文档库 最新最全的文档下载
当前位置:文档库 › KBSG型变压器二次侧电压693V 两相短路电流计算表(A)

KBSG型变压器二次侧电压693V 两相短路电流计算表(A)

KBSG型变压器二次侧电压693V 两相短路电流计算表(A)
KBSG型变压器二次侧电压693V 两相短路电流计算表(A)

KBSG型变压器二次侧电压693V两相短路电流计算表(A)

变压器容量、短路、电流计算

1.变压器容量计算 P=√3×U×I×COS¢ 一次侧额定电流:I=630000÷10000÷1.732=36.37A 二次侧额定电流:I=630000÷400÷1.732=909A 【2】变压器电抗的计算 110KV, 10.5除变压器容量;35KV, 7除变压器容量;10KV{6KV}, 4.5除变压器容量。 例:一台35KV 3200KVA变压器的电抗X*=7/3.2=2.1875 MVA 一台10KV 1600KVA变压器的电抗X*=4.5/1.6=2.813 MVA 【3】电抗器电抗的计算 电抗器的额定电抗除额定容量再打九折。 例:有一电抗器 U=6KV I=0.3KA 额定电抗 X=4% 额定容量 S=1.73*6*0.3=3.12 MVA. 电抗器电抗X*={4/3.12}*0.9=1.15 MVA 【4】架空线路及电缆电抗的计算 架空线:6KV,等于公里数;10KV,取1/3;35KV,取 3%0 电缆:按架空线再乘0.2。 例:10KV 6KM架空线。架空线路电抗X*=6/3=2 10KV 0.2KM电缆。电缆电抗X*={0.2/3}*0.2=0.013。 这里作了简化,实际上架空线路及电缆的电抗和其截面有关,截面越大电抗越小。 【5】短路容量的计算 电抗加定,去除100。 例:已知短路点前各元件电抗标么值之和为X*∑=2, 则短路点的短路容量

Sd=100/2=50 MVA。 短路容量单位:MVA 【6】短路电流的计算 6KV,9.2除电抗;10KV,5.5除电抗; 35KV,1.6除电抗; 110KV,0.5除电抗。 0.4KV,150除电抗 例:已知一短路点前各元件电抗标么值之和为X*∑=2, 短路点电压等级为6KV, 则短路点的短路电流 Id=9.2/2=4.6KA。 短路电流单位:KA 【7】短路冲击电流的计算 1000KVA及以下变压器二次侧短路时:冲击电流有效值Ic=Id, 冲击电流峰值ic=1.8Id 1000KVA以上变压器二次侧短路时:冲击电流有效值Ic=1.5Id, 冲击电流峰值ic=2.5Id 例:已知短路点{1600KVA变压器二次侧}的短路电流 Id=4.6KA, 则该点冲击电流有效值Ic=1.5Id,=1.5*4.6=7.36KA,冲击电流峰值ic=2.5Id=2.5*406=11.5KA。 可见短路电流计算的关键是算出短路点前的总电抗{标么值}.但一定要包括系统电抗。 变压器工作电流是多少?计算公式怎么列 可以用经验公式:10KV/0.4KV变压器低压侧 I=1.5S(变压器容量*1.5)高压侧 I=0.06S (变压器容量*0.06) 或:I=S/U*cos(变压器容量1000除以电压0.4再乘以功率因数) 你的高压是多少(10KV) 高压电流=1000/1.732/10=57.7A 低压电流=1000/1.732/0.38=1519A

变压器的短路电流计算方法

变380V低压侧短路电流计算: https://www.wendangku.net/doc/bb7296802.html,=6%时Ik=25*Se https://www.wendangku.net/doc/bb7296802.html,=4%时Ik=37*Se 上式中Uk:变压器的阻抗电压,记得好像是Ucc。 Ik:总出线处短路电流A Se:变压器容量KVA 3。峰值短路电流=Ik*2.55 4.两相短路电流=Ik*0.866 5.多台变压器并列运行 Ik=(S1+S2+。。。。Sn)*1.44/Uk 变压器短路容量-短路电流计算公式-短路冲击电流的计算 一.概述 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为

110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。 1.主要参数 Sd三相短路容量(MVA)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动

变压器一二次侧电流计算

变压器一、二次额定电流计算 容量处电流,系数相乘求。 六千零点一,十千点零六。 低压流好算,容量一倍半。 说明:通常我们说变压器多大,是指额定容量而言,如何通过容量很快算出变压器一、二次额定电流?口诀说明了只要用变压器容量数(千伏安数)乘以系数,便可得出额定电流。 “6 千乘零点1,10千乘点零6”是指一次电压为6千伏的三相变压器,它的一次额定电流为容量数乘0.1,即千伏安数乘0.1。一次电压为10千伏的三相变压器,一次额定电流为容量数乘0.06,即千伏安数乘0.06。以上两种变压的二次侧(低压侧)额定电流皆为千伏安数乘1.5,这就是“低压流好算,容量一倍半”的意思。 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。

已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、 380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的 10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9

