文档库 最新最全的文档下载
当前位置:文档库 › 空间几何体的三视图经典例题

空间几何体的三视图经典例题

空间几何体的三视图经典例题
空间几何体的三视图经典例题

一、教学目标

1. 巩固空间几何体的结构及其三视图和直观图

二、上课内容

1、回顾上节课内容

2、空间几何体的结构及其三视图和直观图知识点回顾

3、经典例题讲解

4、课堂练习

三、课后作业

见课后练习

一、上节课知识点回顾

1.奇偶性

1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。

如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。

2)利用定义判断函数奇偶性的格式步骤:

○1首先确定函数的定义域,并判断其定义域是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:

若f(-x) = f(x) 或f(-x)-f(x) = 0,则f(x)是偶函数;若f(-x) =-f(x) 或f(-x)+f(x) = 0,则f(x)是奇函数

3)简单性质:

①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;

2.单调性

1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D 内的任意两个自变量x1,x2,当x1f(x2)),那么就说f(x)在区间D上是增函数(减函数);

2)如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间。

3)设复合函数y= f[g(x)],其中u=g(x) , A是y= f[g(x)]定义域的某个区间,B是映射

g : x→u=g(x) 的象集:

①若u=g(x) 在A上是增(或减)函数,y= f(u)在B上也是增(或减)函数,则函数y= f[g(x)]在A上是增函数;

②若u=g(x)在A上是增(或减)函数,而y=f(u)在B上是减(或增)函数,则函数y= f[g(x)]在A上是减函数。

4)判断函数单调性的方法步骤

利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:

○1任取x1,x2∈D,且x1

○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(即指出函数f(x)在给定的区间D上的单调性)。

3.最值

1)定义:

最大值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≤M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。

最小值:一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:①对于任意的x∈I,都有f(x)≥M;②存在x0∈I,使得f(x0) = M。那么,称M是函数y=f(x)的最大值。

2)利用函数单调性的判断函数的最大(小)值的方法:

○1利用二次函数的性质(配方法)求函数的最大(小)值;○2利用图象求函数的最大(小)值;

○3利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

二、空间几何体的机构及其三视图和直观图知识点回顾

1、中心投影与平行投影:

投影是光线通过物体,向选定的面投射,并在该在由得到图形的方法;平行投影的投影

线是互相平行的,中心投影的投影线相交于一点.

2、三视图

三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。

它具体包括:

(1)正视图:物体前后方向投影所得到的投影图;

(2)侧视图:物体左右方向投影所得到的投影图;

(3)俯视图:物体上下方向投影所得到的投影图;

三视图的排列规则:主在前,俯在下,左在右

画三视图的原则:主、左一样,主、俯一样,俯、左一样。

3、直观图:斜二测画法

①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的OX,OY,建立直角坐标系;

②画出斜坐标系,在画直观图的纸上(平面上)画出对应的O’X’,O’Y’,使

'''

=450(或1350),它们确定的平面表示水平平面;

X OY

③画对应图形,在已知图形平行于X轴的线段,在直观图中画成平行于X‘轴,且长度保持不变;在已知图形平行于Y轴的线段,在直观图中画成平行于Y‘轴,且长度变为原来的一半;

④擦去辅助线,图画好后,要擦去X轴、Y轴及为画图添加的辅助线(虚线)。

4、空间几何体的表面积

(1).棱柱、棱锥、棱台的表面积、侧面积

棱柱、棱锥、棱台是由多个平面图形围成的多面体,它们的表面积就是,也就是;它们的侧面积就是 .

(2).圆柱、圆锥、圆台的表面积、侧面积

圆柱的侧面展开图是,长是圆柱底面圆的,宽是圆柱的设圆柱的底面半径为r,母线长为l,则

S

圆柱侧= S

圆柱表

=

圆锥的侧面展开图为,其半径是圆锥的,弧长等于,

设为r圆锥底面半径,l为母线长,则

侧面展开图扇形中心角为,

S

圆锥侧= ,S

圆锥表

=

圆台的侧面展开图是,其内弧长等于,外弧长等于,设圆台的上底面半径为r, 下底面半径为R, 母线长为l, 则

侧面展开图扇环中心角为,

S

圆台侧= ,S

圆台表

=

(3).球的表面积

如果球的半径为R,那么它的表面积S=

5、空间几何体的体积

1.柱体的体积公式V柱体=

2.锥体的体积公式V锥体=

3.台体的体积公式V台体=

4. 球的体积公式V球=

三、经典例题讲解

(一)根据三视图求面积、体积

三视图是观测者从不同位置观察同一个几何体,画出的空间几何体的图形。它具体包括:

(1)正视图:物体前后方向投影所得到的投影图;

(2)侧视图:物体左右方向投影所得到的投影图;

(3)俯视图:物体上下方向投影所得到的投影图;

三视图的排列规则:主在前,俯在下,左在右

例1: 如图,一个空间几何体的正视图、侧视图和俯视图都是全等的等腰直角三角形,直角边长为1,求这个几何体的表面积和体积

.

