿孔。本次实验中选择的天然气穿孔管道内壁直径达到20mm,外壁直径为6mm[1]。 1.2穿孔有限元模型 以上述天然气穿孔管道模型为基础,充分利用Solid185单元来建立起从内向外以及从外向内两种穿孔管道模型,将管道利用自由网格进行划分,并针对发生穿孔位置附近的管道进行网格加密,并在此基础上对网格质量进行多次性的改善。 1.3材料模型 本次研究中主要选取了X70管线钢天然气管道为模型,这种天然气管道材质本身的弹性模量达到了210Gpa,柏松比达到0.3。该管材具备了一定的连续屈服特征,而且没有明显的屈服平台,针对建立模型进行多线推动强化,以此来描述管道本身的弹塑性[2]。 2 内压对最大应力-应变的影响最大 2.1 应力-应变随内压变化分析 为了能够针对天然气管道穿孔在不同的压力状况下局部位置的应力以及应变分布状况进行全面分析。针对天然气管道内壁施加了一个压力为25.0MPa的内压,与此同时设置了50个子部,也就是说,每一个子部增加表示内压升高了0.5MPa,针对每一个子部的最终计算结果进行详细统计之后就能够最终得出不同压力状况下天然气管道的应力-应变分布状况。在针对天然气管道穿孔局部最大等效应力、塑性应变变化趋势进行分析,为了能够对其变化状况进行更加清晰的展示,以16.0MPa为基点将所有应变数据划分成两组,并分别绘制曲线。 针对最终绘制出的曲线进行分析后可以知道,在最大等效应力、塑性应变变化方面内外穿孔相似度非常高,当内压上升到5.0MPa的情况下,最大应力增长趋势趋于缓慢。而与穿孔位置距离较远的位置开始出现塑性应变时,内压达到了16.0MPa,而此时,天然气管道发生穿孔的位置,最大应力、应变增长速度开始明显变大。 之所以出现这种现象是因为只有穿孔位置周围的天然气管道进入了塑性区,其他部分天然气管道管壁仍然处在弹性阶段,而天然气管道的弹性性能对塑性区塑性流动会产生一定的限制作用,导致塑性区实际产生的应变并不明显,而随着整个管道大部分位置进入塑性区之后,穿孔位置附近实际产生的塑性流动受到了限制作用也逐渐减小,在此基础上使得应变出现了明显增加现象。 随着内压的进一步增加,达到19.5MPa的时候,穿孔位置的最大应力达到了极限强度,因此开始逐渐趋于稳定。内压进一步增长到20.0MPa的情况下,内外穿孔位置附近最大塑性硬件呈现出指数倍的增长,在这种情况下天然气管道非常容易出现开裂现象。而管道穿孔之后,内压与正常运行压力相比较要小很多,因此要想达到20.0MPa比较困难,因此常温状态下通常不会出现开裂问题。 2.2 应力应变云图分析 在针对不同压力条件下穿孔局部应力应变云图技术分析可以知道,在穿孔位置的外壁边缘出现了应力-应变最大值,而且在天然气管道的径向方向上分布着较大的应力-应变。 当天然气管道内压达到16.0MPa的情况下,整个天然气管壁开始出现屈服现象,当内压进一步缓慢增加的时候,天然气管道关键部位最大应力应变出现了快速的增加现象,穿孔位置周边较大的应变分布范围也在迅速扩大;当内压达到19.0MPa的情况下,应变值超过0.026的分布范围外边缘与穿孔位置的距离已经非常远;当内压进一步增加,达到20.0MPa的时候,天然气管道的绝大部分管壁的应变值已经超过了0.026,沿着厚度方向天然气管道应变值分布在0.077~0.231和范围内[3],由此也可以知道,天然气管道的穿孔开裂首先会从关键点开始,对沿着管壁的厚度方向逐渐形成贯穿性裂纹。 3 管道各参数对最大附近应变影响分析 3.1 穿孔尺寸影响 当天然气内压在20.0MPa情况下,分析最大应变于穿孔半径的关系趋势可以发现,随着穿孔孔径的逐渐增加,最大应变值在逐渐减小,当穿孔孔径超过一定数值的时候,最大塑性应变波动呈现出复杂化。这主要是因为,当穿孔半径相对比较小的时候,仅仅在穿孔的外壁边缘位置出现最大塑性应变,而当其超过某一个数值时,发生最大塑性应变的位置也会逐渐向着中间移动,这样就导致应变值的变化更加复杂。 3.2 管道壁厚对最大塑性硬件影响 天然气管道的壁厚对管道本身承载能力的影响非常大,因此天然气管道穿孔局部应力-应变分布状况也必然会受到管道壁厚的巨大影响。针对内压为20.0MPa情况下不同管道壁厚下最大应变与和穿孔距离较远位置的应变变化趋势分析可以知道。在壁厚不断增加的情况下,穿孔局部最大促进应变会出现明显下降,而且与距离穿孔位置较远位置的管壁应变变化状况相比较,穿孔局部实际发生的最大促进应

