文档库 最新最全的文档下载
当前位置:文档库 › 列车纵向动力学分析

列车纵向动力学分析

列车纵向动力学分析
列车纵向动力学分析

第一部分

开行重载列车,就机车车辆本身来讲,重载列车技术涵盖牵引性能、制动系统性

能、列车纵向动力学性能、机车车辆动力学性能、机车车辆及其零部件强度以及合理操纵方法等众多方面。而重载列车的通信、纵向冲击力和长大下坡道的循环制动问题是开行重载列车的三大关键技术。而这三大技术其实就是制动系统的三大难题。下面就以制动系统来分析。

1.重载列车制动系统的关键技术

制动系统对列车运行安全具有举足轻重的重要作用,随着铁道技术的不断进步,已出现了多种制动方式,但对货物列车而言,空气制动仍是最基本的制动作用方式。众所周知,货物列车空气制动作用的制约因素甚多,列车长度就是主要影响因素之一。我国重载列车的发展始于20世纪80年代,至今列车编组重量已由5 000t级提高到2万t以上,编组辆数从62辆增加到210辆之多,列车最大长度已达2·6 km以上,导致空气制动作用条件严重恶化。

1.1制动空走时间和制动距离

影响货物列车紧急制动距离的主要因素除制动初速、线路条件(坡道)、列车制动率(每百吨重量换算闸压瓦力)和闸瓦性能以外,还有影响空走距离的空走时间,后者主要与列车长度或编组辆数有关。笔者在根据上述因素编制我国《铁路技术管理规程》中的制动限速表时,对货物列车考虑的列车编组条件为5000t级以下,由于重载列车编组辆数的增加,必然导致制动空走时间和距离相应增加,加上长大列车压力梯度对后部车辆制动力的影响,因此该限速表不适用于重载列车。对

于重载列车,其制动力应比普通列车高,以保持和普通列车同等的制动距离。1.2充气作用和长大下坡道的运行安全

列车空气制动后的再充气时间随编组辆数的增加而呈非线性的增加。重载列车需要有比普通列车长得多的再充气时间,因此,在长大下坡道多次循环制动作用时对司机操纵方法特别是再充气时间的要求更高。

1.3减轻列车纵向动力作用

货物列车在纵向非稳态运动过程中产生的纵向动力作用不仅是导致断钩、脱轨等重大事故的主要原因,也是破坏货物完整性和加速机车车辆装置疲劳破坏的重要因素。该纵向动力作用以空气制动时为甚,并基本上与列车的总制动力或辆数成正比。在同样装置、线路和操纵工况等作用条件下,重载列车的纵向力通常比普通列车成倍增加,因此,如何减轻重载列车的纵向动力作用是需要研究的重要课

题。

以上是提高列车重载的主要障碍。制动空走时间和制动距离、充气作用和长大下坡道的运行安全在制动系统方案的设计中详细分析解决。下面主要对减轻列车纵向动力作用单独做一详细介绍。

2.重载列车制动的纵向动力作用

2.1纵向动力作用的产生

对于空气制动机,在施行制动或缓解时所产生的空气波(列车管减压波或增压波)有一个沿列车管由前向后扩散或传播的过程;列车越长其前后部开始制动或缓解的时间差就越大。这种“沿列车长度的制动或缓解作用的不同时性”是列车制动或缓解时发生强烈纵向冲动的主要原因。对于重载(扩编)列车,这个问题尤其突出。

由于上述原因,在列车制动过程中的每一瞬间,各个机车车辆具有不同的单位制动力。如果没有车钩的连接,各个机车车辆都要按各自的减速度运行,但这是不可能的。如果机车车辆之间全部是刚性连接(车钩与车钩间没有自由间隙,也没有缓冲装置),则上述不同的单位制动力只能导致各个连接件中产生内应力,而不会引起各个机车车辆之间纵向冲动。但是,为了使列车各机车车辆之间上下左右都具有一定的可折曲性,以适应坡道起伏和通过曲线的需要,车钩与车钩之间都有一定的自由间隙(每对车钩约为40 mm),所以,如果列车施行制动时是在拉伸状态,则制动之初首先要消除这些自由间隙,这就必然会产生强烈的纵向冲动,或者说,发生强烈的纵向动力作用。

