文档库 最新最全的文档下载
当前位置:文档库 › 球体与几何体关系

球体与几何体关系

球体与几何体关系
球体与几何体关系

球体与几何体的关系(2014.3)

一、柱体:特殊:长方体外接球体:球体的直径是长方体的体对角线:R = .(正方体外接球体:R = .)

1.(2007年天津高考题)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球

的表面积为 .14π

2. (2008年天津高考题)一个正方体的各顶点均在同一球的球面上,若该球的体积为43π,则该正方体的表面积为

.24

3.(2007年全国试卷Ⅱ)一个正四棱柱的各个顶点在一个直径为2㎝的球面上,如果正四棱柱的底面边长为1㎝,那么该棱柱的表面积为 2

cm .242+.

4.(2010年新课标试题)设长方体的长、宽、高分别为2,,,a a a 其顶点都在一个球面上,则该球的表面积为 ( )

A.2

3a π B .2

6a π C.2

12a π D.242

a π

5.(2007年辽宁高考题)若一个底面边长为6

2

,侧棱长为6的正六棱柱的所有顶点都在一个球的面上,则此球的

体积为 .43

6.(2008年新课标试题)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为98,底面周长为3,则这个球的体积为 .43

π 7.(2009

年全国试卷Ⅱ)直三棱柱111ABC A B C -各顶点都在同一球面上,若

12AB AC AA ===,120BAC ∠=?

则此球的表面积等于 .20π

8.(2010年新课标试题)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为

A.2

a π B .2

73

a π C.

2

113

a π D.25a π

9.(2013年全国高考试题辽宁卷)已知直三棱柱111C B A ABC -的6个顶点都在球

O 的球面上,4,3==AC AB ,,AB AC ⊥121=AA ,则球O 的半径为( )

A.

3172 B.210 C.13

2

D.310 8.解析:由球心作面ABC 的垂线,垂足为斜边BC 中点M.计算AM=

52,由垂径定理,OM=11

62

AA =,所以半径R=22

5

13()62

2

+=

; 10.(2013年全国高考试题天津卷)已知一个正方体的所有顶点在一个球面上.若球的体积为92

π

,则正方体的棱

长为 .3

二、锥体:特殊:直角三棱锥外接球体:(还原以后为长方体的外接球体) R = .几何体如果

是由多个直角三角形围成的,则外接球球心是直角三角形公共斜边的中点. 1.(2008年福建高考题)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积

是 .9π

2. (2011年新课标试题)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为 . 83

3. (2011

年辽宁高考题)已知球的直径4,,SC A B =是该球球面上的两

点,3AB =,30ASC BSC ∠=∠=?,则棱锥S ABC -的体积为 ( )

A.33

B.23 C .3 D.1 4.(高考题)已知球O 球面上四点,,,A B C D ,DA ABC ⊥,AB BC ⊥,3DA AB BC ===,则球O 的体积等于

.9

2

π 5.(2010

)

,,,S A B C

是球

O

表面上的

点,SA ABC ⊥,,1,2AB BC SA AB BC ⊥===,则球O 的表面积为 .4π

6.(2012年全国高考试题辽宁卷)已知点D C B A P ,,,,是球O 表面上的点,⊥PA 平面ABCD ,四边形

ABCD

B

C

A

B1

C1

A1

O

M

是边长为32正方形,若62=PA ,则OAB ?的面积为_______. 法一:还原后为长方体;法二:球心是公共斜边PD 的中点,33=S ;

7.(2012年全国高考试题新课标卷)已知三棱锥S ABC -的所有顶点都在球O 的球面上,ABC ?是边长为 1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为 ( )

A.

62 B.63 C.32 D.2

2 ABC O -为正四面体,体积为

12

2

,ABC O ABC S V V --=2,选A; 8.(2012年全国高考试题辽宁卷)已知正三棱锥ABC P -,点C B A P ,,,都在半径为3的球面上,若

PA ,PB ,PC 两两互相垂直,则球心到截面ABC 的距离为______.

3

3 三.其它几何体:利用一般性原理:先在一个面找其外心,球心在过外心的垂线上,再利用对称性或再找一

个面找其外心的垂线,球心是两垂线的交点。 1.(2009

年全国试卷Ⅱ)直三棱柱111ABC A B C -各顶点都在同一球面上,若

12AB AC AA ===,120BAC ∠=?则此球的表面积等于 .20π

2.(2013年全国高考试题辽宁卷)已知直三棱柱111C B A ABC -的6个顶点都在球

O 的球面上,4,3==AC AB ,,AB AC ⊥121=AA ,则球O 的半径为( )

A.

3172 B.210 C.13

2

D.310 3.(2014呼市一模)点A 、B 、C 、D 在同一球面上,2==BC AB ,2=AC ,若点D 到平面ABC 的

距离最大为2,则这个球的表面积为( )