俯视图

侧视图正视图

变式训练:

一空间几何体的三视图如图所示,则该几何体的体积为( ).

A.2π+

B.4π+

C.2π

D.4π+

(二)侧面展开、距离最短问题

方法:利用平面上两点之间线段最短的原则去求解

例2:在棱长为4的正方体ABCD-A 1B 1C 1D 1木块上,有一只蚂蚁从顶点A 沿着表面爬行到顶点C 1,求蚂蚁爬行的最短距离?

变式训练:

已知正方体ABCD —A 1B 1C 1D 1的棱长为1,P 是AA 1的中点,E 是BB 1

上一点,如

俯视图

侧视图

正视图

2

2

22

2

图2

俯视图

侧视图

正视图

4图所示,求PE+EC的最小值.

(三)几何体的外接球、内切球

方法:外接球的直径等于几何体各顶点间的最大距离

例3:(1)若棱长为3的正方体的顶点都在同一球面上,则该球的表面积为(2)若一个球内切于棱长为3的正方体,则该球的体积为

变式训练:

1.长方体ABCD-A1B1C1D1中,AB=3,AD=4 ,AA1=5,则其外接球的体积为.

四、课堂练习

1、如图2为一个几何体的三视图,正视图和侧视图均为矩形,

俯视图为正三角形,尺寸如图,则该几何体的全面积为( )

A.

6+B.

24+C.143D.

32+

C 1

B 1

A 1

2、已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),那么可得这个几何体的体积是( ) (A )31

cm3

(B )32

cm3

(C )34

cm3

(D )

38

cm3

3、如右图,某几何体的正视图与侧视图都是边长为1的正方形,且体积为1

2

.则该几何体的俯视图可以是( )

、一个空间几何体的三视图及部分数据如图所示,则这个几何体的表面积是

A .30

B .40

C .60

D .80

5、如图,三棱柱的侧棱长为2,底面是边长为1的正三角形,1111AA A B C 面, 正视图是长为2,宽为1的矩形,则该三棱柱的侧视图(或

视图)的面积为( )

左视

俯视(第2题图)

D

A.3B.3

2C.1D

6、如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的主视图是()

7、充满气的车轮内胎可由下面某个图形绕对称轴旋转而成,这个图形是()

8、下图所示的四个几何体,其中判断正确的是()

A.(1)不是棱柱B.(2)是棱柱

C.(3)是圆台D.(4)是棱锥

9、下列几何体各自的三视图中,有且仅有两个视图相同的是()

A.①②B.①③

C.①④D.②④

10.一梯形的直观图是一个如图所示的等腰梯形,且该梯形面积为2,则原梯形的面积为()

A.2 B. 2

C.2 2 D.4

11、一正方体内接于一个球,经过球心作一个截面,则截面的可能图形为________(只填写序号).

12、有一粒正方体的骰子每一面有一个英文字母.下图是从3种不同角度看同一粒骰子的情况,请问H反面的字母是________.

13、有三个球,第一个球内切于正方体,第二个球与这个正方体的各条棱相切,第三个球过这个正方体的各个顶点.求这三个球的半径之比.

五、课后练习

1、如图是一个几何体的三视图,则此三视图所描述几何体的

表面积为()

A.π)3

(+B.20π

12

4

C .π)3420(+

D .28π

2、正三棱柱111ABC A B C -内接于半径为2的球,若,A B 两点的球面距离为π,则正三棱柱的体积为 .

3、已知四棱锥P -ABCD 的底面为直角梯形,AB ∥DC ,∠DAB =90°,P A ⊥底面ABCD ,且P A =AD =DC =2AB =4.

(1)根据已经给出的此四棱锥的正视图,画出其俯视图和侧视图;

(2)证明:平面P AD ⊥平面PCD .