下面利用空气制动系统与纵向动力学联合仿真系统测得的一些实验数据,来分析单编万吨列车(机车+100车辆)的冲动机理。以此更清楚的了解和掌握列车的冲动原理。进而,掌握其影响因素,以利于优化重载列车的系统参数,更好的解决重载列车的纵向冲动问题。

制动特性对于列车纵向动力学性能的好坏起着决定性的作用,本文制动特性是采用基于气体流动理论的制动仿真系统获得,图1为单编万吨列车,列车管定压600 kPa ,常用制动最大减压量170 kPa时3个典型位置车辆的制动缸压力曲线。

图1 前、中、后车制动缸压力曲线

由图1 的制动缸压力曲线可以看出,第1车制动缸压力上升曲线的斜率明显比第5 0 辆车和第 1 0 0辆车的,说明不同位置车辆的制动缸压力上升速度不同,这是因为制动缸充气速度受列车管减压速度的影响,列车管减压速度越快,制动缸升压速度越快。由于处于不同位置的车辆上的列车管减压速度不同,越靠近机车,减压速度越快,所以,第1车制动缸压力上升速度最快,第1 0 0辆车制动缸升压速度最慢,第5 0辆车位于列车中问位置,其制动缸升压速度与尾车相近。这便是“沿列车长度的制动或缓解作用的不同时性”。也是导致列车纵向冲动的主要原因。具体以制动初速80km/h,平道常用去制动工况,分析列车第30、50、100辆这三个典型车位的车钩力。

图2 单编万吨列车车钩力仿真曲线

由图 2可知,在常用全制动过程中,车钩力曲线在初始阶段出现一个小尖峰( 3 0辆车约在1 0 s处,5 0辆车在约 1 2 .5 s ,1 0 0辆车在约 1 7.4 S ) ,车钩力瞬间增大后减小,尖峰过后,车钩力缓慢增大,在约 2 0 s 几乎所有车辆达到最大值,达到最大值后逐渐减小,如此反复震荡,直到车钩力为零。经过分析发现,车钩力短时尖峰是由于后部车辆不受阻力的走完间隙行程后撞击前部车辆而形成,为了区分,此处称为冲击力。冲击力过后,前方车辆制动作用较强,车速明显降低,后部车辆涌向前部车辆,造成后部车辆挤压前部车辆,这种挤压过程持续时间较长,对应的车钩力峰值持续时间也较长,此处称这种车钩力称为挤压车钩力。列车最大压钩力就是由上述最大冲击力或最大挤压力构成。

图3 单编万吨列车冲击力和挤压力曲线

图 3为列车中每个车辆的最大冲击力和最大挤压力沿车长分布曲线。由图 3可知,冲击力随着车位数的增加而不断增大,最大值发生在列车尾部,而最大挤压力发生在列车中部附近;每个车辆的最大车钩力由该车辆承受的最大冲击力或最大挤压力决定,最大车钩力就是两者中较大的一个。

2.2系统参数对列车冲动的影响

影响列车纵向冲动的因素很多,而各因素对于列车纵向冲动的影响又不尽相同,因而研究各因素的影响作用是优化列车纵向动力学性能的必要条件。下面将分析车钩间隙、闸瓦摩擦系数对于制动过程中列车的冲击力和挤压力的影响,继而得出最大车钩力的变化规律,以便寻求改善列车纵向动力学性能的有效方法。

2.2.1车钩间隙的影响

图4 不同车钩间隙的最大冲击力曲线

图5 不同车钩间隙的最大挤压力曲线

车钩间隙的存在,是为了满足列车通过曲线和牵引时逐步启动的需要。车钩间隙的大小对于列车纵向冲动具有很大的影响,图 4和图 5分别为单编万吨列车制动初速为8 0 km /h,平道常用全制动,车钩间隙由1 0 mm增大到6 0mm 时对冲击力和挤压力的影响曲线。

