文档库 最新最全的文档下载
当前位置:文档库 › 时间序列回归模型R实现

时间序列回归模型R实现

时间序列回归模型R实现
时间序列回归模型R实现

时间序列回归模型

1干预分析

1.1概念及模型

Box和Tiao引入的干预分析提供了对于干预影响时间序列的效果进行评估的一个框架,假设干预是可以通过时间序列的均值函数或者趋势而对过程施加影响,干预可以自然产生也可以人为施加的,如国家的宏观调控等。

其模型可以如下表示:

其中mt代表均值的变化,Nt是ARIMA过程。

1.2干预的分类

阶梯响应干预

|£?1 11-3書去R擁呐虫下91昭雹干)8无食型:声朋倉一牛时时业恼村圮点

脉冲响应干预

ffi#有矣脸冲陽干序购一農期{都需有一几时福单位的砥迟)

1.3干预的实例分析

1.3.1模型初探

对数化航空客运里程的干预模型的估计

现住回到毎月轨空落运里程的数撼.如熾所述.2ooi ip 9 n的恐恸叢击事件快航空客迪排個于萧条之中?该F费效应可用ft 2001年也月有脉神输人的AR (1)过程來表派,这一意外1P件对航空峯运母即时造成了一种强勲的激挣效应.因此*对此干尊效城(9门啟应)< 樓如下.

其申,丁代表2001年9月*在这一衣乐中*叭十附代裏即时的9/11效应-且野^>1时,助(删户代我9门I效应对荘后k个月粉所建成的影响.这里还需翼确定華础无扰过程的季节ARIMA结构.堆于预干S!数据,晳用亍AR1MA (0, h l)X(0t 1. 0仏模型表示未受扰的过程*舂址图表11?珀

> data(airmiles)

> acf(as.vector(diff(diff(wi ndow(log(airmiles),e nd=c(2001,8)),12))),lag.max=48)# 用

window得到在911

事件以前的未爱干预的时间序列子集

* *

对暂用的模型进行诊断

>fitmode<-arima(airmiles,order=c(0,1,1),seas on al=list(order=c(0,1,0))) > tsdiag(fitmode)

acf 在12阶存在高度相关因此在季节中加入 MA ( 1)

系数。

s? .rtctorfdirf>■ et). end = ^2001\ S )L

从诊断图可以看出存在三个异常点,

S W H

? ?輕丄一 Els ■苗K ■上

1.3.2 拟合带有干预信息的模型

函数:

arimax(x, order = c(0, 0, 0), seasonal = list(order = c(0, 0, 0), period = NA),

xreg = NULL, include.mean = TRUE, transform.pars = TRUE, fixed =

NULL,

init = NULL, method = c("CSS-ML", "ML", "CSS"), n.cond, optim.control =

list(),

kappa = 1e+06, io = NULL, xtransf, transfer = NULL)

arimax 函数扩展了arima 函数,可以处理时间序列中干扰分析及异常值。假设干扰影响过程的均值,相对未受干扰的无价值函数的偏离用一些协变量的ARMA 滤波器的输出这种来表示,偏差被称作传递函数。构造传递函数的协变量通过xtransf 参数以矩阵或者data.frame 的形式代入arimax 函数。

air.m1=arimax(log(airmiles),order=c(0,1,1),seasonal=list(order=c(0,1,1),

period=12),xtransf=data.frame(I911=1*(seq(airmiles)==69),

I911=1*(seq(airmiles)==69)),

transfer=list(c(0,0),c(1,0)),xreg=data.frame(Dec96=1*(seq(airmiles)==12),

Jan97=1*(seq(airmiles)==13),Dec02=1*(seq(airmiles)==84)),method='ML')

> air.m1

Call:

arimax(x = log(airmiles), order = c(0, 1, 1), seasonal = list(order = c(0, 1,

1), period = 12), xreg = data.frame(Dec96 = 1 * (seq(airmiles) == 12), Jan97 = 1

(seq(airmiles) == 13), Dec02 = 1 * (seq(airmiles) == 84)), method = "ML",

xtransf = data.frame(I911 = 1 * (seq(airmiles) == 69), I911 = 1 * (seq(airmiles)

69)), transfer = list(c(0, 0), c(1, 0)))

Coefficients:

ma1 sma1 Dec96 Jan97 Dec02 I911-MA0 I911.1-AR1 I911.1-MA0

-0.3825 -0.6499 0.0989 -0.0690 0.0810 -0.0949 0.8139 -0.2715

s.e. 0.0926 0.1189 0.0228 0.0218 0.0202 0.0462 0.0978 0.0439

sigma A2 estimated as 0.0006721: log likelihood = 219.99, aic = -423.98

画图

plot(log(airmiles),ylab="log(airmiles)") points(fitted(air.m1))

Nin e11p=1*(seq(airmiles)==69) plot(ts(Ni ne11p*(-0.0949)+ filter(Nln

e11p,filter=.8139,method='recursive',side=1)*(-0.2715),

frequen cy=12,start=1996),type='h',ylab='9/11 Effects')

abli ne(h=O)

从上图可以看出在2003年底后,911事件的影响效应才平息,航班客运量恢复了正常。2异常值

在时间序列中异常有两种,可加异常和新息异常,分别记AO 和10。

2.1异常值示例

2.1.1模拟数据

模拟一般的ARIMA ( 1,0,1 ),然后故意将第10个观测值变成异常值10.