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

立体几何题经典例题

D E A F B C O O 1 M D C A S 15.如图,在正三棱柱ABC —A 1B 1C 1中,已知AB =1,D 在棱BB 1上,且BD =1,则AD 与平面 AA 1C 1C 所成角的正弦值为 . 6.已知正三棱柱111C B A ABC -的棱长为2,底面边长为1,M 是BC 的中点. (1)在直线1CC 上求一点N ,使1AB MN ⊥; (2)当1AB MN ⊥时,求点1A 到平面AMN 的距离. (3)求出1AB 与侧面11A ACC 所成的角θ的正弦值. 7. 如图所示,AF 、DE 分别是1O O ⊙、 ⊙的直径.AD 与两圆所在的平面均垂直,8=AD .BC 是O ⊙的直径,AD OE AC AB //,6==. (1)求二面角F AD B --的大小; (2)求直线BD 与EF 所成角的余弦值. 8.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直.点M 在AC 上移动,点N 在BF 上移动,若 a BN CM ==)20(<

18.(本小题满分12分) 已知矩形ABCD 与正三角形AED 所在的平面 互相垂直, M 、N 分别为棱BE 、AD 的中点, 1=AB ,2=AD , (1)证明:直线//AM 平面NEC ; (2)求二面角D CE N --的大小. 19.(本小题满分12分) 如图,在四棱锥ABCD P -中,底面ABCD 是直角梯形, 2 π = ∠=∠ABC DAB ,且22===AD BC AB , 侧面 ⊥PAB 底面ABCD ,PAB ?是等边三角形. (1)求证:PC BD ⊥; (2)求二面角D PC B --的大小. 15、(北京市东城区2008年高三综合练习一)如图,在直三 棱柱ABC —A 1B 1C 1中,∠BAC =90°,AB =BB 1,直线B 1C 与平面ABC 成30°角. (I )求证:平面B 1AC ⊥平面ABB 1A 1; (II )求直线A 1C 与平面B 1AC 所成角的正弦值; (III )求二面角B —B 1C —A 的大小. 52、(河南省濮阳市2008年高三摸底考试)如图,在多面体ABCDE 中,AE ⊥面ABC ,BD ∥AE ,且AC =AB =BC =BD =2,AE =1,F 为CD 中点. (1)求证:EF ⊥面BCD ; (2)求面CDE 与面ABDE 所成的二面角的余弦值. A B C D M N 第18题图

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

高考立体几何大题经典例题.

N M P C B A <一 >常用结论 1.证明直线与直线的平行的思考途径:(1转化为判定共面二直线无交点; (2转化为二直 线同与第三条直线平行; (3转化为线面平行; (4转化为线面垂直; (5转化为面面平行 . 2.证明直线与平面的平行的思考途径:(1转化为直线与平面无公共点; (2转化为线线平 行; (3转化为面面平行 . 3. 证明平面与平面平行的思考途径:(1 转化为判定二平面无公共点; (2 转化为线面平行; (3转化为线面垂直 . 4.证明直线与直线的垂直的思考途径:(1转化为相交垂直; (2转化为线面垂直; (3转 化为线与另一线的射影垂直; (4转化为线与形成射影的斜线垂直 . 5.证明直线与平面垂直的思考途径:(1转化为该直线与平面内任一直线垂直; (2转化为该直线

与平面内相交二直线垂直; (3转化为该直线与平面的一条垂线平行; (4转化为该直线垂直于另一个平行平面; (5转化为该直线与两个垂直平面的交线垂直 . 6.证明平面与平面的垂直的思考途径:(1转化为判断二面角是直二面角; (2转化为线面垂直 . 3、如图,在正方体 1111ABCD A B C D -中, E 是 1AA 的中点, 求证: 1//AC 平面BDE 。 5、已知正方体 1111ABCD A B C D -, O 是底 ABCD 对角线的交点 . 求证:(1 C1O ∥面 11AB D ; (21 AC ⊥面 11AB D . 9、如图 P 是ABC ?所在平面外一点, , PA PB CB =⊥平面 PAB , M 是 PC 的中点, N 是 AB 上的点, 3AN NB = A D 1 C B D C D D B A C 1