由图4和图 5可知,随着车钩间隙的增大,冲击力和挤压力都明显增大,但是由图 6可以看到,当车钩间隙由1 0 m m增大到 6 0 m m时,最大冲击力由3 40 kN增大到 1 1 2 3 kN增加了2 3 0 %,最大挤压力由5 3 5 kN增大到 7 4 5 kN ,增加了3 9 %,由此可知,车钩间隙对于冲击力的影响远大于对挤压力的影响;由图 4和图 5中前半部曲线密度大于后半部曲线可知,车钩间隙对于后部车辆冲击力和挤压力的影响明显大于对前部车辆的影响。在小车钩间隙范围内( 小于3 0 m m ),车钩间隙增大,冲击力和挤压力明显增大;当车钩间隙增大到3 0 m m以后,车钩间隙影响略有减弱。

图6 不同车钩间隙最大冲击力与最大挤压力比较图

综合图4、图 5和图 6可知,当车钩间隙小于 3 0 m m时,最大车钩力为最大挤压力,发生在中部车位。随着车钩间隙的增大,最大车钩力发生车位不断后移。当车钩间隙大于或等于 3 0 m m 时,最大车钩力是最大冲击力,发生在列车尾部。

由此可知,如果最大车钩力发生在列车尾部,即最大车钩力由冲击产生,则通过减小车钩间隙可明显减小最大车钩力。

2.2.2闸瓦摩擦系数的影响

在闸瓦压强、列车运行速度和制动初速度相同的条件下,不同类型闸瓦的摩擦系数有很大的差别,而制动力的大小取决于闸瓦摩擦系数,因此不同类型闸瓦会引起制动力大小不同,继而影响列车纵向冲动的大小。

图 7和图 8是单编万吨列,平道常用全制动,制动初速度为 8 0 k m / h,不同闸瓦类型的列车冲击力和挤压力曲线。

图7 不同闸瓦摩擦系数的最大冲击力曲线

图8 不同闸瓦摩擦系数的最大挤压力曲线

由图 7和图 8可以看出,闸瓦摩擦系数大小,对于冲击力大小的影响不大,对于挤压力大小有着很大的影响。闸瓦摩擦系数越大,列车纵向挤压力越大,这是因为摩擦系数越大,制动力越大,停车越快,导致挤压力越大。在小摩擦系数范围内( 小于或等于中磷闸瓦摩擦系数 ),最大车钩力为最大冲击力,此时,闸瓦摩擦系数对于最大车钩力的影响不大;当摩擦系数较大时( 大于或等于高磷闸瓦摩擦系数),最大车钩力为最大挤压力,闸瓦摩擦系数对于最大车钩力有很大的

影响。同时闸瓦摩擦系数对最大车钩力发生车位有影响,摩擦系数越大,最大车

钩力的发生车位越向前移。

由摩擦系数对冲击和挤压车钩力的影响可知,如果最大车钩力由挤压力产生,则

在满足制动距离的前提下可以适当减小摩擦系数,则最大车 钩力会明显减小。

2.2.3列车制动时的纵向冲击力计算公式及其他影响因素

根据前苏联勃·勒·卡洛瓦茨基和沃·莫·卡赞林诺夫的理论研究,列车制动时

的纵向冲击力(最大静压缩力和最大动压缩力的总和)R 可按下列公式计算:

ZC ZB K t w n l K A R ?????=2

max )(?

式中 A —反映试行制动时的车钩状态和制动缸充气特性系数,制动时车钩在压 缩状态下A ≈0.42,车钩在拉伸状态、制动缸变速充气时A 为0.75(无变速充气

时为1.5);

K — 一辆车的闸瓦压力总和;

K ?— 闸瓦摩擦系数;

l — 一辆车的长度;

n — 列车编组量数;

ZB w — l 列车制动波速;

ZC t — 一辆车制动缸充气时间。

2.3结论

(1) 列车制动过程中的纵向冲动是由车辆间的冲击作用和挤压作用共同形成

的,列车中最大车钩力是最大挤压力或最大冲击力;