变压器一次变电流的计算方法

变压器一次变电流的计算方法 1、快速估算法 变压器容量/100,取整数倍,然后*5.5=高压侧电流值,如果要是*144,就是低压侧电流值! 比如说1000KV A的变压器,/100取整数倍后是10,那么高压侧电流就是10*5.5=55A,低压侧电流就是10*144=1440A 2、线性系数法 记住一个常用容量的变压器高低压侧电流值,其它容量的可以进行线性推导 比如说1000KV A的变压器,高压侧电流计算值是57.73,低压侧电流计算值是1443.42,那么记住这个数值,其它容量的可以以此推导,比如说1600KV A的变压器,高压侧电流就是1600/1000*57.73=92.368A,低压侧电流就是1600/1000*1443.42=2309.472A 3、粗略估算法: 高压侧电流=变压器容量/20,低压侧电流=变压器容量*2 比如说1000KVA的变压器,高压侧电流=1000/20=50A,低压侧电流=1000*2=2000A,这种方法过于粗糙,一般都是设计院用来开关元型选型、电缆选型和校验的时候常用的方法 4、公式计算法: I=S/1.732/U I--电流,单位A S--变压器容量,单位kV A U--电压,单位kV 5、最大电流计算: 需要考虑过载系数、过载时限、变压器寿命、电动机起动系数、涌流、高频负荷如电机的高频谐波等综合因素了,这样计算就非常麻烦了。只说一个简单的,过载情况---------在过载的情况下,油变的过载系数是1.2,干式的过载系数是1.5,也就是通过上述方法计算出变压器的额定电流值之后,再乘以过载系数,从而得到最大电流值,用以高低压侧开关的整定和变压器后备限流熔断器数值的设计和整定! 综上,电网系统容量参考500MV A(其实无所谓的,最值这个数值的系统可以忽略不计),变压器阻抗设定为1000KV A以下为0.4%,1000KV A及以上是0.6%

变压器短路电流计算

这本身就不是一个简单的事! 你既然用到短路电流了,就肯定不是初中阶段的计算了吧 所以你就不用找省劲的法子了 当然你也可以找个计算软件嘛就不用自己计算了 供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作.为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件. 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多. 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限大.只要计算35KV及以下网络元件的阻抗. 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗1/3时才需计入电阻,一般也只计电抗而忽略电阻. 3. 短路电流计算公式或计算图表,都以三相短路为计算条件.因为单相短路或二相短路时的短路电流都小于三相短路电流.能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流. 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要.一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法. 在介绍简化计算法之前必须先了解一些基本概念. 1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流 和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定

变压器一二次额定电流计算口诀.doc

变压器一、二次额定电流计算口诀 容量处电流,系数相乘求。 六千零点一,十千点零六。 低压流好算,容量一倍半。 说明:通常我们说变压器多大,是指额定容量而言,如何通过容量很快算出变压器一、二次额定电流?口诀说明了只要用变压器容量数(千伏安数)乘以系数,便可得出额定电流A。“6千乘零点1,10千乘点零6”是指一次电压为6千伏的三相变压器,它的一次额定电流为容量数乘0.1,即千伏安数乘0.1。一次电压为10千伏的三相变压器,一次额定电流为容量数乘0.06,即千伏安数乘0.06。以上两种变压的二次侧(低压侧)额定电流皆为千伏安数乘1.5,这就是“低压流好算,容量一倍半”的意思。 导线载流量的计算口诀, 评论 导线的载流量与导线截面有关,也与导线的材料、型号、敷设方法以及环境温度等有关,影响的因素较多,计算也较复杂。各种导线的载流量通常可以从手册中查找。但利用口诀再配合一些简单的心算,便可直接算出,不必查表。 1. 口诀铝芯绝缘线载流量与截面的倍数关系 10下五,100上二, 25、35,四、三界,. 70、95,两倍半。 穿管、温度,八、九折。 裸线加一半。 铜线升级算。 2. 说明口诀对各种截面的载流量(安)不是直接指出的,而是用截面乘上一定的倍数 来表示。为此将我国常用导线标称截面(平方毫米)排列如下: 1、1.5、 2.5、 4、 6、 10、 16、 25、 35、 50、 70、 95、 120、 150、 185…… (1)第一句口诀指出铝芯绝缘线载流量(安)、可按截面的倍数来计算。口诀中的阿拉伯数码表示导线截面(平方毫米),汉字数字表示倍数。把口诀的截面与倍数关系排列起来 如下: 1~10 16、25 35、50 70、95 120以上 ﹀﹀﹀﹀

变压器短路电流计算

1) 问题分析的理论基础: 当变压器在额定电压下发生短路时,其短路电流会大大超过其稳定值。稳定的短路电流按下式计算: =K I I Z K %100N 式中: Z K % ----- 短路阻抗百分值; I N -------变压器额定电流。 变压器在短路时是不饱和的,甚至在一次侧所加的电压为额定电压时也不饱和。这种情况可由变压器的T 型等值电路图来说明。变压器是否饱和,则可接等值电路图励磁回路的电压值来估算。在额定负载下,励磁回路的电压与一次电压差别不大,这是因为一次回路的阻抗压降很小。在短路时,励磁回路的电压约等于一次电压的一半,所以变压器不饱和。根据这个关系可以忽略励磁回路,而采用下图所示的简化电路图。 图:计算变压器突发短路电流的连接图和等值电路图 当电压为正弦波时,得出 u L =dt di u +u u r i =U 1m sin (ωt+α) 因为变压器不饱和,可以认为短路电感是个常量。上面的方程式包括右边部分时的特解给出稳态短路电流。 I=)sin()sin()(22 k my k k k m tt I tt L r U ?αω?αωω-+=-++ k ?---一次电压和短路电流之间的相位角:k k K r x arctg =? 上面的方程式不包括右边部分时的能解给出的短路电流的自由分量:u u L t r a n Ae i /.-= 短路电流的完全表达式为 sin m y ua ny u I i i i =+=ω(N n L r Ae t /)-++α