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

专题一立体几何经典练习题

2 专题一 立体几何 班级: _____ 姓名: _____ 学号: _____ 一、选择题(4 分×10=40 分) 1.直线 l , l 和 α , l // l , a 与 l 平行,则 a 与 l 的关系是 1 2 1 2 1 2 A .平行 B .相交 C .垂直 D .以上都可能 2.若线段 AB 的长等于它在平面内射影长的 3 倍,则这条斜线与平面所成角的余弦值为 A . 1 3 B . 2 2 2 2 C . D . 3 3 3.在正方体 ABCD-A 1B 1C 1D 1 中,B 1C 与平面 DD 1B 1B 所成的角的大小为 A .15 B . 30 C . 45 D . 60 4.有下列命题:①空间四点共面,则其中必有三点共线;②空间四点不共面,则其中 任何三点不共线;③空间四点中有三点共线,则此四点共面;④空间四点中任何三点 不共线,则此四点不共面.其中正确的命题是 A .②③ B .①②③ C .①③ D .②③④ 5.有一山坡,倾斜度为 300,若在斜坡平面上沿着一条与斜坡底线成 450 角的直线前进 1 公里,则升高了 A . 250 2 米 B . 250 3 米 C . 250 6 米 D . 500 米 6.已知三条直线 a , b , l 及平面 α , β ,则下列命题中正确的是 A . 若b ? α , a // b , 则a // α B .若 a ⊥ α , b ⊥ α ,则 a // b C . 若 a ? α ,α β = b ,则 a // b D .若 a ? α , b ? α , l ⊥ a , l ⊥ b , 则 l ⊥ α 7.已知 P 是△EFG 所在平面外一点,且 PE=PG ,则点 P 在平面 EFG 内的射影一定在△EFG 的 A .∠FEG 的平分线上 B .边 EG 的垂直平分线上 C .边 EG 的中线上 D .边 EG 的高上 8.若一正四面体的体积是18 2 cm 3,则该四面体的棱长是 A . 6cm B . 6 3 cm C .12cm D . 3 3 cm 9.P 是△ABC 所在平面α 外一点,PA ,PB ,PC 与α 所成的角都相等,且 PA ⊥BC ,则 △ABC 是 A .等边三角形 B .直角三角形 C .等腰三角形 D .等腰直角三角形 3 10.如图,在多面体 ABCDEF 中,已知 ABCD 是边长为 3 的正方形,EF//AB ,EF= ,EF 2 与面 AC 的距离为 2,则该多面体的体积为 E F A .2 B .4 C . 2 2 D . 4 2 D C 二、填空题(4 分×4=16 分) A B 11.空间四边形 ABCD 中,AB=6,CD=8,E 、F 、G 分别是 BD ,AC ,BC 的中点,若异面直

立体几何经典题型汇总

1.平面 平面的基本性质:掌握三个公理及推论,会说明共点、共线、共面问题。 (1).证明点共线的问题,一般转化为证明这些点是某两个平面的公共点(依据:由点在线上,线在面内 ,推出点在面内), 这样可根据公理2证明这些点都在这两个平面的公共直线上。 (2).证明共点问题,一般是先证明两条直线交于一点,再证明这点在第三条直线上,而这一点是两个平面的公共点,这第三条直线是这两个平面的交线。 (3).证共面问题一般先根据一部分条件确定一个平面,然后再证明其余的也在这个平面内,或者用同一法证明两平面重合 2. 空间直线. (1). 空间直线位置关系三种:相交、平行、异面. 相交直线:共面有且仅有一个公共点;平行直线:共面没有公共点;异面直线:不同在任一平面内,无公共点 [注]:①两条异面直线在同一平面内射影一定是相交的两条直线.(×)(也可能两条直线平行,也可能是点和直线等) ②直线在平面外,指的位置关系是平行或相交 ③若直线a 、b 异面,a 平行于平面α,b 与α的关系是相交、平行、在平面α内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×)(射影不一定只有直线,也可以是其他图形) ⑥在同一平面内的射影长相等,则斜线长相等.(×)(并非是从平面外一点.. 向这个平面所引的垂线段和斜线段) ⑦b a ,是夹在两平行平面间的线段,若b a =,则b a ,的位置关系为相交或平行或异面. ⑧异面直线判定定理:过平面外一点与平面内一点的直线和平面内不经过该点的直线是异面直线.(不在 任何一个平面内的两条直线) (2). 平行公理:平行于同一条直线的两条直线互相平行. 等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等(如右图). (直线与直线所成角]90,0[??∈θ) (向量与向量所成角])180,0[ ∈θ 推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成锐角(或直角)相等. (3). 两异面直线的距离:公垂线段的长度. 空间两条直线垂直的情况:相交(共面)垂直和异面垂直. [注]:21,l l 是异面直线,则过21,l l 外一点P ,过点P 且与21,l l 都平行平面有一个或没有,但与21,l l 距离相等的点在同一平面内. (1L 或2L 在这个做出的平面内不能叫1L 与2L 平行的平面)