(2)列车制动时的纵向冲击力或总压缩力R 均与制动波速ZB w 和制动缸充气时

间ZC t 成反比。所以,提高制动波速和延长制动缸充气时间都可以减轻列车制动

时的纵向冲动。但是,提高制动波速还可以缩短制动距离,而延长制动缸充气时

间却会导致制动距离延长。因此,要大力提高制动波速和科学的延长制动缸充气

时间,如采用“先快后慢”的变速充气。这样,可以是两者对制动距离的影响互

相抵消而得到减轻冲动的双料效果;

(3)纵向力R 与编组辆数n 的平方及一辆车的长度l 成正比。所以,发展大吨位

的车辆比增加编组辆数对减轻列车制动冲击更有效;

(4)纵向力R 与制动max )(K K ??成正比。由于闸瓦摩擦系数随列车速度的降低

而增加,所以在闸瓦压力相同的条件下,低速时的冲击更大。但是,如果列车速度很低,例如制动初速低于30km/h时,也可能在冲击力尚未达到最大值以前就停车了。这时,冲击力也可能反而比制动初速高时更小;

(5)列车在拉伸状态下制动,其纵向冲击力比压缩状态下大得很多。

(6)当小车钩间隙条件下,列车中最大车钩力一般为最大挤压力,一般发生于列车中部。大车钩间隙时,最大车钩力为最大冲击力,发生在列车尾部;

(7)车钩间隙对于列车最大车钩力有很大的影响。车钩间隙增大,列车纵向冲击力和挤压力都增大;车钩间隙对冲击力的影响大于对挤压力的影响,对后部车辆的影响大于对前部车辆的影响;

(8)闸瓦摩擦系数主要对列车纵向挤压力有较大影响,闸瓦摩擦系数越大,挤压力越大,最大车钩力越大,发生车位越向前移;

(9)如果最大车钩力是冲击力,则可以通过缩小车钩间隙降低列车最大车钩力。

2.4缓冲器

为了缓上述强烈的纵向冲动,每个车钩后面都装有可压缩的缓冲器,制动时可通过前从板压缩缓冲器弹簧,吸取和衰减纵向冲动的能量,将它限制在允许的范围内。但这样一来,列车纵向的可压缩量也增大了。由于列车的这种压缩不是缓慢进行的,它具有一定速度,所以弹簧被压缩到静平衡位置时列车的压缩并未停止。当弹簧继续被压缩并达到动平衡位置时,列车压缩的相对运动的能量被用尽,弹簧和列车的压缩量才达到最大值,车钩受到的纵向力也才达到最大值。这样来回的振动,直至这个振动在缓冲器摩擦阻尼作用下逐渐衰减而消失。因此,对于以下要设计的20000吨重载列车制动方案要选择合理的钩缓装置。