汽车桥壳项目可行性研究报告

汽车桥壳项目可行性研究报告 目录 第一章项目绪论 (7) 一、项目名称及建设性质 (7) 二、项目承办单位 (7) 三、项目建设选址及用地综述 (7) 四、项目土建工程建设指标 (8) 五、设备选型方案 (9) 六、主要能源供应及节能分析 (9) 七、环境保护及清洁生产和安全生产 (10) 八、项目总投资及资金构成 (11) 九、资金筹措方案 (11) 十、项目预期经济效益规划目标 (11) 十一、项目建设进度规划 (12) 十二、综合评价及 (13) 第二章报告编制总体说明 (16) 一、报告编制目的及编制依据 (16) 二、报告编制范围及编制过程 (18) 第三章项目建设背景及必要性 (21) 一、汽车桥壳产业发展规划背景 (21) 二、项目建设背景 (23)

三、项目建设的必要性 (25) 第四章建设规模和产品规划方案合理性分析 (28) 一、建设规模及主要建设内容 (28) 二、产品规划方案及生产纲领 (29) 第五章项目选址科学性分析 (30) 一、项目建设选址原则 (30) 二、项目建设区概况 (30) 三、项目用地总体要求 (31) 第六章工程设计总体方案 (32) 一、工程地质条件 (32) 二、工程规划设计 (32) 三、建筑设计方案 (34) 四、辅助设计方案 (35) 五、防水和防爆及防腐设计 (36) 六、建筑物防雷保护 (37) 七、主要材料选用标准要求 (37) 八、采用的标准图集 (38) 九、土建工程建设指标 (38) 第七章原辅材料供应及成品管理 (40) 一、原辅材料供应及质量管理 (40) 二、原辅材料采购及管理 (41) 第八章工艺技术设计及设备选型方案 (42) 一、原料及成品路线原则及工艺技术要求 (42) 二、项目工艺技术设计方案 (43) 三、设备选型方案 (43)

某大跨度钢管混凝土拱桥拱座局部应力分析

某大跨度钢管混凝土拱桥拱座局部应力分析 摘要:拱座是钢管混凝土拱桥中受力较为复杂部位之一,本文采用两步有限元法,对某大跨钢管混凝土拱桥拱座的受力情况进行了分析,得到其应力分布规律,对应力集中部位提出了构造改进建议,给类似结构的设计和施工提供参考。 关键词:大跨度钢管混凝土拱桥;拱座;局部应力;圣维南原理;两步有限元法 中图分类号:f540.32文献标识码:a abstract: the force acting on arch abutment is complex of concrete filled steel tube arch bridge. the arch abutment of a long-span concrete filled steel tube arch bridge is analyzed based on the second-order finite element method. the stress distribution is obtained and some suggestions for design and construction are recommended. keyword: long-span concrete filled steel tube arch bridge; arch abutment; local stress; saint-venantprinciple; second-order finite element method 中图分类号:文献标识码:文章编号: 1 引言 钢管混凝土拱桥是一种造型美观,受力合理的结构形式。在近十几年间,该结构形式在我国得到迅速的发展。大跨度钢管混凝土拱

相关文档
相关文档 最新文档