π4

25

B

C

A

B1

C1

A1

O

M

立体几何动点问题

立体几何与平面解析几何的交汇问题 在教材中,立体几何与解析几何是互相独立的两章,彼此分离不相联系,实际上,从空间维数看,平面几何是二维的,立体几何是三维的,因此,立体几何是由平面几何升维而产生;另一方面,从立体几何与解析几何的联系看,解析几何中的直线是空间二个平面的交线,圆锥曲线(椭圆、双曲线、抛物线)是平面截圆锥面所产生的截线;从轨迹的观点看,空间中的曲面(曲线)是空间中动点运动的轨迹,正因为平面几何与立体几何有这么许多千丝万缕的联系,因此,在平面几何与立体几何的交汇点,新知识生长的土壤特别肥沃,创新型题型的生长空间也相当宽广,这一点,在高考卷中已有充分展示,应引起我们在复习中的足够重视。 一、动点轨迹问题 这类问题往往是先利用题中条件把立几问题转化为平面几何问题,再判断动点轨迹。 例1定点A 和B 都在平面α内,定点α?P ,α⊥PB , C 是α内异于A 和B 的动点,且AC PC ⊥。那么,动点C 在平面α内的轨迹是( ) A. 一条线段,但要去掉两个点 B. 一个圆,但要去掉两个点 C. 一个椭圆,但要去掉两个点 D. 半圆,但要去掉两个点 例2若三棱锥A —BCD 的侧面ABC 内一动点P 到平面BCD 距离与到棱AB 距离相等,则动点P 的轨迹与△ABC 组成的图形可能是( ) ) 解:设二面角A —BC —D 大小为θ,作PR ⊥面BCD ,R 为垂足,PQ ⊥BC 于Q ,PT ⊥AB 于T ,则∠PQR =θ, 且由条件PT=PR=PQ·sinθ,∴ 为小于1的常数,故轨迹图形应选(D )。 二、几何体的截痕

例3:球在平面上的斜射影为椭园:已知一巨型广告汽球直径6米,太阳光线与地面所成角为60°,求此广告汽球在地面上投影椭圆的离心率和面积(椭圆面积公式为S=πab ,其中a,b 为长、短半轴长)。 解:由于太阳光线可认定为平行光线,故广告球的投影 椭园等价于以广告球直径为直径的圆柱截面椭园:此时 b=R ,a= =2R ,∴离心率 , 投影面积S=πab=π·k·2R=2πR 2=18π。 三、动点与某点(面)的距离问题 , 例4.正方体1111D C B A ABCD -中,棱长为a ,E 是 1AA 的中点, 在对角面D D BB 11上找一动点M ,使AM+ME 最小.a 23. 四、常见的轨迹问题 (1) 轨迹类型识别 此类问题最为常见,求解时,关注几何体的特征,灵活选择几何法与代数法. 例5、(北京)平面α的斜线AB 交α于点B ,过定点A 的动直线l 与AB 垂直,且交 α于点C ,则动点C 的轨迹是( ) A .一条直线 B.一个圆 C.一个椭圆 D.双曲线的一支 【解析】直线l 运动后形成的轨迹刚好为线段AB 的垂面,由公理二易知点C 刚好落在平面α与线段AB 的垂面的交线上,所以动点C 的轨迹是一条直线.选择 A. 总结:空间的轨迹最简单的一直存在形式就是两个平面的交线,处理问题中注意识别即可. 例6、如图,在正方体ABCD A 1 B 1C 1D 1 中,若四边形A 1BCD 1 内一动点P 到AB 1和 BC 的距离相等,则点P 的轨迹为( ) … A .椭圆的一部分 B .圆的一部分 C .一条线段 D .抛物线的一部分 O E 例4题图 A % C D A 1 C 1 D 1 B 1 M - C D B C P O

数学复习:空间几何体的外接球与内切球

数学复习:空间几何体的外接球与内切球 一、有关定义 1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球. 2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球. 3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 二、外接球的有关知识与方法 1.性质: 性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等; 性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆; 性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理); 性质4:球心在大圆面和小圆面上的射影是相应圆的圆心; 性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心). 初图1 初图2 2.结论: 结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心; 结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆; 结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处; 结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径; 结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球; 结论7:圆锥体的外接球球心在圆锥的高所在的直线上; 结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径; 结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球. 3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度); 三、内切球的有关知识与方法 1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性). 2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆). 3.正多面体的内切球和外接球的球心重合. 4.正棱锥的内切球和外接球球心都在高线上,但不一定重合. 5.基本方法: (1)构造三角形利用相似比和勾股定理; (2)体积分割是求内切球半径的通用做法(等体积法). 四、与台体相关的,此略.

立体几何动态问题专题

立体几何的动态问题 立体几何的动态问题,主要有五种:动点问题、翻折问题、旋转问题、投影与截面问题以及轨迹问题。基本类型:点动问题;线动问题;面动问题;体动问题;多动问题等。解题时一般可以通过改变视角、平面化或者寻找变化过程中的不变因素而把问题回归到最本质的定义、定理或现有的结论中,若能再配以沉着冷静的心态去计算,那么相信绝大多数问题可以迎刃而解。 动点轨迹问题 空间中动点轨迹问题变化并不多,一般此类问题可以从三个角度进行分析处理,一是从曲线定义或函数关系出发给出合理解释;二是平面与平面交线得直线或线段;三是平面和曲面(圆锥,圆柱侧面,球面)交线得圆,圆锥曲线。很少有题目会脱离这三个方向。(注意:阿波罗尼斯圆,圆锥曲线第二定义) 1.(2015·浙江卷8)如图11-10,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB =30°,则点P的轨迹是( ) A.直线 B.抛物线C.椭圆 D.双曲线的一支 式题如图,平面α的斜线AB交α于B点,且与α所成的角为θ,平面α内有一动点满足∠=π 6 ,若动 点C的轨迹为椭圆,则θ的取值范围为________. 3.(2015春?龙泉驿区校级期中)在棱长为1的正方体ABCD﹣A1B1C1D1中,M是A1D1的中点,点P在侧面BCC1B1上运动.现有下列命题: ①若点P总保持PA⊥BD1,则动点P的轨迹所在的曲线是直线; ②若点P到点A的距离为,则动点P的轨迹所在的曲线是圆; ③若P满足∠MAP=∠MAC1,则动点P的轨迹所在的曲线是椭圆; ④若P到直线BC与直线C1D1的距离比为2:1,则动点P的轨迹所在的曲线是双曲线; ⑤若P到直线AD与直线CC1的距离相等,则动点P的轨迹所在的曲线是抛物线. 其中真命题的个数为() A.4 B.3 C.2 D.1