> set.seed(12345)

> y=arima.sim(model=list(ar=0.8,ma=0.5), n. start=158 ,n=100)

> y

Time Series:

Start = 1

End = 100

Freque ncy = 1

[1] 0.49180881 -0.22323665 -0.99151270 -0.73387818 -0.67750094

-1.14472133 -2.14844671 -2.49530794

1.86210605

2.19935472 2.60210165

[17] 0.79130003 0.26265426 2.93414857 3.99045889

3.60822678 1.17845765 -0.87682948 -1.20637799

[25] -1.39501221 -0.18832171 1.22999827 1.46814850 2.66647491 3.23417469 2.60349624 1.49513215

[33] 1.48852142 0.95739219 1.30011654 1.73444053

2.84825103

3.73214655

4.23579456 3.37049790

[41] 2.02783955 1.41218929 -0.29974176 -1.58712591 -1.34080878

我国通货膨胀的混合回归和时间序列模型

2000年9月系统工程理论与实践第9期 文章编号:100026788(2000)0920138203 我国通货膨胀的混合回归和时间序列模型 叶阿忠,李子奈 (清华大学经济管理学院,北京100084) 摘要: 回归模型的残差项反映了对被解释变量有影响但未列入解释变量的因素所产生的噪音,这 部分噪音可由时间序列模型进行拟合Λ本文对通货膨胀建立了一个混合回归和时间序列模型,并将该 模型的预测结果与单纯用回归模型的预测结果进行了比较Λ 关键词: 通货膨胀;回归模型;时间序列模型;自相关函数;预测误差 中图分类号: O212 α T he Com b ined R egressi on2ti m e2series M odel of Ch inese Inflati on YE A2zhong,L I Zi2nai (Schoo l of Econom ics&M anagem en t,T singhua U n iversity,Beijing100084) Abstract: T he residual term in the regressi on model is the no ise generated by the om itted variab les that influen t dependen t variab le in the model.T he ti m e series model can fit th is no ise.W e estab lish the com b ined regressi on-ti m e-series model fo r Ch inese inflati on and compare its fo recast resu lts to that of regressi on model. Keywords: inflati on;regressi on model;ti m e2series model;au toco rrelati on functi on; fo recast erro r 1 引言 一般我们对通货膨胀建立模型或是采用回归模型或是采用时间序列模型,但回归模型中解释变量解释被解释变量的能力总是有限的,且由于存在对被解释变量有影响但未列入解释变量的因素而产生了回归模型无法预测的噪音,因而预测的效果不佳;而时间序列模型只反映时间序列过去行为的规律,没有利用经济现象的因果关系,再加上A R I M A(p,d,q)模型识别的困难,造成预测精度的下降Λ本文将两种方法结合起来,对我国通货膨胀建立一个混合回归和时间序列模型,并进行预测Λ 2 混合回归和时间序列模型 假定我们喜欢利用一个回归模型预测变量y tΖ一般地,这样的模型包括可解释的一些解释变量,它们之间不存在共线性Ζ假定我们的回归模型有k个解释变量x1,…,x k,回归模型如下: y t=Β0+Β1x1t+…+Βk x k t+Εt(1)其中误差项Εt反映除了解释变量外其它变量对y t的影响Ζ方程被估计后,R2将小于1,除非y t与解释变量完全相关,R2才等于1Ζ然后,方程可被用于预测y tΖ预测误差的一个来源是附加的噪声项,它的未来不可预测Ζ 时间序列分析的一个有效应用是对该回归的残差Εt序列建立A R I M A模型Ζ我们将原回归方程的误α收稿日期:1999203202 资助项目:国家教委“九五”重点教材基金

试验一异方差的检验与修正-时间序列分析

案例三 ARIMA 模型的建立 一、实验目的 了解ARIMA 模型的特点和建模过程,了解AR ,MA 和ARIMA 模型三者之间的区别与联系,掌握如何利用自相关系数和偏自相关系数对ARIMA 模型进行识别,利用最小二乘法等方法对ARIMA 模型进行估计,利用信息准则对估计的ARIMA 模型进行诊断,以及如何利用ARIMA 模型进行预测。掌握在实证研究如何运用Eviews 软件进行ARIMA 模型的识别、诊断、估计和预测。 二、基本概念 所谓ARIMA 模型,是指将非平稳时间序列转化为平稳时间序列,然后将平稳的时间序列建立ARMA 模型。ARIMA 模型根据原序列是否平稳以及回归中所含部分的不同,包括移动平均过程(MA )、自回归过程(AR )、自回归移动平均过程(ARMA )以及ARIMA 过程。 在ARIMA 模型的识别过程中,我们主要用到两个工具:自相关函数ACF ,偏自相关函数PACF 以及它们各自的相关图。对于一个序列{}t X 而言,它的第j 阶自相关系数j ρ为它的j 阶自协方差除以方差,即j ρ=j 0γγ ,它是关于滞后期j 的函数,因此我们也称之为自相关函数,通常记ACF(j )。偏自相关函数PACF(j )度量了消除中间滞后项影响后两滞后变量之间的相关关系。 三、实验内容及要求 1、实验内容: (1)根据时序图的形状,采用相应的方法把非平稳序列平稳化; (2)对经过平稳化后的1950年到2007年中国进出口贸易总额数据运用经典B-J 方法论建立合适的ARIMA (,,p d q )模型,并能够利用此模型进行进出口贸易总额的预测。 2、实验要求: (1)深刻理解非平稳时间序列的概念和ARIMA 模型的建模思想; (2)如何通过观察自相关,偏自相关系数及其图形,利用最小二乘法,以及信息准则建立合适的ARIMA 模型;如何利用ARIMA 模型进行预测; (3)熟练掌握相关Eviews 操作,读懂模型参数估计结果。 四、实验指导 1、模型识别 (1)数据录入 打开Eviews 软件,选择“File”菜单中的“New --Workfile”选项,在“Workfile structure type ”栏选择“Dated –regular frequency ”,在“Date specification ”栏中分别选择“Annual ”(年数据) ,分别在起始年输入1950,终止年输入2007,点击ok ,见图3-1,这样就建立了一个工作文件。点击File/Import ,找到相应的Excel 数据集,导入即可。