立体几何典型例题精选[含答案解析]

F E D C B A ; 立体几何专题复习 热点一:直线与平面所成的角 例1.(2014,广二模理 18) 如图,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥ 平面ABCD , 1EF =,,90FB FC BFC ? =∠=,3AE = . (1)求证:AB ⊥平面BCF ; (2)求直线AE 与平面BDE 所成角的正切值. · ! 变式1:(2013湖北8校联考)如左图,四边形ABCD 中,E 是BC 的中点,2,1,5,DB DC BC === 2.AB AD ==将左图沿直线BD 折起,使得二面角A BD C --为60,?如右图. (1)求证:AE ⊥平面;BDC (2)求直线AC 与平面ABD 所成角的余弦值.

] 变式2:[2014·福建卷] 在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD沿BD折起,使得平面ABD⊥平面BCD,如图1-5所示. (1)求证:AB⊥CD; (2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.

热点二:二面角 例2.[2014·广东卷] 如图1-4,四边形ABCD为正方形,PD⊥平面ABCD,∠DPC=30°,AF⊥PC于点F,FE∥CD,交PD于点E. ? (1)证明:CF⊥平面ADF; (2)求二面角D-AF-E的余弦值. 变式3:[2014·浙江卷] 如图1-5,在四棱锥A-BCDE中,平面ABC⊥平面BCDE,∠CDE=∠BED =90°,AB=CD=2,DE=BE=1,AC= 2. — (1)证明:DE⊥平面ACD;(2)求二面角B-AD-E的大小. 变式4:[2014·全国19] 如图1-1所示,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2. (1)证明:AC1⊥A1B; (2)设直线AA1与平面BCC1B1的距离为3,求二面角A1 -AB -C的大小. 【

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

【高中数学题型归纳】8.2空间几何体的直观图与三视图

第二节 空间几何体的直观图与三视图 考纲解读 1. 认识柱、锥、台、球及其简单组合体的机构特征, 并能运用这些特征描述现实生活中简单物体的结构。 2.能画出简单空间图形(长方体、圆柱、圆锥、棱柱、棱锥等及其及其简易组合)的三视图, 能识别三视图, 能所表示的立体模型, 并会用斜二测画法画出它们的直观图. 3.会用平行投影, 画出简单空间图形的三视图与直视图, 了解空间图形的不同表示形式. 4. 会画某些建筑物的三视图与直视图(在不影响图形特征的基础上, 尺寸、线条等不作严格要求). 命题趋势探究 高考中对本节内容的考查, 可以分为以下两类. (1)柱、锥、台、球的定义和相关性质是基础, 以它们为载体考查线线、线面、面面间的关系是中点。 (2)三视图为新课标新增内容, 所以高考会加大对其考查的粒度. 在高考中,主要考查三视图和直观图, 特别是通过三视图确定原几何体的相关量. 多以选择填空题为主,也不排除通过三视图来还原几何体的直观图的解答题, 侧重于考查考生对基础知识的掌握以及应用所学知识解决问题的能力. 知识精讲 一、空间几何体的直观图 1.斜二测画法 斜二测画法的主要步骤如下: (1)建立直角坐标系. 在已知水平放置的平面图形中取互相垂直的,Ox Oy ,建立直角坐标系. (2)画出斜坐标系. 在画直观图的纸上(平面上)画出对应图形. 在已知图形平行于x 轴的线段, 在 直观图中画成平行于'','',O x O y 使'''45x O y ∠= (或135), 它们确定的平面表示水平平面. (3)画出对应图形. 在已知图形平行于x 轴的线段, 在直观图中画成平行于'x 轴的线段, 且长度保 持不变; 在已知图形平行于y 轴的线段, 在直观图中画成平行于'y 轴, 且长度变为原来的一般. 可简化为 “横不变, 纵减半”. (4)擦去辅助线. 图画好后, 要擦去'x 轴、'y 轴及为画图添加的辅助线(虚线). 被挡住的棱画虚 线. 注: 4. 2.平行投影与中心投影 平行投影的投影线是互相平行的, 中心投影的投影线相交于一点. 二、空间几何体的三视图 1.三视图的概念 将几何体由前至后、由左至右、由上至下分别作正投影得到的三个投影图依次叫做该几何体的正(主)视图、左(侧)视图、俯视图, 统称三视图. 它们依次反应了几何体的高度与长度、高度与宽度、长度与宽度. 2.作、看三视图的三原则 (1)位置原则:

高中立体几何经典题型练习题(含答案)

高中数学立体几何练习题精选试卷 姓名班级学号得分 说明: 1、本试卷包括第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。满分100分。考试时间90分钟。 2、考生请将第Ⅰ卷选择题的正确选项填在答题框内,第Ⅱ卷直接答在试卷上。考试结束后,只收第Ⅱ卷 第Ⅰ卷(选择题) 一.单选题(每题2分,共40分) 1.设直线l,m和平面α,β,下列条件能得到α∥β的有() ①l?α,m?α,且l∥β,m∥β; ②l?α,m?α且l∥m; ③l∥α,m∥β且l∥m. A.1个B.2个C.3个D.0个 2.一个四面体中如果有三条棱两两垂直,且垂足不是同一点,这三条棱就象中国武术中的兵器--三节棍,所以,我们常把这类四面体称为“三节棍体”,三节棍体ABCD四个顶点在空间直角坐标系中的坐标分别为A(0,0,0)、B(0,4,0)、C(4,4,0)、D(0,0,2),则此三节棍体外接球的表面积是() A.36πB.24πC.18πD.12π

3.一个圆锥的侧面展开图的圆心角为90°,它的表面积为a,则它的底面积为()A.B.C.D. 4、如图,三棱柱ABC-A1B1C1的侧棱长和底面边长均为4,且侧棱AA1⊥底面ABC,其主视图是边长为4的正方形,则此三棱柱的侧视图的面积为() A.16B.2C.4D. 5.三棱锥P-ABC的侧棱PA,PB,PC两两互相垂直,且PA=PB=PC=2,则三棱锥P-ABC的外接球的体积是() A.2πB.4πC.πD.8π 6.在正方体ABCD-A′B′C′D′中,过对角线BD‘的一个平面交AA′于点E,交CC′于点F.则下列结论正确的是() ①四边形BFD′E一定是平行四边形 ②四边形BFD′E有可能是正方形 ③四边形BFD′E在底面ABCD的投影一定是正方形 ④四边形BFD′E有可能垂于于平面BB′D. A.①②③④B.①③④C.①②④D.②③④ 7.如图,在四面体A-BCD中,AB⊥平面BCD,BC⊥CD,若AB=BC=CD=1,则AD=()

高一数学《空间几何体的三视图》教案

《空间几何体的三视图》教案 【课题】空间几何体的三视图 【教材】人教版(A版)普通高中课程标准试验教科书——数学必修(2) 【授课教师】民乐一中邵天平 【教学目标】 ◆知识与技能 (1)了解两种投影方法,中心投影与平行投影. (2) 掌握三视图的画法规则,能画出简单空间几何体的三视图,能由三视图还原成实物图。 ◆过程与方法 通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。 ◆情感态度与价值观 欣赏空间图形反映的数学美,培养学生大胆创新、勇于探索、互相合作的精神。 【教学重点】画出空间几何体的三视图。 【教学难点】识别三视图所表示的空间几何体。 【教学方法】问题探索和启发引导式相结合 【教具准备】多媒体教学设备 【教学过程】 (一)创设情境,引入新课 活动1.(多媒体播放手影表演图片,组织学生欣赏) 1.导入:同学们在感受这些形象逼真的图形时,是否思考一下,这些图形是怎样形成的呢?它们形成的原理又是什么呢?这就是我们本节课所要探讨的第一个问题——中心投影和平行投影.

【设计意图】引入生活情境,激发学生的学习欲望,自然导入新课,同时又弘扬了中国传统文化,增强文化意识.活动2.多媒体播放演示中心投影和平行投影的相关知识.1.投影的概念 ①投影:由于光的照射,在不透明物体后面的屏幕上留下这个物体的影子,这种现象叫做投影.其中,光线叫做投影线,屏幕叫做投影面. ②中心投影:把光由一点向外散射形成的投影叫做中心投影. ③平行投影:把在一束平行光线照射下形成的投影称为平行投影.平行投影分为斜投影与正投影. 讲解原则:配以多媒体动画,让学生思考,抽象或概括出相应定义,教师加以修正. 【设计意图】通过动画演示投影的形成过程,使学生直观、生动地感悟,使抽象问题具体化,加速学生对概念的理解.2.中心投影和平行投影的区别和用途 中心投影的投影线交于一点,形成的投影图能非常逼真地反映原来的物体,主要运用于绘画领域.平行投影的投影线相互平行,形成的投影图则能比较精确地反映原来物体的形状和特征.因此更多应用于工程制图或技术图样. 活动3.直观感知形成概念--三视图 ①欣赏图片; 图片说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这就是本节课我们要探讨的第二个问题--空间几何体的三视图. ②欣赏飞机、轿车的三视图图片; 【设计意图】引入生活情境激发学生的学习欲望,自然引入