立体构成要素点线面体

立体构成的基本形态要素---点、线、面、体 一、点的构成 1、造型中的点具有相对性。 2、点的构成方式很多,但点独立存在的构成少,多数情况下会存在其他形态要素。 3、点的视觉情感及特征 点的特征: a.与环境相比较,体积小 b.长度、宽度、高度近似 点的作用: a.起某种稳定图式、造型的作用 b.创造视觉焦点 c.创造运动感:设计作品中点的动感通常源于点的集群关系和点 与背景的图底关系。 二、线材的构成 1、线的形态与感情象征 直线与曲线是构成线的两大系统,也是决定一切由线构成的形的基本要素。一般来说,直线表示静,曲线表示动。 直线是一种无机线,它具有冷淡而坚强的表现力。其中垂直线具有生命、尊严、永恒、上升、下落等感情象征;水平线趋向于表示平静、安定、向上的感情象征;斜直线意味着运动、积极、阳性等感情色彩;向下的斜直线则有危险、消极、阴性等感觉特质。而曲折线则表示不安的象征性联想。

2、材料的连接点称为节点,节点有三种 滑节——可以在接触面上自由滑动或滚动。 铰节——像铰链一样可以上下左右旋转,但不能移动,具有各方向受力的特性。刚节——完全固定死的。 线材构成中,线材大致可分为软质线材(又称拉力材)和硬质线材(又称压缩材)两大类。 软质线材包括棉、麻、丝、绳、化纤等软线,还有铁、钢、铝丝等可弯曲变形的金属线材;硬质线材有木、塑料及其他金属条材等。 (1)软质线材的构成 利用棉、麻、丝、化纤等软线、软绳。在构成中,按意图制作造型框架。其结构可选用正方体、三角柱、三角锥、五棱柱、六棱柱等造型;也可采用正圆、半圆或渐伸涡线形等、并在框架上面竖立支柱,以小钉为连点进行连接构成。 (2)硬质线材构成 木条、金属条、塑料细管、玻璃柱等线材均可用以组合而成为立体造型。在构成前,先确定好支架。构成后,部分撤掉,只保留硬质线材构成的部分。 常见的造型方法有: a.垒积构造 只把材料重叠起来做成立体的构造物,叫做累积形式的构成。 在制作时应该注意: (1)接触面过分倾斜易引起滑动;整体的重心若超过底部的支撑面则 构造物将因失去平衡而倒塌。 (2)与用线材做立体构成—样,不要忘记使空隙大小具有韵律。 (3)作为垒积构造的变形,可以在结合部施以简单的防滑处理(如缺口 等),这样将出现更多的变化。

空间几何体的外接球与内切球精品总结-- 教师版精品资料

空间几何体的外接球与内切球 一、有关定义 1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球. 2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球. 3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 二、外接球的有关知识与方法 1.性质: 性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等; 性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆; 性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理); 性质4:球心在大圆面和小圆面上的射影是相应圆的圆心; 性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心). 初图1 初图2 2.结论: 结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心; 结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆; 结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处; 结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径; 结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球; 结论7:圆锥体的外接球球心在圆锥的高所在的直线上; 结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径; 结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球. 3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度); 三、内切球的有关知识与方法 1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性). 2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆). 3.正多面体的内切球和外接球的球心重合. 4.正棱锥的内切球和外接球球心都在高线上,但不一定重合. 5.基本方法: (1)构造三角形利用相似比和勾股定理; (2)体积分割是求内切球半径的通用做法(等体积法). 四、与台体相关的,此略.

立体几何中的动点问题

立体几何中的动点问题 1、如图,四棱锥ABCD P -的底面是边长为2的正方形,⊥PA 平面ABCD ,且4=PA ,M 是PB 上的一个动点(不与B P ,重合),过点M 作平面//α平面PAD ,截棱锥所得图形的面积为y ,若平面α与平面PAD 之间的距离为x ,则函数()x f y =的图象是C 2、在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑BCD A -中,⊥AB 平面BCD ,且CD BD ⊥,CD BD AB ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD ?的面积为()x f ,则()x f 的图象大致是A

3、 如图所示,侧棱与底面垂直,且底面为正方形的四棱柱1111D C B A ABCD -中,21=AA ,1=AB ,N M ,分别在BC AD ,1上移动,始终保持//MN 平面11D DCC ,设x BN =,y MN =,则函数()x f y =的图象大致是 C 4、如图,已知正方体1111D C B A ABCD -的棱长为2,长为2的线段MN 的一个端点M 在棱1DD 上运动,点N 在正方体的底面ABCD 内运动,则MN 的中点P 的轨迹的面积是________2π 5、点P 在正方体1111D C B A ABCD -的面对角线1BC 上运动,给出下列命 题: ①三棱锥PC D A 1-的体积不变; ②//1P A 平面1ACD ; ③1BC DP ⊥; ④平面⊥1PDB 平面1ACD ; 其中正确的命题序号是_______①②④