当t=0时,短路电流i u =0, 因为可以认为变压器在短路的瞬间是无负载的。所以 A=-)sin(u m v a I ?- 因而,u u L t r u m v k m v u e a I t I i /)sin()sin(----+=??αω 这样一来,过渡的短路电流包括两部分:稳态分量和非周期分量,后者是按时间常数T=L u /r u 衰减的。电感L u 是与变压器漏磁通相对应的,漏磁通一般比主磁通小得多。所以,短路的时间常数比变压器合闸到线路上的过渡过程的时间常数要小得多,非周期分量的衰减实际上是在几个交流半周期内完成的。 非周期分量电流与外施电压的初相角有关。如果0=-u ?α,即2π ?α==u ,在短路瞬间外施电压通过最大值,此时没有非周期分量,短路电流一开始就等于稳态值。如果,2π ?α=-u 即,2π ?α+=u 在短路瞬间外施电压通过零点,此时非周期分量最大,且当时 间t=1时,其值等于稳态短路电流的幅值。假若在后一情况下,忽略非周期分量的衰减,在稳态分量达到最大值时突发短路电流的幅值将为稳态短路电流幅值的两倍。实际上,非周期分量衰减得非常快,短路电流的幅值小于二倍的稳态短路电流值。 将2π ?α=-u 代入上面的公式,得出 u u n n L t r m y L r m y e I e I I //max )1(---+-=π N k m I Z k I % 1002max = 式中:Z K ---变压器的短路阻抗;n n L r m e k /1π-+=---考虑短路电流非周期分量的系数。 对于大容量的变压器,这个系数等于1.7~1.8;对于小容量的变压器,这个系数等于 1.3~1.4. 按上式计算的短路电流是属于最严重的短路情况,即短路发生在外施电压通过零值的瞬间.一般说来这种情况非常少有,因为在外施电压通过最大值或接近最大值时,在短路的导体之间才产生电弧,表明短路开始.所以,实际上突发短路电流的幅值,一般均小于按上式计算出来的值. 以上是三相短路时的等值电路图。实际上单相和两相短路时,其等值电路图也是相似的,下面说明两相短路时的稳态电流值的计算方法: 设变压器的正序、负序和零序阻抗分别为Z1、Z2和Z0,设短路故障发生在B 、C 两相,则U B =U C =-1/2U A , 其等值电路如下: 则I A =0,I B =I C ,I 0=1/3(I A +I B +I C )=0,故计算 电流时不涉及到零序阻抗。所以两相短路电流为:

变压器短路电流的实用计算方法

变压器短路电流的实用计算方法 胡浩,杨斌文,李晓峰 (湖南文理学院,湖南常德415000) 基金项目:湖南省科技厅计划项目(2007FJ3046) 1前言 在电力系统中,对于电气设备的选用、电气接线方案的选择、继电保护装置的设计与整定以及有关设备热稳定与动稳定的校验等工作,都需要对变压器的短路电流进行计算。短路电流的计算,一般采用有名制或标幺值算法,再者是应用曲线法。然而,无论哪种方法应用起来都比较繁琐,尤其是对于企业的技术人员与农村的电工,因缺乏相应的技术资料,又不能从变压器铭牌上查到所有计算短路电流的数据,所以想快速算出短路电流值是相当困难的。笔者在多年的实际工作中,依据变压器的基本原理与基本关系式,总结出快速计算短路电流值的实用方法,以满足现场与工程上的需要。 2变压器低压三相短路时高压侧短路电流的计算 变压器的阻抗电压是在额定频率下,变压器低压绕组短接,高压绕组施加逐步增大的电压,当高压绕组中的电流达到额定电流时,所施加的电压为阻抗电压Ud,一般以高压侧额定电压U1N为基础来表示: Ud%=Ud/U1N×100% (1) 由变压器的等值电路可知,低压侧短路后的阻抗折算到高压侧,与高压侧阻抗相加后得总的阻抗Zd,在阻抗电压Ud时,高压绕组电流为额定值I1N, 即: I1N=Ud/Zd (2) 如果高压绕组的电压为U1,则此时高压绕组的电流I1为: I1=U1/Zd (3) 由式(2)和式(3)可得: I1=U1/Ud*I1N (4) 对于单个变压器,其容量远小于电力系统的容量,故可以认为当变压器低压侧出现短路时,高压侧电压不变,即为U1N,代入式(4)就可得到变压器低压侧短路时,高压侧的短路电流I1d: I1d=U1N/Ud*I1N (5) 将式(1)中的Ud代入式(5)得: I1d=I1N/Ud%×100 (6) 而变压器高压绕组的额定电流I1N可表示为: I1N=SN/√3U1N (7) 式中SN———变压器的额定容量 将式(7)代入式(6)可得: I1d=100SN/√3U1NUd% (8) 由式(6)或式(8)可计算出变压器低压三相短路时,高压侧的短路电流值。 3变压器低压三相短路时低压侧短路电流的计算 由于变压器的励磁电流仅为I1N的1%~3%,忽略励磁电流,则高、低压绕组的电流I1、I2与电压U1、 U2的关系为: I1/I2=U2/U1=U2N/U1N 式中