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

立体几何复习(知识点经典习题)

考点一,几何体的概念与性质 【基础训练】 1.判定下面的说法是否正确: (1) 有两个面互相平行,其余各个面都是平行四边形的几何体叫棱柱. (2) 有两个面平行,其余各面为梯形的几何体叫棱台. 2.下列说法不正确的是( ) A .空间中,一组对边平行且相等的四边形一定是平行四边形。 B.同一平面的两条垂线一定共面。 C.过直线上一点可以作无数条直线与这条直线垂直,且这些直线都在同一平面内。 D.过一条直线有且只有一个平面与已知平面垂直。 【高考链接】 1.设α和β为不重合的两个平面,给出下列命题: (1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; (2)若α外一条直线l 与α内的一条直线平行,则l 和α平行; (3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; (4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直。 上面命题中,真命题...的序号 (写出所有真命题的序号). 2.在空间,下列命题正确的是 (A )平行直线的平行投影重合(B )平行于同一直线的两个平面平行 (C )垂直于同一平面的两个平面平行(D )垂直于同一平面的两条直线平行 考点二 三视图与直观图及面积与体积 【基础训练】 1.如图(3),,E F 为正方体的面11ADD A 与面11BCC B 的中心,则四边形1BFD E 在该正方体的面上的投影可能是 . 2.如果一个水平放置的图形的斜二测直观图是一个底角为0 45,腰和上底均为1的等腰梯形,那么原图形的面积是( ) A. 222+ B 122+ C 22 2 + D 123.在ABC ?中, 0 2 1.5120AB BC ABC ==∠=,, 若使其绕直线BC 旋转一周,则它形成的几何体的体积是( ) A.9 2π B. 72π C. 52π D. 32 π 4. 已知一个长方体共一顶点的三个面的面积分别是 236,,是 . 若长方体共顶点的三个侧面面积分别为3,5,15,则它的体积为 . 5.正方体的内切球和外接球的半径之比为( ) A. 3 3: C.23: D. 33 6.一个正方体的顶点都在球面上 ,它的棱长为2,则球的表面积是( ) A.2 8cm π B. 2 12cm π C. 2 16cm π D. 2 20cm π 7.若三个球的表面积之比是1:2:3,则它们的体积之比是 . 8.长方体的一个顶点上三条棱长分别为3、4、5,且它的8个顶点都在同一球面上,则这个球的表面积是( ) A.25π B. 50π C.125π D. 以上都不对 9..半径为 R 的半圆卷成一个圆锥,则它的体积为 . 【高考链接】 1.一个棱锥的三视图如图,则该棱锥的全面积为( ) (A )2 (B )2 (C )2 (D )2 F E D1 C1 B1 D C B A

空间几何体的三视图教学设计

《空间几何体的三视图》教学设计 内容分析: 三视图是空间几何体的一种表示形式,是立体几何的基础之一。学好三视图为学习直观图奠定基础,同时有利于培养学生空间想象能力,几何直观能力,有利于培养学生学习立体几何的兴趣。 学情分析: (1)在义务教育阶段,学生已经初步接触了正方体,长方体的几何特征以及从不同的方向看物体得到不同的视图的方法。但是对于三视图的概念还不清晰 (2)在初中,学生只接触了从空间几何体到三视图的单向转化,还无法准确的识别三视图的立体模型。 教学目标: ⒈知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等等简易组合)的三视图,能识上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。 ⒉过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。 ⒊情感、态度与价值观:感受数学就在身边,提高学生的学习

立体几何的兴趣,培养学生大胆创新、勇于探索、互相合作的精神。 教学重点:画出简单组合体的三视图. 教学难点:识别三视图所表示的空间几何体. 教学过程: 一、设景引题: 1、请大家读唐宋八大家之一的苏轼的 《题西林壁》 横看成岭侧成峰, 远近高低各不同。 不识庐山真面目, 只缘身在此山中。 分析诗的意境:山还是那座山,景还是那片景。“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们必须从多角度观看物体。其实,在生活中,我们看一样东西是不是也有类似的体验,演示东风雪铁龙汽车的三视图,F6飞机的三视图,提出课题——空间几何体的三视图。 用苏轼的诗句的意境,让学生体会从不同的角度看同一物体视觉效果的不同,要比较真实反映出物体,我们必须从多角度观看物体。同时,也让数学课平添一份神奇,激发学生学习兴趣。 2、温故而知新:

必修二立体几何典型例题

必修二立体几何典型例题 【知识要点】 1.空间直线和平面的位置关系: (1)空间两条直线: ①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交. ②无公共点:平行或异面. 平行,记作:a∥b. 异面中特殊位置关系:异面垂直. (2)空间直线与平面: ①有公共点:直线在平面内或直线与平面相交. 直线在平面内,记作:a?α . 直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交. ②无公共点:直线与平面平行,记作:a∥α . (3)空间两个平面: ①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交. ②无公共点:平行,记作:α ∥β . 2.空间作为推理依据的公理和定理: (1)四个公理与等角定理: 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)空间中线面平行、垂直的性质与判定定理: ①判定定理: 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. ②性质定理: 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. (3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图: 【例题分析】

空间几何体的三视图和直观图教学设计

空间几何体的三视图和直观图(第一课时) 木井中学陈文杰 、教材的地位和作用 本节课是“空间几何体的三视图和直观图”的第一课时,主要内容是投影和三视图,这 部分知识是立体几何的基础之一,一方面它是对上一节空间几何体结构特征的再一次强化,画出空间几何体的三视图并能将三视图还原为直观图, 是建立空间概念的基础和训练学生几何直观能力的有效手段。另外,三视图部分也是新课程高考的重要内容之一,常常结合给出的三视图求给定几何体的表面积或体积设置在选择或填空中。同时,三视图在工程建设、机械制造中有着广泛应用,同时也为学生进入高一层学府学习有很大的帮助。所以在人们的日常生活中有着重要意义。 、教学目标 1)知识与技能:能画出简单空间图形(长方体,球,圆柱,圆锥,棱柱等的简易组合)的三视图,能识别上述三视图表示的立体模型,从而进一步熟悉简单几何体的结构特征。 (2)过程与方法:通过直观感知,操作确认,提高学生的空间想象能力、几何直观能力,培养学生的应用意识。 3)情感、态度与价值观:让感受数学就在身边,提高学生学习立体几何的兴趣,培养学生 相互交流、相互合作的精神。 三、设计思路 本节课的主要任务是引导学生完成由立体图形到三视图,再由三视图想象立体图形的复杂过程。直观感知操作确认是新课程几何课堂的一个突出特点,也是这节课的设计思路。通 过大量的多媒体直观,实物直观使学生获得了对三视图的感性认识,通过学生的观察思考,动手实践,操作练习,实现认知从感性认识上升为理性认识。培养学生的空间想象能力,几何直观能力为学习立体几何打下基础。 教学的重点、难点 一)重点:画出空间几何体及简单组合体的三视图,体会在作三视图时应遵循的“长对正、高平齐、宽相等”的原则。 二)难点:识别三视图所表示的空间几何体,即:将三视图还原为直观图。 四、学生现实分析 本节首先简单介绍了中心投影和平行投影,中心投影和平行投影是日常生活中最常见的 两种投影形式,学生具有这方面的直接经验和基础。投影和三视图虽为高中新增内容,但学 生在初中有一定基础,在七年级上册“从不同方向看”的基础上给出了三视图的概念。到了九年级下册则是在介绍了投影后,用投影的方法给出了三视图的概念,这一概念已基本接近 了高中的三视图定义,只是在名字上略有差异。初中叫做主视图、左视图、俯视图。进入高中后特别是再次学习和认识了柱、锥、台等几何体的概念后,学生在空间想象能力方面有了 一定的提高,所以,给出了正视图、侧视图、俯视图的概念。这些概念的变化也说明了学生年龄特点和思维差异五、教学方法 1)教学方法及教学手段 针对本节课知识是由抽象到具体再到抽象、空间思维难度较大的特点,我采用的教法是直观教学法、

空间几何体复习知识与经典例题练习

第一章 空间几何体 一、知识点归纳 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱. 2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图 1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积: 各个面面积之和 ②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+ ④圆台的表面积 22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π= ⑥扇形的面积公式21 3602 n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积 ①柱体的体积 V S h =?底 ②锥体的体积 13 V S h =?底 ③台体的体积 1 )3 V S S h =+ +?下上( ④球体的体积 343 V R π= 222r rl S ππ+=

相关文档
相关文档 最新文档