多元时间序列建模分析

应用时间序列分析实验报告

单位根检验输出结果如下:序列x的单位根检验结果:

1967 58.8 53.4 1968 57.6 50.9 1969 59.8 47.2 1970 56.8 56.1 1971 68.5 52.4 1972 82.9 64.0 1973 116.9 103.6 1974 139.4 152.8 1975 143.0 147.4 1976 134.8 129.3 1977 139.7 132.8 1978 167.6 187.4 1979 211.7 242.9 1980 271.2 298.8 1981 367.6 367.7 1982 413.8 357.5 1983 438.3 421.8 1984 580.5 620.5 1985 808.9 1257.8 1986 1082.1 1498.3 1987 1470.0 1614.2 1988 1766.7 2055.1 1989 1956.0 2199.9 1990 2985.8 2574.3 1991 3827.1 3398.7 1992 4676.3 4443.3 1993 5284.8 5986.2 1994 10421.8 9960.1 1995 12451.8 11048.1 1996 12576.4 11557.4 1997 15160.7 11806.5 1998 15223.6 11626.1 1999 16159.8 13736.5 2000 20634.4 18638.8 2001 22024.4 20159.2 2002 26947.9 24430.3 2003 36287.9 34195.6 2004 49103.3 46435.8 2005 62648.1 54273.7 2006 77594.6 63376.9 2007 93455.6 73284.6 2008 100394.9 79526.5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2); run;

应用时间序列分析习题答案解析整理

第二章习题答案 2.1 (1)非平稳 (2)0.0173 0.700 0.412 0.148 -0.079 -0.258 -0.376 (3)典型的具有单调趋势的时间序列样本自相关图 2.2 (1)非平稳,时序图如下 (2)-(3)样本自相关系数及自相关图如下:典型的同时具有周期和趋势序列的样本自相关图

2.3 (1)自相关系数为:0.2023 0.013 0.042 -0.043 -0.179 -0.251 -0.094 0.0248 -0.068 -0.072 0.014 0.109 0.217 0.316 0.0070 -0.025 0.075 -0.141 -0.204 -0.245 0.066 0.0062 -0.139 -0.034 0.206 -0.010 0.080 0.118 (2)平稳序列 (3)白噪声序列 2.4 ,序列 LB=4.83,LB统计量对应的分位点为0.9634,P值为0.0363。显著性水平=0.05 不能视为纯随机序列。 2.5 (1)时序图与样本自相关图如下

(2) 非平稳 (3)非纯随机 2.6 (1)平稳,非纯随机序列(拟合模型参考:ARMA(1,2)) (2)差分序列平稳,非纯随机 第三章习题答案 3.1 解:1()0.7()()t t t E x E x E ε-=?+ 0)()7.01(=-t x E 0)(=t x E t t x ε=-)B 7.01( t t t B B B x εε)7.07.01()7.01(221Λ+++=-=- 229608.149 .011 )(εεσσ=-= t x Var 49.00212==ρφρ 022=φ 3.2 解:对于AR (2)模型: ?? ?=+=+==+=+=-3.05 .02110211212112011φρφρφρφρρφφρφρφρ 解得:???==15/115 /72 1φφ 3.3 解:根据该AR(2)模型的形式,易得:0)(=t x E 原模型可变为:t t t t x x x ε+-=--2115.08.0 2212122 ) 1)(1)(1(1)(σφφφφφφ-+--+-= t x Var 2) 15.08.01)(15.08.01)(15.01() 15.01(σ+++--+= =1.98232σ ?????=+==+==-=2209.04066.06957.0)1/(1221302112211ρφρφρρφρφρφφρ ?? ? ??=-====015.06957.033222111φφφρφ