6、在正方体1111D C B A ABCD -中,F E ,分别为11C B ,11D C 的中点,点P 是底面1111D C B A 内一点,且//AP 平面EFDB ,则1tan APA ∠的最大值是_______22 7、已知直三棱柱111C B A ABC -中的底面为等腰直角三角形,AC AB ⊥,点N M ,分别是边C A AB 11,上动点,若直线//MN 平面11B BCC ,点Q 为线段MN 的中点,则点Q 的轨迹为 C .A 双曲线的一支(一部分) .B 圆弧(一部分) .C 线段(去掉一个端点) .D 抛物线的一部分 解:以AB 为轴,AC 为轴,1AA 为轴建系 设()b ta M ,0,1,()tb ta M ,0,,()b ta N ,,01,则()()b t ta N -1,,0,()tb ta M ,0,()10<≤t 则N M ,中点?? ? ??2,2,2b ta ta Q (通过作与平面11B BCC 平行的平面交C A AB 11,来找N M ,进而找中点Q )

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招

2018年高考数学压轴 题突破140之立体几何五种动态问题和解题 绝招 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招中高考数学名师张芙华2018-01-29 06:14:27 2018年高考数学压轴题突破140之立体几何五种动态问题和解题绝招 一.方法综述 立体几何的动态问题是高考的热点,问题中的“不确定性”与“动感性”元素往往成为学生思考与求解问题的思维障碍,使考题的破解更具策略性、挑战性与创新性。一般立体动态问题形成的原因有动点变化、平面图形的翻折、几何体的平移和旋转以及投影与截面问题,由此引发的常见题型为动点轨迹、角度与距离的计算、面积与体积的计算、探索性问题以及有关几何量的最值求解等。此类题的求解并没有一定的模式与固定的套路可以沿用,很多学生一筹莫展,无法形成清晰的分析思路,导致该题成为学生的易失分点。究其原因,是因为学生缺乏相关学科素养和解决问题的策略造成的。 动态立体几何题在变化过程中总蕴含着某些不变的因素,因此要认真分析其变化特点,寻找不变的静态因素,从静态因素中,找到解决问题的突破口。求解动态范围的选择、填空题,有时应把这类动态的变化过程充分地展现出来,通过动态思维,观察它的变化规律,找到两个极端位置,即用特殊法求解范围。对于探究存在问题或动态范围(最值)问题,用定性分析比较难或繁时,可以引进参数,把动态问题划归为静态问题。具体地,可通过构建方程、函数或不等式等进行定量计算,以算促证。 二.解题策略 类型一立体几何中动态问题中的角度问题

【指点迷津】空间的角的问题,一种方法,代数法,只要便于建立空间直角坐标系均可建立空间直角坐标系,然后利用公式求解;另一种方法,几何法,几何问题要结合图形分析何时取得最大(小)值。当点M在P处时,EM与AF 所成角为直角,此时余弦值为0(最小),当M点向左移动时,EM与AF所成角逐渐变小时,点M到达点Q时,角最小,余弦值最大。 类型二立体几何中动态问题中的距离问题

立体几何的动态问题翻折问题

立体几何的动态问题之二 ———翻折问题 立体几何动态问题的基本类型: 点动问题;线动问题;面动问题;体动问题;多动问题等 一、面动问题(翻折问题): (一)学生用草稿纸演示翻折过程: (二)翻折问题的一线五结论 .DF AE ⊥一线:垂直于折痕的线即 五结论: 1)折线同侧的几何量和位置关系保持不变; 折线两侧的几何量和位置关系发生改变; 2--D HF D H F ''∠)是二面角的平面角; 3D DF ')在底面上的投影一定射线上; 二、翻折问题题目呈现: (一)翻折过程中的范围与最值问题 1、(2016年联考试题)平面四边形ABCD 中, , CD=CB= 且AD AB ⊥, 现将△ABD 沿对角线BD 翻折成'A BD ?,则在'A BD ?折起至转到平面BCD 的过程中,直线'A C 与平面BCD 所成最大角的正切值为_______ . 解:由题意知点A 运动的轨迹是以E 为圆心,EA 为半径的圆,当点A 运动到与圆相切的时候所称的角最大,所以tan 'A CB ∠= 【设计意图】加强对一线、五结论的应用,重点对学生容易犯的错误 1 2 进行分析,找出错误的原因。 2、2015年10月浙江省学业水平考试18).如图,在菱形ABCD 中,∠BAD=60°,线段AD ,BD 的中点分别为E ,F 。现将△ABD 沿对角线BD 翻折,则异面直线BE 与CF 所成角的取值范围是 D A B E C D A B C 4) ''D H DH 点的轨迹是以为圆心,为半径的圆;5AD'E AE .)面绕 翻折形成两个同底的圆锥C

A.( ,)63 ππ B. (,]62 ππ C. ( ,]32 ππ D. 2( ,)3 3 ππ 分析:这是一道非常经典的学考试题,本题的解法非常多,很好的考查了空间立体几何线线角的求法。 方法一:特殊值法(可过F 作FH 平行BE,找两个极端情形) 方法二:定义法:利用余弦定理: 222254cos 243 FH FC CH FHC CH FH FC +-∠==- ,有344CH ≤≤ 11cos ,22CFH ?? ∴∠∈-???? 异面直线BE 与CF 所成角的取值范围是(,] 32ππ 方法三:向量基底法: 111 ()()222BE FC BA BD FC BA FC BF FA FC =+==+ 111cos ,cos ,,222BE FC FC FA ?? <>= <>∈-???? 方法四:建系: 3、(2015年浙江·理8)如图,已知ABC ?,D 是AB 的中点,沿直线CD 将ACD ?折成 A CD '?,所成二面角A CD B '--的平面角为α,则 ( B ) A. A DB α'∠≤ B. A DB α'∠≥ C. A CB α'∠≥ D. A CB α'∠≤ 方法一:特殊值 方法二:定义法作出二面角,在进行比较。 方法三:抓住问题的本质,借助圆锥利用几何解题。 4、 (14 年1月浙江省学业学考试题)如图在Rt △ABC 中,AC =1,BC =x ,D 是斜边AB 的中点,将△BCD 沿直线CD 翻折,若在翻折过程 B

数学研究课题---空间几何体的外接球与内切球问题.