变压器一二次电流计算

变压器高低压侧电流简便计算方法如何? 1、快速估算法 变压器容量/100,取整数倍,然后*5.5= 高压侧电流值,如果要是*144,就是低压侧电流值!比如说 1000KVA的变压器,/100取整数倍后是10,那么高压侧电流就是 10*5.5=55A,低压侧电流就是10*144=1440A 2 、线性系数法 记住一个常用容量的变压器高低压侧电流值,其它容量的可以进行线性推导 比如说1000KVA的变压器,高压侧电流计算值是57.73,低压侧电流计算值是1443.42,那么记住这个数值,其它容量的可以以此推导,比如说 1600KVA的变压器,高压侧电流就是1600/1000*57.73=92.368A ,低压侧电流就是1600/1000*1443.42=2309.472A 3 、粗略估算法:高压侧电流=变压器容量/20,低压侧电流=变压器容量*2 比如说1000KVA的变压器,高压侧电流=1000/20=50A,低压侧电流=1000*2=2000A ,这种方法过于粗糙,一般都是设计院用来开关元型选型、电 缆选型和校验的时候常用的方法 4 、公式计算法: I=S/1.732/U I--电流,单位A S--变压器容量,单位 kVA U--电压,单位 kV 5 、最大电流计算: 需要考虑过载系数、过载时限、变压器寿命、电动机起动系数、涌流、高 频负荷如电机的高频谐波等综合因素了, 这样计算就非常麻烦了。 只说一个简单 的,过载情况 --------- 在过载的情况下,油变的过载系数是 1.2 ,干式的过载系数 是 1.5 , 也就是通过上述方法计算出变压器的额定电流值之后, 再乘以过载系数, 从而得到最大电流值, 用以高低压侧开关的整定和变压器后备限流熔断器数值的 设计和整定! 综上, 电网系统容量参考 500MVA

变压器短路电流计算法

1、变压器短路电流计算法: 例:变压器容量Se=1250KVA ,变比:U1/U2=10/0.4KV ,短路阻抗电压:Uk=6%,计算低压侧三相短路时高低压侧三相短路电流值。 172.2 I A === 21804 I A === 172.2(3)112030.06I I A U k = == 2 1804 (3)23006730.070.06I I A K A U k ==== 2、无功补偿装置容量计算: 例:变压器容量Se=1000KVA ,变比:U1/U2=10/0.4KV ,短路阻抗电压:Uk=6%,额定功率因数cos ¢=0.8,现电力部门要求用户受电侧的功率因数cos ¢1达到0.95,则无功补偿装置应选择多大容量的电容器? 变压器的额定有功为:*co s 1000*0.8800P e S e K W ?=== 额定无功为:600Q e K V a r === 即当变压器达到额定出力时,将从电网吸收600KVar 的无功功率。 当电力部门要求用户受电侧的功率因数cos ¢1达到0.95, 则有功:*co s 1000*0.95950P e S e K W ?1=== 用户只能从电网吸收无功功率为:312Q e K V a r === 故用户需增加无功补偿电容器的容量为:600-312=288KVar ,故选择的电容器容量为300KVar 2)、空压机If =Kx ?cos U 3P e ∑=0.95* 132*1000/1.732*380*0.75=253A 考虑环境温度可能高于30度,根据表3可知选择3*120mm2+2*70mm2铜芯电缆线。 3)、2X135KW 通风机If =Kx ?cos U 3P e ∑=0.95* 270*1000/1.732*380*0.8=518A