第十三章 时间序列回归

第十三章 时间序列回归 本章讨论含有ARMA 项的单方程回归方法,这种方法对于分析时间序列数据(检验序列相关性,估计ARMA 模型,使用分布多重滞后,非平稳时间序列的单位根检验)是很重要的。 §13.1序列相关理论 时间序列回归中的一个普遍现象是:残差和它自己的滞后值有关。这种相关性违背了回归理论的标准假设:干扰项互不相关。与序列相关相联系的主要问题有: 一、一阶自回归模型 最简单且最常用的序列相关模型是一阶自回归AR(1)模型 定义如下:t t t u x y +'=β t t t u u ερ+=-1 参数ρ是一阶序列相关系数,实际上,AR(1)模型是将以前观测值的残差包含到现观测值的回归模型中。 二、高阶自回归模型: 更为一般,带有p 阶自回归的回归,AR(p)误差由下式给出: t t t u x y +'=β t p t p t t t u u u u ερρρ++++=--- 2211 AR(p)的自回归将渐渐衰减至零,同时高于p 阶的偏自相关也是零。 §13.2 检验序列相关 在使用估计方程进行统计推断(如假设检验和预测)之前,一般应检验残差(序列相关的证据),Eviews 提供了几种方法来检验当前序列相关。 1.Dubin-Waston 统计量 D-W 统计量用于检验一阶序列相关。 2.相关图和Q-统计量 计算相关图和Q-统计量的细节见第七章 3.序列相关LM 检验 检验的原假设是:至给定阶数,残差不具有序列相关。 §13.3 估计含AR 项的模型 随机误差项存在序列相关说明模型定义存在严重问题。特别的,应注意使用OLS 得出的过分限制的定义。有时,在回归方程中添加不应被排除的变量会消除序列相关。 1.一阶序列相关 在EViews 中估计一AR(1)模型,选择Quick/Estimate Equation 打开一个方程,用列表法输入方程后,最后将AR(1)项加到列表中。例如:估计一个带有AR(1)误差的简单消费函数 t t t u GDP c c CS ++=21 t t t u u ερ+=-1 应定义方程为: cs c gdp ar(1) 2.高阶序列相关 估计高阶AR 模型稍稍复杂些,为估计AR(k ),应输入模型的定义和所包括的各阶AR 值。如果想估计一个有1-5阶自回归的模型 t t t u GDP c c CS ++=21 t t t t u u u ερρ+++=--5511 应输入: cs c gdp ar(1) ar(2) ar(3) ar(4) ar(5) 3.存在序列相关的非线性模型 EViews 可以估计带有AR 误差项的非线性回归模型。例如: 估计如下的带有附加AR(2)误差的非线性方程 t c t t u GDP c CS ++=21

时间序列分析资料报告——ARMA模型实验

基于ARMA模型的社会融资规模增长分析 ————ARMA模型实验

第一部分实验分析目的及方法 一般说来,若时间序列满足平稳随机过程的性质,则可用经典的ARMA模型进行建模和预则。但是, 由于金融时间序列随机波动较大,很少满足ARMA模型的适用条件,无法直接采用该模型进行处理。通过对数化及差分处理后,将原本非平稳的序列处理为近似平稳的序列,可以采用ARMA模型进行建模和分析。 第二部分实验数据 2.1数据来源 数据来源于中经网统计数据库。具体数据见附录表5.1 。 2.2所选数据变量 社会融资规模指一定时期(每月、每季或每年)实体经济从金融体系获得的全部资金总额,为一增量概念,即期末余额减去期初余额的差额,或当期发行或发生额扣除当期兑付或偿还额的差额。社会融资规模作为重要的宏观监测指标,由实体经济需求所决定,反映金融体系对实体经济的资金量支持。 本实验拟选取2005年11月到2014年9月我国以月为单位的社会融资规模的数据来构建ARMA模型,并利用该模型进行分析预测。 第三部分 ARMA模型构建 3.1判断序列的平稳性 首先绘制出M的折线图,结果如下图:

图3.1 社会融资规模M曲线图 从图中可以看出,社会融资规模M序列具有一定的趋势性,由此可以初步判断该序列是非平稳的。此外,m在每年同时期出现相同的变动趋势,表明m还存在季节特征。下面对m的平稳性和季节性·进行进一步检验。 为了减少m的变动趋势以及异方差性,先对m进行对数化处理,记为lm,其时序图如下: 图3.2 lm曲线图

对数化后的趋势性减弱,但仍存在一定的趋势性,下面观察lm的自相关图 表3.1 lm的自相关图 上表可以看出,该lm序列的PACF只在滞后一期、二期和三期是显著的,ACF随着滞后结束的增加慢慢衰减至0,由此可以看出该序列表现出一定的平稳性。进一步进行单位根检验,由于存在较弱的趋势性且均值不为零,选择存在趋势项的形式,并根据AIC自动选择之后结束,单位根检验结果如下: 表3.2 单位根输出结果 Null Hypothesis: LM has a unit root Exogenous: Constant, Linear Trend Lag Length: 0 (Automatic - based on SIC, maxlag=12) t-Statistic Prob.*

典型时间序列模型分析

实验1典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型: AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对 对上述三种模型进行统计特性分析,通过对2阶模型的仿真分析,探讨几种模型的适用范围, 并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有AR(2)模型, X( n)=-0.3X( n-1)-0.5X( n-2)+W( n) 其中:W(n)是零均值正态白噪声,方差为 4。 (1 )用MATLAB 模拟产生X(n)的500观测点的样本函数,并绘出波形 (2) 用产生的500个观测点估计X(n)的均值和方差 (3) 画出理论的功率谱 (4) 估计X(n)的相关函数和功率谱 【分析】给定二阶的 AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, 可以看出, FX w 完全由两个极点位置决定。 对于AR 模型的自相关函数,有下面的公式: \(0) 打⑴ 匚⑴… ^(0) ■ 1' G 2 W 0 JAP) 人9-1)… 凉0) _ 这称为Yule-Walker 方程,当相关长度大于 p 时,由递推式求出: r (r) + -1) + -■ + (7r - JJ )= 0 这样,就可以求出理论的 AR 模型的自相关序列。 H(z) 二 1 1 0.3z , P x w +W 1 1 a 才 a 2z^