高中数学课题研究 几何体与球切、接的问题 纵观近几年高考对于组合体的考查,与球相关的外接与内切问题是高考命题的热点之一.高考命题小题综合化倾向尤为明显,要求学生有较强的空间想象能力和准确的计算能力,才能顺利解答.从实际教学来看,这部分知识学生掌握较为薄弱、认识较为模糊,看到就头疼的题目.分析原因,除了这类题目的入手确实不易之外,主要是学生没有形成解题的模式和套路,以至于遇到类似的题目便产生畏惧心理. 下面结合近几年高考题对球与几何体的切接问题作深入的探究,以便更好地把握高考命题的趋势和高考的命题思路,力争在这部分内容不失分.从近几年全国高考命题来看,这部分内容以选择题、填空题为主,大题很少见. 首先明确定义1:若一个多面体的各顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球。 定义2:若一个多面体的各面都与一个球的球面相切, 则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球. 1 球与柱体的切接 规则的柱体,如正方体、长方体、正棱柱等能够和球进行充分的组合,以外接和内切两种形态进行结合,通过球的半径和棱柱的棱产生联系,然后考查几何体的体积或者表面积等相关问题. 1.1 球与正方体 如图所示,正方体1111ABCD A B C D -,设正方体的棱长为a ,,,,E F H G 为棱的中点,O 为球的球心.常见组合方式有三类:一是球为正方体的内切球,截面图为正方形EFGH 和其内切圆,则2a OJ r ==;二 是与正方体各棱相切的球,截面图为正方形EFGH 和其外接圆,则GO R a ==;三是球为正方体的 外接球,截面图为长方形11ACA C 和其外接圆,则12 A O R a '==.通过这三种类型可以发现,解决正方体与球的组合问题,常用工具是截面图,即根据组合的形式找到两个几何体的轴截面,通过两个截面图的位置关系,确定好正方体的棱与球的半径的关系,进而将空间问题转化为平面问题.

立体几何动点问题

1 A 1.如图,正方体ABCD-A1B1C1D1的棱长为1,线段B1D1上有两个动点E,F,且EF=2 2 , 则下列结论中错误 ..的个数是( ) (1) AC⊥BE. (2) 若P为AA1上的一点,则P到平面BEF的距离为2 2 . (3) 三棱锥A-BEF的体积为定值. (4) 在空间与DD1,AC,B1C1都相交的直线有无数条. (5) 过CC1的中点与直线AC1所成角为40?并且与平面BEF所成角为50?的直线有2条. A.0 B.1 C.2 D.3 2.如图,正方体的棱长为1,线段上有两个动点 ,且 2 2 = EF,则下列结论中错误 ..的是() A.B.∥平面 C.三棱锥的体积为定值 D.△AEF与△BEF的面积相等 3.关于图中的正方体1 1 1 1 D C B A ABCD-,下列说法正确的有 ___________________. ①P点在线段BD上运动,棱锥1 1 D AB P-体积不变; ②P点在线段BD上运动,二面角 A D B P- - 1 1不变; ③一个平面 α截此正方体,如果截面是三角形,则必为锐角三角形; ④一个平面 α截此正方体,如果截面是四边形,则必为平行四边形; ⑤平面 α截正方体得到一个六边形(如图所示),则截面α在平面 1 1 D AB 与平面1 BDC 间平行移动时此六边形周长先增大,后减小。 4、如图,正方体1111 ABCD A BC D - 的棱长为1,P为BC的中点,Q为线段1 CC 上的动点,过点A,P,Q的平面截该正方体所得的截面记为S.则下列命题正确的是___________(写 出所有正确命题的编号). ①当 1 2 CQ << 时,S为四边形; ②当 1 2 CQ= 时,S不为等腰梯形; ③当 3 4 CQ= 时,S与11 C D 的交点R满足 1 1 3 C R= ; 1 1 1 1 D C B A ABCD- 1 1 D B F E, BE AC⊥EF ABCD BEF A-

(完整版)空间几何体与球的切接问题

空间几何体与球的切、接问题 1.体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) π12.A B.3 32π C.8π D.π4 类型一:三条棱两两垂直可转化为长方体(正方体) 2.在三棱锥 ABC P - 中,31,,===⊥⊥PA BC AC BC AC ABC PA ,平面 则三棱锥外接球的体积为 3.已知球O 上四点A 、B 、C 、D ,ABC DA 平面⊥,a BC AB DA BC AB ===⊥,,则球O 的体积等于 圆柱的外接球 4.直三棱柱ABC -A 1B 1C 1的6个顶点都在球O 的球面上”,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为 类型二:有一条侧棱垂直于底面可转化为直棱柱 5.已知三棱锥P -ABC 中,三角形ABC 为等边三角形,且PA=8,PB=PC=13,AB=3,则其外接球的体积为 6.在三棱锥ABC P -中,ο120621,=∠===⊥ACB PA BC AC ABC PA ,,,平面, 求三棱锥的外接球的表面积。 圆锥的外接球