变压器功率计算方法

0.65和0.8的系数来自实用电工速算口诀 已知变压器容量,求其各电压等级侧额定电流 口诀 a : 容量除以电压值,其商乘六除以十。 说明:适用于任何电压等级。 在日常工作中,有些电工只涉及一两种电压等级的变压器额定电流的计算。将以上口诀简化,则可推导出计算各电压等级侧额定电流的口诀: 容量系数相乘求。 已知变压器容量,速算其一、二次保护熔断体(俗称保险丝)的电流值。 口诀 b : 配变高压熔断体,容量电压相比求。 配变低压熔断体,容量乘9除以5。 说明: 正确选用熔断体对变压器的安全运行关系极大。当仅用熔断器作变压器高、低压侧保护时,熔体的正确选用更为重要。这是电工经常碰到和要解决的问题。 已知三相电动机容量,求其额定电流 口诀(c):容量除以千伏数,商乘系数点七六。 说明: (1)口诀适用于任何电压等级的三相电动机额定电流计算。由公式及口诀均可说明容量相同的电压等级不同的电动机的额定电流是不相同的,即电压千伏数不一样,去除以相同的容量,所得“商数”显然不相同,不相同的商数去乘相同的系数0.76,所得的电流值也不相同。若把以上口诀叫做通用口诀,则可推导出计算220、380、660、3.6kV电压等级电动机的额定电流专用计算口诀,用专用计算口诀计算某台三相电动机额定电流时,容量千瓦与电流安培关系直接倍数化,省去了容量除以千伏数,商数再乘系数0.76。 三相二百二电机,千瓦三点五安培。 常用三百八电机,一个千瓦两安培。 低压六百六电机,千瓦一点二安培。 高压三千伏电机,四个千瓦一安培。 高压六千伏电机,八个千瓦一安培。 (2)口诀c 使用时,容量单位为kW,电压单位为kV,电流单位为A,此点一定要注意。 (3)口诀c 中系数0.76是考虑电动机功率因数和效率等计算而得的综合值。功率因数为0.85,效率不0.9,此两个数值比较适用于几十千瓦以上的电动机,对常用的10kW以下电动机则显得大些。这就得使用口诀c计算出的电动机额定电流与电动机铭牌上标注的数值有误差,此误差对10kW以下电动机按额定电流先开关、接触器、导线等影响很小。 (4)运用口诀计算技巧。用口诀计算常用380V电动机额定电流时,先用电动机配接电源电压0.38kV数去除0.76、商数2去乘容量(kW)数。若遇容量较大的6kV电动机,容量kW数又恰是6kV数的倍数,则容量除以千伏数,商数乘以0.76系数。 (5)误差。由口诀c 中系数0.76是取电动机功率因数为0.85、效率为0.9而算得,这样计算不同功率因数、效率的电动机额定电流就存在误差。由口诀c 推

10KV高压进线电流计算

10(6)/0.4kV三相变压器一,二次额定电流的计算口诀 容量算电流,系数相乘求。 六千零点一,十千点零六。 低压流好算,容量一倍半。 高压侧电流=1250*0.06=75A 问:1250KVA变压器高压进线端我计算的电流为75A,选用YJV22-3*35电缆,该电缆载流量6/10KV 为145A,应该说远远大于75A的计算电流,可是设计院选型为YJV22-3*95电缆,该电缆载流量为6/10KV 265A。我不知道我怎么错了?电缆计算除了应该考虑流量外还应该考虑什么呢?请教高手帮忙释疑!谢谢! 答:(1)电缆的截面选择需要考虑的因素很多,不但要考虑正常运行时导线的载流能力,还要考虑在短路时导线的承受能力,即抗短路电流冲击的能力; 不能在变压器或其它设备发生短路故障时,电缆通过大电流的冲击,因电缆的“热稳定性”不够而出现电缆故障,影响恢复供电; 故一般电缆是“按额定电流来选择,按短路电流来校验”。 (2)我觉得设计院之所以要选择载流量大一些的电缆,是考虑到变压器在空载时会产生很大的激磁涌流,这对变压器的绕组等电流回路都会带来影响的,另外你处是不是有好几台变压器并列工作,有可能在改变系统运行方式是需要这台变压器担负起原来有其他变压器担负的负荷,相当于一个备用变压器来用,所以才会把变压器的高压进线选的大一些啊。 (3)高压电缆还有短路电流热稳定校验的问题,所以应当根据变压器高压侧短路电流进行热稳定计算出此处要求的最小电缆截面是多少,如果大于25截面,就应当根据热稳定要求修正。 (4)按回路的电压等级和电流来选择电线,电线的耐压水平和额定载流量应当满足要求; 按回路的短路电流热稳定来校验电线的截面能否满足要求,用回路短路电流的动稳定来校验三相电线之间的距离和固定方式能否满足要求。 变压器:高压电缆: 315KVA~500KVA YJV -8.7/15kV-3*50 630KVA~1000KVA YJV -8.7/15kV-3*70 1250KVA~1600KVA YJV -8.7/15kV-3*95

10KV变压器高低压侧电流计算

10KV变压器高低压侧电流计算 三相变压器额定电流的计算公式为: Ⅰ=变压器额定容量÷(1.732 ×变压器额定电压) 1、快速估算法 变压器容量/100,取整数倍,然后*5.5=高压侧电流值,如果要是*144,就是低压侧电流值! 比如说1000KVA的变压器/100取整数倍后是10,那么高压侧电流就是10*5.5=55A,低压侧电流就是10*144=1440A 2、线性系数法 记住一个常用容量的变压器高低压侧电流值,其它容量的可以进行线性推导 比如说1000KVA的变压器,高压侧电流计算值是57.73,低压侧电流计算值是1443.42,那么记住这个数值,其它容量的可以以此推导,比如说1600KVA的变压器,高压侧电流就是1600/1000*57.73=92.368A,低压侧电流就是1600/1000*1443.42=2309.472A 3、粗略估算法 高压侧电流=变压器容量/20,低压侧电流=变压器容量*2 比如说1000KVA的变压器,高压侧电流=1000/20=50A,低压侧电