1. 产生样本函数,并画出波形 2. 题目中的AR过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为 2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2阶AR过程 plot(x,'r'); ylabel('x(n)'); title(' 邹先雄——产生的AR随机序列'); grid on; 得到的输出序列波形为: 邹先雄——产生的AR随机序列 2. 估计均值和方差 可以首先计算出理论输出的均值和方差,得到m x =0 ,对于方差可以先求出理论自相 关输出,然后取零点的值。

第九章时间序列计量经济学模型案例

第九章时间序列计量经济学模型案例 1、1949—2001年中国人口时间序列数据见表8,由该数据(1)画时间序列图和差分图;(2)求中国人口序列的相关图和偏相关图,识别模型形式;(3)估计时间序列模型;(4)样本外预测。 表9.1 中国人口时间序列数据(单位:亿人) 年份人口y t 年份人口y t年份人口y t年份人口y t年份人口y t 1949 5.4167 1960 6.6207 1971 8.5229 1982 10.159 1993 11.8517 1950 5.5196 1961 6.5859 1972 8.7177 1983 10.2764 1994 11.985 1951 5.63 1962 6.7295 1973 8.9211 1984 10.3876 1995 12.1121 1952 5.7482 1963 6.9172 1974 9.0859 1985 10.5851 1996 12.2389 1953 5.8796 1964 7.0499 1975 9.242 1986 10.7507 1997 12.3626 1954 6.0266 1965 7.2538 1976 9.3717 1987 10.93 1998 12.4761 1955 6.1465 1966 7.4542 1977 9.4974 1988 11.1026 1999 12.5786 1956 6.2828 1967 7.6368 1978 9.6259 1989 11.2704 2000 12.6743 1957 6.4653 1968 7.8534 1979 9.7542 1990 11.4333 2001 12.7627 1958 6.5994 1969 8.0671 1980 9.8705 1991 11.5823 1959 6.7207 1970 8.2992 1981 10.0072 1992 11.7171 (1)画时间序列图 y的数据窗口 打开 t 得到中国人口序列图

时间序列分析——最经典的

【时间简“识”】 说明:本文摘自于经管之家(原人大经济论坛) 作者:胖胖小龟宝。原版请到经管之家(原人大经济论坛) 查看。 1.带你看看时间序列的简史 现在前面的话—— 时间序列作为一门统计学,经济学相结合的学科,在我们论坛,特别是五区计量经济学中是热门讨论话题。本月楼主推出新的系列专题——时间简“识”,旨在对时间序列方面进行知识扫盲(扫盲,仅仅扫盲而已……),同时也想借此吸引一些专业人士能够协助讨论和帮助大家解疑答惑。 在统计学的必修课里,时间序列估计是遭吐槽的重点科目了,其理论性强,虽然应用领域十分广泛,但往往在实际操作中会遇到很多“令人发指”的问题。所以本帖就从基础开始,为大家絮叨絮叨那些关于“时间”的故事! Long long ago,有多long估计大概7000年前吧,古埃及人把尼罗河涨落的情况逐天记录下来,这一记录也就被我们称作所谓的时间序列。记录这个河流涨落有什么意义当时的人们并不是随手一记,而是对这个时间序列进行了长期的观察。结果,他们发现尼罗河的涨落非常有规律。掌握了尼罗河泛滥的规律,这帮助了古埃及对农耕和居所有了规划,使农业迅速发展,从而创建了埃及灿烂的史前文明。

好~~从上面那个故事我们看到了 1、时间序列的定义——按照时间的顺序把随机事件变化发展的过程记录下来就构成了一个时间序列。 2、时间序列分析的定义——对时间序列进行观察、研究,找寻它变化发展的规律,预测它将来的走势就是时间序列分析。 既然有了序列,那怎么拿来分析呢 时间序列分析方法分为描述性时序分析和统计时序分析。 1、描述性时序分析——通过直观的数据比较或绘图观测,寻找序列中蕴含的发展规律,这种分析方法就称为描述性时序分析 描述性时序分析方法具有操作简单、直观有效的特点,它通常是人们进行统计时序分析的第一步。 2、统计时序分析 (1)频域分析方法 原理:假设任何一种无趋势的时间序列都可以分解成若干不同频率的周期波动 发展过程: 1)早期的频域分析方法借助富里埃分析从频率的角度揭示时间序列的规律 2)后来借助了傅里叶变换,用正弦、余弦项之和来逼近某个函数 3)20世纪60年代,引入最大熵谱估计理论,进入现代谱分析阶段 特点:非常有用的动态数据分析方法,但是由于分析方法复杂,结果抽象,有一定的使用局限性 (2)时域分析方法