我国大秦线重载列车大普遍采用16、17号联锁车钩和MT-2型弹簧摩擦缓冲器。因此,在以下方案中也采用此套钩缓装置。

列车空气动力学

1、空气动力学中所研究的运动流体范围用马赫数表示,一般分为5个区段:1)低速流Ma<0.3(V=102m/s—367km/h)2)亚音速流0.3<=Ma<0.8(V=272m/s—979km/h)3)跨音速流0.8<=Ma<1.4(V=476m/s—1714km/h) 4)超音速流1.4<=Ma<5(V=1700m/s—6120km/h) 5)高超音速流Ma>=5 2、主要研究内容:1)不同运行环境下高速绕过列车流动的空气作用于列车上的空气动力、力矩及其产生的机理;2)不同运行环境下高速列车引发的空气动力问题对周围环境影响的规律;3)降低列车空气动力效应的措施。 3、研究方法:理论分析、流场数值模拟计算和列车空气动力学试验 4、试验方法:实车试验、模拟试验(风洞试验、动模型模拟试验) 5、壁面湍流模型:对于有固体壁面的充分发展的湍流流动,沿壁面法线的不同距离上,可将流动划分为壁面区和核心区(完全湍流区)。对壁面区可分为3个子层:粘性底层、过渡层、对数律层。 粘性底层:紧贴固体壁面的极层,层流流动,粘性力起主要作用,湍流切应力可以忽略,平行于壁面的速度分量沿壁面法线方向线性分布。 过渡层:粘性力与湍流切应力的作用相当,流动状态比较复杂,很难用公式来描述。其厚度极小,工程计算中通常归入对数律层。 对数律层:粘性力的影响不明显,湍流切应力占主要地位,流动处于充分发展的湍流状态,流速分布接近对数律。 6、网格分类:结构网格、非结构网格、混合网格 7、车辆风洞试验分为测力试验和测压试验。 测力试验内容:测力试验主要有变风速试验和变侧滑角试验两大类,变风速试验是在模型侧滑角不变的情况下,在不同风速下分别测定各节车的气动力。变侧滑角试验是在风速一定的情况下,通过转盘旋转改变多年联挂列车模型的侧滑力,在不同的侧滑角下分别测定各节车气动力,主要用于研究横风对列车气动性能的影响。通常列车模型由三节或三节以上的车辆编成,采用多天平侧力,即每节车通过一内置式应变天平和支杆固定在试验地板上,天平感受到的气动力信号经通放器放大和A/D转换,由计算机数据采集处理系统适时显示和分析。测压试验内容:模型压力分布测量通常又叫侧压实验,其目的是测量车辆模型及部件等表面的压力分布,为车辆及其部件结构强度计算提供压力载荷;为研究车辆流动性能提供数据,是验证数值计算方法是否准确的一个重要手段。 8、动模型试验装置分类:浅水槽模型试验装置、沿钢丝滑行动模型试验装置、大型动模型试验装置 9、压力传感器有差压和绝压两种。低压室压力是大气压或真空。采用恒温密封瓶法。 10、列车表面空气压强垂直于列车表面,并以指向作用面方向为其正向。 11、列车空气阻力主要由三部分组成:一是头部及尾部压力差所引起的阻力,成为“压差阻力”;二是由于空气粘性而引起的作用于车体表面的剪切应力所造成的阻力,成为“摩擦阻力”;三是干扰车辆光滑表面的突出物所引起的阻力,成为“干扰阻力”。 系数分类:无因次空气阻力系数、无因次压差阻力系数、无因次表面摩擦阻力系数 12、会车压力波幅值的影响因素: 1)随着会车列车速度的大幅度提高,会车引起的压力波的强度将急剧增大。 2)会车压力波幅值随着头部长细比的增大而近似线性地显著减小。 3)会车压力波幅值随会车列车内侧墙间距增大而显著减小,但减小的幅度随会车内侧距离增大而逐渐减小 4)会车压力幅值随会车长度增大而近似呈线性地明显增大 5)经验计算公式表明,会车压力波近似地与(u1+u2/8)^2(u1为通过车速度,u2为观测

磁悬浮列车发展史

磁悬浮列车发展史 磁悬浮列车 2003-12-31 磁悬浮列车是自大约200年前斯蒂芬森的“火箭”号蒸气机车问世以来铁路技术最根本的突破。磁悬浮列车在今天看似乎还是一个新鲜事物,其实它的理论准备已有很长的历史。磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。进入70年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。而美国和前苏联则分别在七八十年代放弃了这项研究计划,目前只有德国和日本仍在继续进行磁悬浮系统的研究,并均取得了令世人瞩目的进展。下面把各主要国家对磁浮铁路的研究情况作一简要介绍。 日本于1962年开始研究常导磁浮铁路。此后由于超导技术的迅速发展,从70年代初开始转而研究超导磁浮铁路。1972年首次成功地进行了2.2吨重的超导磁浮列车实验,其速度达到每小时50公里。1977年12月在宫崎磁浮铁路试验线上,最高速度达到了每小时204公里,到1979年12月又进一步提高到517公里。1982年11月,磁浮列车的载人试验获得成功。1995年,载人磁浮列车试验时的最高时速达到411公里。为了进行东京至大阪间修建磁浮铁路的可行性研究,于1990年又着手建设山梨磁悬浮铁路试验线,首期18.4公里长的试验线已于1996年全部建设完成。 德国对磁浮铁路的研究始于1968年(当时的联邦德国)。研究初期,常导和超导并重,到1977年,先后分别研制出常导电磁铁吸引式和超导电磁铁相斥式试验车辆,试验时的最高时速达到400公里。后来经过分析比较认为,超导磁浮铁路所需的技术水平太高,短期内难以取得较大进展,遂决定以后只集中力量发展常导磁浮铁路。1978年,决定在埃姆斯兰德修建全长31.5公里的试验线,并于1980年开工兴建,1982年开始进行不载人试验。列车的最高试验速度在1983年底达到每小时300公里,1984年又进一步增至400公里。目前,德国在常导磁浮铁路研究方面的技术已趋成熟。 与日本和德国相比,英国对磁浮铁路的研究起步较晚,从1973年才开始。但是,英国则是最早将磁浮铁路投入商业运营的国家之一。1984年4月,伯明翰机场至英特纳雄纳尔车站之间一条600米长的磁浮铁路正式通车营业。旅客乘坐磁浮列车从伯明翰机场到英特纳雄纳尔火车站仅需90秒钟。令人遗憾的是,在1995年,这趟一度是世界上唯一从事商业运营的磁浮列车在运行了