流 =1000*2=2000A,这种方法过于粗糙,一般都是设计院用来开关元型选型、电缆选型和校验的时候常用的方法 4、公式计算法 I=S/1.732/U I--电流,单位A S--变压器容量,单位kVA U--电压,单位kV 5、最大电流计算 需要考虑过载系数、过载时限、变压器寿命、电动机起动系数、涌流、高频负荷如电机的高频谐波等综合因素了,这样计算就非常麻烦了。 只说一个简单的,在过载的情况下,油变的过载系数是1.2,干式的过载系数是1.5,也就是通过上述方法计算出变压器的额定电流值之后,再乘以过载系数,从而得到最大电流值,用以高低压侧开关的整定和变压器后备限流熔断器数值的设计和整定! 值得注意一点:10 KV 变压器的输出电压为 400 V ,不是 380 V ,这是变压器的标准设计

变压器短路容量-短路电流计算公式-短路冲击电流的计算

变压器短路容量-短路电流计算公式-短路冲击电流的计算

变压器短路容量-短路电流计算公式-短路冲击电流的计算发布者:admin 发布时间:2009-3-23 阅读:513次供电网络中发生短路时,很大的短路电流会使电器设备过热或受电动力作用而遭到损坏,同时使网络内的电压大大降低,因而破坏了网络内用电设备的正常工作。为了消除或减轻短路的后果,就需要计算短路电流,以正确地选择电器设备、设计继电保护和选用限制短路电流的元件。 二.计算条件 1.假设系统有无限大的容量.用户处短路后,系统母线电压能维持不变.即计算阻抗比系统阻抗要大得多。 具体规定: 对于3~35KV级电网中短路电流的计算,可以认为110KV及以上的系统的容量为无限。只要计算35KV及以下网络元件的阻抗。 2.在计算高压电器中的短路电流时,只需考虑发电机、变压器、电抗器的电抗,而忽略其电阻;对于架空线和电缆,只有当其电阻大于电抗

1/3时才需计入电阻,一般也只计电抗而忽略电阻。 3. 短路电流计算公式或计算图表,都以三相短路为计算条件。因为单相短路或二相短路时的短路电流都小于三相短路电流。能够分断三相短路电流的电器,一定能够分断单相短路电流或二相短路电流。 三.简化计算法 即使设定了一些假设条件,要正确计算短路电流还是十分困难,对于一般用户也没有必要。一些设计手册提供了简化计算的图表.省去了计算的麻烦.用起来比较方便.但要是手边一时没有设计手册怎么办?下面介绍一种“口诀式”的计算方法,只要记牢7句口诀,就可掌握短路电流计算方法。 在介绍简化计算法之前必须先了解一些基本概念。

1.主要参数 Sd三相短路容量(MV A)简称短路容量校核开关分断容量 Id三相短路电流周期分量有效值(KA)简称短路电流校核开关分断电流和热稳定 IC三相短路第一周期全电流有效值(KA) 简称冲击电流有效值校核动稳定 ic三相短路第一周期全电流峰值(KA) 简称冲击电流峰值校核动稳定 x电抗(W) 其中系统短路容量Sd和计算点电抗x 是关键. 2.标么值 计算时选定一个基准容量(Sjz)和基准电压

短路电流计算计算方法.docx

短路电流计算 > 计算方法 短路电流计算 > 计算方法短路电流计算方法一、高压短 路电流计算(标幺值法) 1、基准值 选择功率、电压、电流电抗的基准值分别为、、、时,其对应关系为: 为了便于计算通常选为线路各级平均电压;基准容量 通常选为 100MVA 。由基准值确定的标幺值分别如下: 式中各量右上标的“ * “用来表示标幺值右,下标的“ d”表示在基准值下的标幺值。 2、元件的标幺值计算 (1)电源系统电抗标幺值 —电源母线的短路容量 (2)变压器的电抗标幺值 由于变压器绕组电阻比电抗小得多,高压短路计算时 忽略变压器的绕组电阻,以变压器的阻抗电压百分数(% )

作为变压器的额定电抗,故变压器的电抗标幺值为: —变压器的额定容量,MVA (3)限流电抗器的电抗标幺值 % —电抗器的额定百分电抗—电抗器额定电压, kV —电抗器的额定电流, A (4)输电线路的电抗标幺值 已知线路电抗,当=时 —输电线路单位长度电抗值,Ω/km 3、短路电流计算 计算短路电流周期分量标幺值为 —计算回路的总标幺电抗值 —电源电压标幺值,在=时, =1 = 短路电流周期分量实际值为 = 对于电阻较小,电抗较大(<1/3 )的高压供电系统,三相短路电流冲击值=2.55三相短路电流最大有效值

=1.52 常用基准值 (=100MVA) 电网额定电压(kV ) 3.0 6.0 10.0 35.0 60.0 110 基准电压( kV ) 3.15 6.3 10.5 37 63 115 基准电流( kA ) 18.3 9.16

5.5 1.56 0.92 0.502 二、低压短路电流计算(有名值法) 1. 三相短路电流 2.两相短路电流 3.三相短路电流和两相短路电流之间的换算关系 4.总电阻和总电抗 5.系统电抗 6.高压电缆的阻抗 7.变压器的阻抗