7.正四棱锥的顶点都在同一球面上.若该棱锥的高为4,底面边长为2,则该球的表面积为( ) A.481π B.16π C.9π D.427π 8.在三棱锥A -BCD 中ACD ?与?BCD 都是边长为2的正三角形,且平面ACD ⊥平面BCD,求三棱锥外接球的体积 练习1、在四面体中,平面,AB=AC=1,BC=2,PC=3.则该四面体外接球的表面积为 . 练习2、正三角形ABC 的边长为2,将它沿高AD 翻折,使点B 与点C 间的距离为 2,此时四面体ABCD 外接球表面积为____________ 练习3.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径。若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________。 P ABC -⊥PC ABC

2014高考理科立体几何难建系和动点问题(考前必做的立几大题)

学生姓名 年级 授课时间 教师姓名 课时 2 1.(2013年普通等学校招生统一试大纲版数学(理)WORD 版含答案(已校对))如图四棱锥P ABCD -902,ABC BAD BC AD PAB ∠=∠==?,与PAD ?都是等边三角形 (I)证明:; PB CD ⊥ (II)求二面角A PD C --的大小 (2012年高考(四川理))如图,在三棱锥P ABC -中,90APB ∠=,60PAB ∠=,AB BC CA ==,平面PAB ⊥平面ABC . (Ⅰ)求直线PC 与平面ABC 所成角的大小; (Ⅱ)求二面角B AP C --的大小. (2012年高考(辽宁理)) 如图,直三棱柱///ABC A B C -,90BAC ∠=, /,AB AC AA λ==点M ,N 分别为/A B 和//B C 的中点. (Ⅰ)证明:MN ∥平面//A ACC ; (Ⅱ)若二面角/A MN C --为直二面角,求λ的值 .

(2012年高考(北京理))如图1,在Rt△ABC 中,∠C=90°,BC=3,AC=6,D,E 分别是AC,AB 上的点, 且DE∥BC,DE=2,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1C⊥CD,如图2. (1)求证:A 1C⊥平面BCDE; (2)若M 是A 1D 的中点,求CM 与平面A 1BE 所成角的大小; (3)线段BC 上是否存在点P,使平面A 1DP 与平面A 1BE 垂直?说明理由. (2012年高考(安徽理))平面图形111ABB AC C 如图4所示,其中11BB C C 是矩 形,12,4BC BB ==,AB AC ==1111A B AC ==现将该平面图形分别沿 BC 和11B C 折叠,使ABC ?与111A B C ?所在平面都与平面11BB C C 垂直,再分别连接111,,AA BA CA ,得到如图2所示的空间图形,对此空间图形解答下列问题 . (Ⅰ)证明:1AA BC ⊥; (Ⅱ)求1AA 的长; (Ⅲ)求二面角1A BC A --的余弦值.

立体几何中的动态问题

立体几何中的动态问题 立体几何中的动态问题主要包括:空间动点轨迹的判断,求轨迹的长度及动角的范围等;求解方法一般根据圆锥曲线的定义判断动点轨迹是什么样的曲线;利用空间向量的坐标运算求轨迹的长度等. 一、常见题目类型 (优质试题·金华十校高考模拟)在正方体ABCD -A 1B 1C 1D 1中,点 M 、N 分别是直线CD 、AB 上的动点,点P 是△A 1C 1D 内的动点(不包 括边界),记直线D 1P 与MN 所成角为θ,若θ的最小值为π3 ,则点P 的轨迹是( ) A .圆的一部分 B .椭圆的一部分 C .抛物线的一部分 D .双曲线的一部分 【解析】 把MN 平移到平面A 1B 1C 1D 1中,直线D 1P 与MN 所成角为 θ,直线D 1P 与MN 所成角的最小值是直线D 1P 与平面A 1B 1C 1D 1所成角, 即原问题转化为:直线D 1P 与平面A 1B 1C 1D 1所成角为π3 ,点P 在平面A 1B 1C 1D 1的投影为圆的一部分, 因为点P 是△A 1C 1D 内的动点(不包括边界), 所以点P 的轨迹是椭圆的一部分.故选B. 【答案】 B (优质试题·浙江名校协作体高三联考)已知平面ABCD ⊥平面ADEF ,AB ⊥AD ,CD ⊥AD ,且AB =1,AD =CD =2.ADEF 是正方形,在正方形ADEF 内部有一点M ,满足MB ,MC 与平面ADEF 所成的角相等,则点M 的轨迹长度为( ) A.43 B.163 C.49π D.83 π 【解析】 根据题意,以D 为原点,分别以DA ,DC ,DE 所在直线为x ,y ,z 轴,建立空间直角坐标系Dxyz ,如图1所示,则B (2,1,0),C (0,2,0),设M (x ,0,z ),易知直线MB ,MC 与平面ADEF 所成的角分别为∠AMB ,∠DMC ,均为锐角,且∠AMB =∠DMC ,所 以sin ∠AMB =sin ∠DMC ?AB MB =CD MC ,即2MB =MC ,因此2(2-x )2+12+z 2=x 2+22+z 2,