时间序列分析与建模简介

第五章时间序列分析与建模简介 时间序列建模( Modelling viatime series )。时间序列分析与建模是数理统计的重要分支,其主要学术贡献人是Box和Jenkins。本章扼要介绍吴宪民和Pandit的工作,仅要求一般了解当前时间序列分析与建模的一些主要结果。参考书:“时间序列及系统分析与应用(美)吴宪民,机械工业出版社(1988)TP13/66。 引言 根据对系统观测得出的按照时间顺序排列的数据,通过曲线拟合和参数估计或者谱分析,建立数学模型的理论与方法,理论基础是数理统计。有时域和频域两类建模方法,这里概括介绍时域方法,即基于曲线拟合与参数估计(如最小二乘法)的方法。常用于经济系统建模(如市场预测、经济规划)、气象与水文预报、环境与地震信号处理和天文等学科的信号处理等等。 §5—1 ARMA模型分析 一、模型类 把具有相关性的观测数据组成的时间序列{x k }视为以正态同分布白噪声序列{ a k }为输入的动态系统的输出。用差分模型ARMA (n,m) 为Φ(z-1)xk= θ(z-1)a k式

(5-1-1) 其中:Φ (z -1) = 1- φ1 z -1-…- φn z-n θ (z -1) = 1- θ1 z -1-…- θm z-m 离散传函 式(5-1-2) 为与参考书符号一致,以下用B表示时间后移算子 即: B xk = x k -1 B即z -1,B 2即z -2… Φ (B)=0的根为系统的极点,若全部落在单位园内则系统稳定;θ(B)=0的根为系统的零点,若全部在单位园内则系统逆稳定。 二、关于格林函数和时间序列的稳定性 1.格林函数Gi 格林函数G i 用以把x t 表示成a t 及at 既往值的线性组合。 式(5-1-3) G I 可以由下式用长除法求得: 例1.A R(1): xt - φ1x t-1 = a t x B B B a B B a a t t t j t j j ==-=+++=-=∞∑θφφφφφ()()()1111112210 )()()(111---=z z z G φθ∑∞=-=0j j t j t a G x

8时间序列回归模型——R实现

时间序列回归模型 1干预分析 1.1概念及模型 Box和Tiao引入的干预分析提供了对于干预影响时间序列的效果进行评估的一个框架,假设干预是可以通过时间序列的均值函数或者趋势而对过程施加影响,干预可以自然产生也可 以人为施加的,如国家的宏观调控等。 其模型可以如下表示: 其中mt代表均值的变化,Nt是ARIMA过程。 1.2干预的分类 阶梯响应干预 區案1“ 書聲新镖第应干严的苕爭第见複也[榔帝右一牛时闽单恆的延遇) 01 "4》 * a_e—4 f-辜—右4—*— T 1)诅畠严 to it r ■P■1 F V*1 脉冲响应干预 图聲1J4荷关脉冲愉血于预的一牲常见棋型(都带衬一个时伺单也的延迟)

1.3干预的实例分析 1.3.1 模型初探 对数化航空客运里程的干预模型的估计 现任回到每月航空客运蚩程的数据.如前所述’ 2(X)1年9刀的悉怖裳击事杵便航空客运徘徊于萧条之中,该T?预效应可用在200]年9月有脉亦输入的AR (1)过程柬表示*这一意外爭件对航克容运虽即时造底了一种强烈的激冷效应*因此*对此干预效应<9-11 ?应)建模如下’ 叭=咖戶汙十1 3'严 1 —M M 展中,T代表2001年9小在这一衷示中*纽+助代表即时的9/11效应?且当^>1时* 纳(毗尸代表9门1效应对苴后A个月粉所造成的影响.这里还需要确定華础无扰过思的季节ARTMA 构*基于预干预数据,輛用一个AR1MA (0, 1, l)X<0?1, 0儿模型表示未愛扰的过程I券见图表11-5< > data(airmiles) > acf(as.vector(diff(diff(wi ndow(log(airmiles),e nd=c(2001,8)),12))) ,lag.max=48)# 用window 得到在911事件以前的未爱干预的时间序列子集 Seri?es碍皿伽〔aimaiffi(響¥蹄[嚅律「皿"河,enc, =口起 M 刖人 对暂用的模型进行诊断 >fitmode<-arima(airmiles,order=c(0,1,1),seas on al=list(order=c(0,1 ,0))) > tsdiag(fitmode)

多元时间序列建模分析

多元时间序列建模分析 应用时间序列分析实验报告

实验过程记录(含程序、数据记录及分析与实验结果等): 时序图如下: 单位根检验输出结果如下: 序列x的单位根检验结果: 序列y的单位根检验结果: 序列y与序列x之间的相关图如下:

1968 57、6 50、9 1969 59、8 47、2 1970 56、8 56、1 1971 68、5 52、4 1972 82、9 64、0 1973 116、9 103、6 1974 139、4 152、8 1975 143、0 147、4 1976 134、8 129、3 1977 139、7 132、8 1978 167、6 187、4 1979 211、7 242、9 1980 271、2 298、8 1981 367、6 367、7 1982 413、8 357、5 1983 438、3 421、8 1984 580、5 620、5 1985 808、9 1257、8 1986 1082、1 1498、3 1987 1470、0 1614、2 1988 1766、7 2055、1 1989 1956、0 2199、9 1990 2985、8 2574、3 1991 3827、1 3398、7 1992 4676、3 4443、3 1993 5284、8 5986、2 1994 10421、8 9960、1 1995 12451、8 11048、1 1996 12576、4 11557、4 1997 15160、7 11806、5 1998 15223、6 11626、1 1999 16159、8 13736、5 2000 20634、4 18638、8 2001 22024、4 20159、2 2002 26947、9 24430、3 2003 36287、9 34195、6 2004 49103、3 46435、8 2005 62648、1 54273、7 2006 77594、6 63376、9 2007 93455、6 73284、6 2008 100394、9 79526、5 run; proc gplot; plot x*t=1 y*t=2/overlay; symbol1c=black i=join v=none; symbol2c=red i=join v=none w=2l=2; run; proc arima data=example6_4; identify var=x stationarity=(adf=1); identify var=y stationarity=(adf=1); run; proc arima; identify var=y crrosscorr=x; estimate methed=ml input=x plot; forecast lead=0id=t out=out; proc aima data=out; identify varresidual stationarity=(adf=2);