一、二次额定电流的计算

10(6)/0.4KV三相变压器 一、二次额定电流的计算 一、口诀 二、说明 通常我们说变压器多大,是指额定容量而言。如何通过容量很快算出变压器一、二次额定电流?这组口诀给了回答。只要用变压器容量数(千伏安数)乘以系数,便可得出额定电流。 “6千零点1,10千点零6”是指一次电压为6KV的三相变压器,它的一次额定电流为容量数×0.1,即千伏安数×0.1。一次电压为10KV的三相变压器,一次额定电流为容量数×0.06,即千伏安数×0.06。以上两种变压器的二次侧(低压侧)额定电流皆为千伏安数×1.5。这就是“低压流好算,容量一倍半”的意思。 例1用口诀计算,10/0.4KV,100kVA三相变压器一、二次额定电流是多少? 解一次 100×0.06=6A 二次 100×1.5=150A 例2用口诀计算,6/0.4KV,50KVA三相变压器一、二次额定电流是什么? 解一次 50×0.1=5A 二次 50×1.5=75A 第四节 380/220V常见负荷电流的计算方法(之一) 一、口诀 二、说明 低压380/220V三相四线制系统,是我国各地目前广泛采用的供电系统。各类低压用电器铭牌一般都告诉容量,如向千瓦电动机,多少瓦的灯泡,多少千伏安小型变压器,多少千瓦电容器等等。如何根据容量大小,很快算出负荷电流,以配备适当的保险丝、开关、导线等,是电工最常遇到的计算问题。这一节先介绍三相负荷的计算。 (1)380V三相电动机是最常见的低压负荷之一,它的功率因数一般为0.8左右,它的额定电流约为额定容量的2倍。如10KW电动机,其额电流约为20A。

(2)对于接到380V电压上,接成三相的电压器(容量为千乏),电热器(千瓦),小型变压器(千伏安)一类负荷,它们的电流大小为容量的1.5倍。如150KW 移相电容器(接成380V三相),电流为150×1.5=225A。6KW加热器电流为6×1.5=9A。1KVA小型变压器电流为1×1.5=1.5A。

变压器二次侧突然短路

电力电子课程设计 课题名称:单相变压器二次侧突然短路仿真 分析 院系: 姓名: 学号: 班级:

一. 概述 (1) 1.1. 背景介绍 (1) 1.2. 设计目的 (1) 1.3. 设计要求 (2) 1.3.1. 设计所用方法 (2) 1.3.2. 设计所得结果 (3) 二. 单相变压器短路仿真设计内容 (3) 2.1. 单相变压器突发短路的过程 (3) 2.1.1. 仿真电路 (6) 2.1.2. 模块参数设置 (6) 2.1.3. 仿真结果及分析 (8) 2.2. 当负载为纯电阻时的状况 (10) 2.2.1. 仿真电路 (10) 2.2.2. 模块参数设置 (10) 2.2.3. 仿真结果及分析 (11) 2.3. 电路短路保护的仿真 (12) 2.3.1. 仿真电路 (13) 2.3.2. 模块参数设置: (14) 2.3.3. 仿真结果及分析: (14) 三. 总结 (16) 3.1. 遇到的问题及解决 (16) 3.2. 心得体会 (18) 四. 参考文献 (20)

一. 概述 1.1.背景介绍 当今世界,无论是发达国家还是发展中国家,都不同程度受到变压器安全的困扰。今年夏天,全国先后有19个城市拉闸限电。在国外,美国8月14日的停电事件导致10万多人陷入黑暗,一天停电损失高达300亿美元。随后,英国伦敦也发生了大面积停电事件,数万人受到影响。持续不断的停电事件既影响了人们的日常生活也降低了人们的生活质量。 变压器是电网中的重要设备之一。虽配有避雷器、差动、接地等多重保护,但由于内部结构复杂、电场及热场不均等诸多因素,事故率仍然很高。中国在上个世纪70年代的10年中,110KV及以上变压器的年平均绝缘事故率约为17.66台次,恶性事故重大损失也时有发生。 变压器故障通常是伴随着电弧和放电以及剧烈燃烧而发生,随后电力设备即发生短路或其他故障,轻则机器停转,照明设备熄灭,重则引发火灾造成人员伤亡。因此确保变压器安全稳定运行受到了全世界的广泛关注。 短路问题是电力技术方面的基本问题之一。在发电厂,变电站以及整个电力系统的设计和运行工作中,都必须事先经行短路计算和仿真,以此作为合理选择电气接线,选用有足够热稳定度和动稳定度的电气设备及载流导体,确定限制短路电流的措施,在电力系统中合理的配置各种继电保护并整定其参数等重要依据。为此,掌握短路发生以后的物理过程以及对短路过程的仿真分析是很有必要的。 1.2.设计目的 (1)熟悉变压器的原理。 (2)巩固,加深,和扩大在本课程和先修课程学到的知识。 (3)将变压器短路的过程用仿真的形式展现,进一步加深对电力系统故障的理解。 (3)通过课程设计,提高对短路后变压器电流的暂态变化的认知,加深对短路