人教B版必修二与球有关的空间几何体问题

考点一:球的内接柱体 设柱体上底的外心为1O ,下底的外心为2O ,则有柱体的外接球球心O 为21O O 的中点。若 柱体底面外接圆半径为r ,高为h ,则外接球半径R 满足:22 2 2h r R +=; 由已学知识可总结出: (1)边长为a 的正三角形的外接圆半径a r 3 3=; (2)长为a ,宽为b 的的矩形的外接圆半径2 2 2b a r += (3)斜边为c 的直角三角形的外接圆半径2 c r = 注:球的内接长方体满足:球的直径于长方体的大对角线相等 考点二:球的内接椎体 1. 球的内接直三棱锥,直四棱锥(有一条侧棱与底面垂直):与长方体相同,是长方体的部分顶点构成的椎体 2. 球的内接正三棱锥,正四棱锥: 设顶点为P ,底面外接圆圆心1O ,则有正棱锥外接球球心在1PO 上,若正棱锥底面外接圆 半径为r ,高为h ,则外接球半径R 满足:2 22)(R h r R -+=或h l R 22 =(l 为侧棱) 考点三:多面体的内切球 1 多边形内切圆圆心把多边形分成多个高相等的三角形,由面积法可知 多边形的内切圆半径r 满足:P S r 2=(S 为多边形面积,P 为多边形周长) 2 多面体内切球球心把多面体分成多个高相等的椎体,由体积法可知 多面体的内切求半径r 满足:S V r 3= (V 为多面体体积,S 为多面体表面积) 考点四:圆锥内切球与外接球 1 圆锥的外接球:与正棱锥的外接球相同

2 圆锥的内切球:圆锥的内切球半径即为圆锥截面三角形的内切圆半径,设圆锥的底面半径为r ,高为h ,则内切球半径R 满足:22222h r r h r R P S r R ++?=?= = 小结: 1 球的内接柱体,直椎体:22 2 2h r R += 2 球的内接正棱锥,内接圆锥:h l R 22 =(l 为侧棱) 3 多面体的内切球:S V R 3= 4 圆锥的内切球:r h r h r R 2222++?= 典型例题 例1 一个球的外切正方体的全面积为6,则球的体积为( ) A 34π B 86π C 6 π D 66π 答案:C 解析:多面体的内切球,所以球的半径S V R 3=,正方体的棱长为1,则1=V ,所以2163== R ,所以球的体积为6 )21(343ππ=??,故选C 例2 某长方体的三视图的面积分别为20,15,12,求该长方体的外接球的表面积 答案:π50 解析:设长方体的三边分别为c b a ,,,则有?? ???===??????===534121520c b a ab bc ac ,所以外接球半径为:

全国卷历年高考立体几何真题归类分析(含答案)

全国卷历年高考立体几何真题归类分析(含答案) 类型一:直建系——条件中已经有线面垂直条件,该直线可以作为z轴或与z轴平行,底面垂直关系直接给出或容易得出(如等腰三角形的三线合一)。这类题入手比较容易,第(Ⅰ)小问的证明就可以用向量法,第(Ⅱ)小问往往有未知量,如平行坐标轴的某边长未知,或线上动点等问题,以增加难度。该类问题的突破点是通过条件建立方程求解,对于向上动点问题这主意共线向量的应用。 1.(2014年全国Ⅱ卷)如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD 的中点. (Ⅰ)证明:PB∥平面AEC; (Ⅱ)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积. 2.(2015年全国Ⅰ卷)如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC. (Ⅰ)证明:平面AEC⊥平面AFC;(Ⅱ)求直线AE与直线CF所成角的余弦值. 3.(2015年全国Ⅱ卷)如图,长方体ABCD-A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形. (Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.

4.(2016年全国Ⅲ卷)如图,四棱锥P ABC -中,PA ⊥底面面ABCD ,AD ∥BC , 3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点. (I )证明MN 平面PAB ;(II )求直线AN 与平面PMN 所成角的正弦值. 5.(2017全国Ⅱ卷)如图所示,在四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面 ABCD ,1 2 AB BC AD == ,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)求证:直线//CE 平面PAB ; (2)点M 在棱PC 上,且直线BM 与底面ABCD 所成的锐角为45,求二面角M AB D --的余弦值. E M D C B A P 类型二:证建系(1)——条件中已经有线面垂直条件,该直线可以作为z 轴或与z 轴平行,但底面垂直关系需要证明才可以建系(如勾股定理逆定理等证明平面线线垂直定理)。这类题,第(Ⅰ)小问的证明用几何法证明,其证明过程中的结论通常是第(Ⅱ)问证明的条件。第(Ⅱ)小问开始需要证明底面上两条直线垂直,然后才能建立空间直角坐标系。 6.(2011年全国卷)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:P A ⊥BD ; (Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.

立体几何动态问题(二轮)含答案

立体几何中的动态问题 一、轨迹问题 1.如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为2,长为2的线段MN 的一个端点M 在棱DD 1上运动,另一端点N 在正方形ABCD 内运动,则MN 的中点P 轨迹的面积( )D A .4π B .2π C .π D . 2 π 2.[2015·浙江卷] 如图, 斜线段AB 与平面α所成的角为60°,B 为斜足,平面α上的动点P 满足∠PAB =30°,则点P 的轨迹是( )C A .直线 B .抛物线 C .椭圆 D .双曲线的一支 3.如图,AB 平面α的斜线段,A 为斜足.若点P 在平面α内运动,使得△ABP 的面积为定值,则动点P 的轨迹是 ( )B A .圆 B .椭圆 C .一条直线 D .两平行直线 4.如图,已知正方体ABCD -A 1B 1C 1D 1中,M 是平面ABCD 内的一个动点,且∠AD 1M =45°,则动点M 的轨迹是 ( )D A .圆 B .双曲线 C .椭圆 D .抛物线 5.如图,在正方体ABCD -A 1B 1C 1D 1中,P 是底面ABCD 内的动点PE ⊥A 1C 于点E ,且PA =PE ,则点P 的轨迹是 ( )A A .线段 B .圆弧 C .椭圆的一部分 D .抛物线的一部分 图-2 A P B α 图-3