第八章 时间序列计量经济学模型(DOC)

1.1949—2001年中国人口时间序列数据见表8,由该数据(1)画时间序列图;(2)求中国人口序列的相关图和偏相关图,识别模型形式;(3)估计时间序列模型;(4)样本外预测。 表8 中国人口时间序列数据(单位:亿人) 年份人口y t年份人口y t年份人口y t年份人口y t年份人口y t 1949 5.4167 1960 6.6207 1971 8.5229 1982 10.159 1993 11.8517 1950 5.5196 1961 6.5859 1972 8.7177 1983 10.2764 1994 11.985 1951 5.63 1962 6.7295 1973 8.9211 1984 10.3876 1995 12.1121 1952 5.7482 1963 6.9172 1974 9.0859 1985 10.5851 1996 12.2389 1953 5.8796 1964 7.0499 1975 9.242 1986 10.7507 1997 12.3626 1954 6.0266 1965 7.2538 1976 9.3717 1987 10.93 1998 12.4761 1955 6.1465 1966 7.4542 1977 9.4974 1988 11.1026 1999 12.5786 1956 6.2828 1967 7.6368 1978 9.6259 1989 11.2704 2000 12.6743 1957 6.4653 1968 7.8534 1979 9.7542 1990 11.4333 2001 12.7627 1958 6.5994 1969 8.0671 1980 9.8705 1991 11.5823 1959 6.7207 1970 8.2992 1981 10.0072 1992 11.7171 (1)画时间序列图 打开 y的数据窗口 t

时间序列分析法原理及步骤

时间序列分析法原理及步骤 ----目标变量随决策变量随时间序列变化系统 一、认识时间序列变动特征 认识时间序列所具有的变动特征, 以便在系统预测时选择采用不同的方法 1》随机性:均匀分布、无规则分布,可能符合某统计分布(用因变量的散点图和直方图及其包含的正态分布检验随机性, 大多服从正态分布 2》平稳性:样本序列的自相关函数在某一固定水平线附近摆动, 即方差和数学期望稳定为常数 识别序列特征可利用函数 ACF :其中是的 k 阶自 协方差,且 平稳过程的自相关系数和偏自相关系数都会以某种方式衰减趋于 0, 前者测度当前序列与先前序列之间简单和常规的相关程度, 后者是在控制其它先前序列的影响后,测度当前序列与某一先前序列之间的相关程度。实际上, 预测模型大都难以满足这些条件, 现实的经济、金融、商业等序列都是非稳定的,但通过数据处理可以变换为平稳的。 二、选择模型形式和参数检验 1》自回归 AR(p模型

模型意义仅通过时间序列变量的自身历史观测值来反映有关因素对预测目标的影响和作用,不受模型变量互相独立的假设条件约束,所构成的模型可以消除普通回归预测方法中由于自变量选择、多重共线性的比你更造成的困难用 PACF 函数判别 (从 p 阶开始的所有偏自相关系数均为 0 2》移动平均 MA(q模型 识别条件

平稳时间序列的偏相关系数和自相关系数均不截尾,但较快收敛到 0, 则该时间序列可能是 ARMA(p,q模型。实际问题中,多数要用此模型。因此建模解模的主要工作时求解 p,q 和φ、θ的值,检验和的值。 模型阶数 实际应用中 p,q 一般不超过 2. 3》自回归综合移动平均 ARIMA(p,d,q模型 模型含义 模型形式类似 ARMA(p,q模型, 但数据必须经过特殊处理。特别当线性时间序列非平稳时,不能直接利用 ARMA(p,q模型,但可以利用有限阶差分使非平稳时间序列平稳化,实际应用中 d (差分次数一般不超过 2. 模型识别 平稳时间序列的偏相关系数和自相关系数均不截尾,且缓慢衰减收敛,则该时间序列可能是 ARIMA(p,d,q模型。若时间序列存在周期性波动, 则可按时间周期进