kV变配电所短路电流的计算精选文档

k V变配电所短路电流的计算精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

10kV变配电所短路电流的计算(二) 发布日期:2008-11-27 14:00:59?作者:杨蓉师科峰程开嘉来源:《电气&智能建筑》杂 ...浏览次数:0文字大小:【大】【中】【小】 1 变压器低压侧出线口的短路电流计算 经计算得知,各型变压器容量在315kVA以上,其电阻值仅占总阻抗的4%~5%左右,用变压器电抗代替总阻抗计算误差在5%内,这样略去电阻对短路电流的影响可简化短路电流的计算。 (1)变压器电抗的计算 式(1)中:Sbe—变压器额定容量(MVA); Sj—变压器基准容量,取100MVA; Ud%—变压器短路阻抗百分值,可从相应容量的变压器产品样本及设计手册查得。一般常用变压器(油浸型、干式型)电抗计算 例:已知干式变压器额定容量为500kVA,Ud%=40,标准容量Sj=100MVA,计算变压器的电抗值。用式(1)计算: (2)用基准电计算,取Sj=100MVA,Uj=0.4则 (3)系统短路容量取35MVA,10kV出线开关遮断容量的短路电流计算: 例:已知系统短路容量为350MVA的电抗值为0.286,电缆线路为1km的电抗值为0.068,变压

器额定容量500kVA的电抗为8.0,Ij=144.5kA。用式(2)计算: 各类型变压器的低压侧出线口短路电流计算见表3~表8。 2 高压电器及电缆的热稳定校验 高压电器及电缆应能承受在短路电流持续时间内短路电流的热效应而不致损坏,则认为是热稳定,且应满足《低压配电设计规范》第4.2.2条规定的热稳定校验公式进行校验。 (1)当短路持续时间大于5s时,绝缘导体的热稳定应按式(3)进行校验 式(3)中,S—绝缘导体的线芯截面(mm2); Id—短路电流周期分有效值即均方根值(A); t—在已达到允许最高持续工作温度的绝缘导体内短路电流持续时间(s); K—热稳定系数. 短路电流持续时间t与断路器的断开速度有关(见表9),当断路器的全断开时间小于0.08s 时为高速,0.08~0.12s为中速,大于0.12s为低速,当主保护为短路瞬动无延时保护,其短路电流的持续时间t可由表10选定,当有延时保护装置时,则应为表中数据加延迟时间。 热稳定系数K与电缆的绝缘方式有关,并可由表11表选定。 (2)热稳定短路电流计算

10kV变压器低压侧短路电流计算及低压配电柜选型

10kV变压器低压侧短路电流计算及低压配电柜选型 摘要:随着中国经济的快速发展,电力工业为经济发展提供了可靠的物质保障。在国内增加用电量,如何确保电力供应的安全性和可靠性是一个值得关注的重要 课题。本文分析了10kV配电盘中高低压开关的特点,并对确保10kV配电柜中高 低压开关的安全性提出了一些建议。希望它可以作为电力工业发展和中国电力工 业发展的指南。 关键词:10kV配电房;高低压开关;选择;保护 引言 配电房是电力系统的核心环节之一,对维护电力系统的正常运转具有重要的 影响。配电房内置有许多种类的器械设备,需要做好相互之间的配合,才能保证 电力系统的稳定性。在10kV配电房中,高低压开关之间保护配合不合理将会为 电力系统的运转添加很多麻烦,这严重影响了电力系统的正常运转。为维护电力 系统的稳定性,国家逐渐完善了城乡电网,规范了10kV配电房内的相关设备, 大大方便了电力系统的管理。 一、高低压配电设备设计范围 1.1本工程新建拐排二站公用箱式变压器1台;2、由10kV沙田F3泗盛线三 盛支线N1公用电缆分接箱敷设电缆 ZRC-YJV22-8.7/15kV -3×120mm2/285m(新敷)至新建拐排二站公用箱式变压器; 1.2新增线路部分 1)高压线路部分: 新敷设10kV电力电缆ZRC-YJV22-8.7/15kV-3×120共285米;其中235米沿原 有电缆沟敷设,50米沿新顶4孔管敷设;新安装10kV户内型电缆终端头共2套,其中3×120共 2套。 2)低压线路部分: 新敷设1kV电力电缆ZRC-YJV220.6/1kV-4×240共197米;其中197米沿新建 电缆埋管敷设;新安装1kV电缆终端头共2套,其中4×240共 2套; 1.3新增高压设备部分 新安装全绝缘SF6负荷开关柜2台;新安装800kVA终端型预装式箱变(配干变)1台; 1.4新增低压配电部分 新装户内GCK-800低压柜3面,其中进线柜1面,出线柜1面,无功补偿柜 1面;无功补偿按配变容量20%补偿,即160kVar,采用动态无功补偿装置; 1.5新增电缆通道及设备基础部分 新建800kVA预装式箱变基础1座(两侧井口),箱变镀锌围栏1套; 新建2层2列行车排管71米;新建1层2列行车排管117米;新建电缆排管工作井6座,其中: a)2层2列排管行人直线井3座; b)1层2列排管行车人转角井1座; c)1层2列排管行车工作井1座; d)1层2列排管行车转角井1座; 1.6新增配电房部分 新建CSG-10B-YB-M13-02预装箱式变电站1间,面积为2.3米×3.3米(长×

相关文档
相关文档 最新文档