二、判断平行,垂直,夹角问题 1.已知矩形ABCD ,AB=1,BC=2,将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中, ( )B A.存在某个位置,使得直线AC 与直线BD 垂直. B.存在某个位置,使得直线AB 与直线CD 垂直. C.存在某个位置,使得直线AD 与直线BC 垂直. D.对任意位置,三对直线“AC 与BD ”, “AB 与CD ”,“AD 与BC ”均不垂直 2.如图,已知点E 是正方形ABCD 的边AD 上一动点(端点除外),现将△ABE 沿BE 所在直线翻折成△BE A ',并连结C A ',D A '.记二面角C BE A --'的大小为)0(παα<<.(D) A .存在α,使得⊥'BA 面DE A ' B .存在α,使得⊥'BA 面CD A ' C .存在α,使得⊥'EA 面C D A '. D .存在α,使得⊥'EA 面BC A ' 3.(浙江2015)如图,已知ABC ?,D 是AB 的中点,沿CD 将ACD ?折成CD A '?, 所成二面角B CD A --'的平面角为α,则 (B) A .α≤'∠DB A B .α≥'∠DB A C .α≤'∠CB A D .α≥'∠CB A 三、最值问题 1.在棱长为1的正方体中,点21,P P 分别是线段AB ,BD 1, (不包括端点)上的动点,且线段2 1P P 平行于棱1AD ,则四面体121,AB P P 的体积的最大值为( )D (A )481 (B )121 (C )81 (D )24 1 2.已知立方体ABCD -A 1B 1C 1D 1的棱长为2,线段EF ,GH 分别在棱AB ,CC 1上移动,若EF +GH = 2 1 ,A D A 'B C C E B A C E D B 'A A B C D E

八个有趣模型——搞定空间几何体的外接球与内切球

八个有趣模型一一搞定空间几何体的外接球与内切球 当讲到付雨楼老师于2018年1月14日总第539期微文章,我如获至宝.为有了教学的实施,我以付老师的文 章主基石、框架,增加了我个人的理解及例题,形成此文,仍用文原名,与各位同行分享?不当 之处,敬请大家批评指正? —、有关定义 1?球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球 2?外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球? 3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体, 这个球是这个多面体的内切球? 二、外接球的有关知识与方法 1.性质: 性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等; 性质2 :经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆; 性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理); 性质4:球心在大圆面和小圆面上的射影是相应圆的圆心; 性质5 :在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中, 两相交弦的中垂线交点是圆心) 2.结论: 结论1 :长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心; 结论2 :若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同; 结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之, 就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆; 结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处; 结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径; 结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球; 结论7:圆锥体的外接球球心在圆锥的高所在的直线上; 结论&圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径; 结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球 3.终极利器:勾股定理、正定理及余弦定理(解三角形求线段长度); 三、内切球的有关知识与方法 1.若球与平面相切,则切点与球心连线与切面垂直?(与直 线切圆的结论有一致性) 2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等?(类比:与多边形 的内切圆)? 3.正多面体的内切球和外接球的球心重合

高中数学立体几何动点和折叠问题-含答案

立体几何折叠动点问题 1.(2020?湖南模拟)在棱长为6的正方体1111ABCD A B C D -,中,M 是BC 的中点,点P 是正方体的表面11DCC D (包括边界)上的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -体积的最大值是( ) A . B .36 C .24 D . 2.(2020?德阳模拟)ABC ?是边长为E ,F 分别为AB ,AC 的中点,沿EF 把OAEF 折起,使点A 翻折到点P 的位置,连接PB 、PC ,当四棱锥P BCFE -的外接球的表面积最小时,四棱锥P BCFE -的体积为( ) A B C D 3.(2020?德阳模拟)ABC ?是边长为的等边三角形,E 、F 分别在线段AB 、AC 上滑动,//EF BC ,沿EF 把AEF ?折起,使点A 翻折到点P 的位置,连接PB 、PC ,则四棱锥P BCFE -的体积的最大值为( ) A . B C .3 D .2 4.(2020春?江西月考)已知三棱锥P ABC -满足PA ⊥底面ABC ,在ABC ?中,6AB =,8AC =,AB AC ⊥, D 是线段AC 上一点,且3AD DC =,球O 为三棱锥P ABC -的外接球,过点D 作球O 的截面,若所得截 面圆的面积的最小值与最大值之和为44π,则球O 的表面积为( ) A .72π B .86π C .112π D .128π

5.(2020春?沙坪坝区校级期中)已知A ,B ,C ,D 四点均在半径为(R R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为1 6,则球O 的表面积为( ) A .32 π B .2π C . 94 π D . 83 π 6.(2020春?五华区校级月考)已知A ,B ,C 是球O 的球面上的三点,2AB =,AC =60ABC ∠=?, 且三棱锥O ABC -,则球O 的体积为( ) A .24π B .48π C . D . 7.(2020?东莞市模拟)已知三棱柱111ABC A B C -四边形11A ACC 与11B BCC 为两个全等的矩形,M 是11A B 的中点,且1111 2 C M A B =,则三棱柱111ABC A B C -体积的最大值为( ) A .12 B . 16 C .4 D . 43 8.(2020?江西模拟)四棱柱1111ABCD A B C D -中,底面四边形ABCD 是菱形,120ADC ∠=?,连接AC ,BD 交于点O ,1A O ⊥平面ABCD ,14AO BD ==,点C '与点C 关于平面1BC D 对称,则三棱锥C ABD '-的体积为( ) A . B . C . D .

相关文档
相关文档 最新文档