典型时间序列模型分析

实验1 典型时间序列模型分析 1、实验目的 熟悉三种典型的时间序列模型:AR 模型,MA 模型与ARMA 模型,学会运用Matlab 工具对对上述三种模型进行统计特性分析,通过对2 阶模型的仿真分析,探讨几种模型的适用范围,并且通过实验分析理论分析与实验结果之间的差异。 2、实验原理 AR 模型分析: 设有 AR(2)模型, X(n)=-0.3X(n-1)-0.5X(n-2)+W(n) 其中:W(n)是零均值正态白噪声,方差为4。 (1)用MA TLAB 模拟产生X(n)的500 观测点的样本函数,并绘出波形 (2)用产生的500 个观测点估计X(n)的均值和方差 (3)画出理论的功率谱 (4)估计X(n)的相关函数和功率谱 【分析】给定二阶的AR 过程,可以用递推公式得出最终的输出序列。或者按照一个白噪声 通过线性系统的方式得到,这个系统的传递函数为: 1 2 1 ()10.30.5H z z z --= ++ 这是一个全极点的滤波器,具有无限长的冲激响应。 对于功率谱,可以这样得到, ()() 2 2 12 12exp 11x w z jw P w a z a z σ--==++ 可以看出, () x P w 完全由两个极点位置决定。 对于 AR 模型的自相关函数,有下面的公式: 这称为 Yule-Walker 方程,当相关长度大于p 时,由递推式求出: 这样,就可以求出理论的 AR 模型的自相关序列。

1.产生样本函数,并画出波形 2.题目中的AR 过程相当于一个零均值正态白噪声通过线性系统后的输出,可以按照上面的方法进行描述。 clear all; b=[1]; a=[1 0.3 0.5]; % 由描述的差分方程,得到系统传递函数 h=impz(b,a,20); % 得到系统的单位冲激函数,在20 点处已经可以认为值是0 randn('state',0); w=normrnd(0,2,1,500); % 产生题设的白噪声随机序列,标准差为2 x=filter(b,a,w); % 通过线形系统,得到输出就是题目中要求的2 阶AR 过程 plot(x,'r'); ylabel('x(n)'); title('邹先雄——产生的AR 随机序列'); grid on; 得到的输出序列波形为: 2.估计均值和方差 可以首先计算出理论输出的均值和方差,得到 x m ,对于方差可以先求出理论自相 关输出,然后取零点的值。

基于时间序列模型与线性回归模型的历史数据预测

基于时间序列模型与线性回归模型的历史数据预测 摘要:本文通过具体案例,简要说明根据时间序列数据建立和相应经济理论建立线性回归模型的简要步骤及基本原则,并着重介绍了在模型建立和模型有效性检验过程中需要注意的三个主要问题,最后简单介绍了进行模型修正的相应方法。 一、引言 多元线性回归模型的一般形式为: Y=β0+β1X1+β2X2+…+βkXk+μi(k,i=1,2,…,n) 其中k为解释变量的数目,βk(k=1,2,…,n)称为回归系数,上式也被称为总体回归函数的随机表达式。 从统计意义上说,所谓时间序列模型就是将某一个指标在不同时间上的不同数值,按照时间的先后顺序排列而成的数列。这种数列由于受到各种偶然因素的影响,往往表现出某种随机性,彼此之间存在着统计上的依赖关系。从数学意义上说,如果我们对某一过程中的某一个变量或一组变量X(t)进行观察测量,在一系列时刻t1,t2,…,tn(t为自变量,且t1

多元时间序列建模分析

应用时间序列分析实验报告 实验目的: 1熟悉单位根检验; 2、掌握ARIMAX模型建模 涉及实验的相关情况介绍(包含使用软件或实验设备等情况): SAS、excel 表格、word。 实验内容: 1 我国1950-2008年进出口总额数据仲位:亿元)如表6-15所示表6-15 年份出口总额进口总额 1950 20 21、3 1951 24、2 35、3 1952 27、1 37、5 1953 34、8 46、1 1954 40 44、7 1955 48、7 61、1 1956 55、7 53 1957 54、5 50 1958 67 61、7 1959 78、1 71、2 1960 63、3 65、1 1961 47、7 43 1962 47、1 33、8 1963 50 35、7 1964 55、4 42、1 1965 63、1 55、3 1966 66 61、1 1967 58、8 53、4 1968 57、6 50、9 1969 59、8 47、2 1970 56、8 56、1 1971 68、5 52、4 1972 82、9 64 1973 116、9 103、6 1974 139、4 152、8 1975 143 147、4 1976 134、8 129、3 1977 139、7 132、8 1978 167、6 187、4 1979 211、7 242、9 1980 271、2 298、8

1982 413、8 357、5 1983 438、3 421、8 1984 580、5 620、5 1985 80& 9 1257、8 1986 1082、1 1498、3 1987 1470 1614、2 1988 1766、7 2055、1 1989 1956 2199、9 1990 2985、8 2574、3 1991 3827、1 3398、7 1992 4676、3 4443、3 1993 5284、8 5986、2 1994 10421、8 9960、1 1995 12451、8 11048、1 1996 12576、4 11557、4 1997 15160、7 11806、5 1998 15223、6 11626、1 1999 16159、8 13736、5 2000 20634、4 18638、8 2001 22024、4 20159、2 2002 26947、9 24430、3 2003 36287、9 34195、6 2004 49103、3 46435、8 2005 62648、1 54273、7 2006 77594、6 63376、9 2007 93455、6 73284、6 2008 100394、9 79526、5 (1)使用单位根检验,分别考察进口总额与出口总额序列的平稳。 (2)分别对进口总额序列与出口总额数据拟合模型。 (3)考察这两个序列就是否具有协整关系。 (4)如果这两个序列具有协整关系,请建立适当模型拟合它们之间的相关关系 (5)构造该协整模型的误差修正模型。

相关文档
相关文档 最新文档