列车动力学复习资料

1. 列车振动的六个自由度指哪六个振动?其中哪些振动属于纵向振动?哪些 属于横向振动?哪些属于垂向振动? 2. 铁道车辆动力学性能包括哪三个方面? 3. 车辆车辆安全性主要涉及到哪两个方面? 4. 评价车辆安全性的主要指标有哪三个? 5. 脱轨的方式有哪些? 6. 脱轨系数的定义与推导。脱轨系数的高低对安全性的影响? 7. 评价车辆的平稳性指标主要有哪些? 8. sperling 指标考虑了哪些因素对舒适度的影响。 9. 依据下图分析人体垂向、水平方向的敏感频率范围。 -2 垂直方向均方根加速度/m .s 8.06.35.04.0 2.0 1.0 频率/Hz -2 水平方向均方根加速度/m .s 8.06.35.04.02.0 1.0频率/Hz

10.依据上图分析超高的设置?什么是欠超高?什么是平衡速度?什么是过超 高? 11.什么是滚动圆直径? 12.国内轮缘间隙的计算? 13.在运营中使用的车轮踏面类型有哪两类? 14.等效锥度的推导? 15.轮对重力刚度是定义在哪个运动前提下的?对轮对这种运动的影响如何? 是正刚度还是负刚度? 16.轮对重力角刚度是定义在哪个运动前提下的?对轮对这种运动的影响如 何?是正刚度还是负刚度? 17.轮对质量对轮轨动力间的影响是有利的还是不利的? 18.轮对低动力设计方法包括哪几个方面? 19.轮轨接触状态通常有哪两种形式? 20.对车辆动力学影响较大的轮轨接触几何参数有哪些? 21.通过下图,分析锥形踏面和磨耗型踏面对蛇形运动和曲线通过能力的影响。

22.轨道的三大薄弱环节是社么? 23.赫兹接触理论把接触的两个物体视为弹性体,其接触斑形状假定为什么?影 响接触斑大小的因素有哪些? 24.理解轮轨蠕滑现象。 25.轮轨滑动包括刚性滑动和弹性滑动。 26.蠕滑的大小用什么表示? 27.蠕滑理论主要解决哪三者间的关系? 28.carter理论是两维滚动接触理论,给出了纵向蠕滑系数。 29.J-V理论是三维滚动接触理论,给出纵向和横向蠕滑系数。 30.kalker理论给出了蠕滑力和蠕滑率间的系数,包括纵向、横向和自旋。 31.车辆的悬挂装置包括哪两系?二者之间是并联还是串联?车辆弹簧悬挂的 主要静挠度集中在哪一些? 32.轴箱悬挂主要由哪三部分组成? 33.轴箱悬挂中弹簧通常采用钢弹簧,通常由内外圈组成,这主要是考虑了什么 因素? 34.了解轴箱定位的主要形式及性能。 35.CRH1、2采用哪种定位方式?CRH5采用哪种定位方式? 36.轴箱定位刚度的基本设计原则是什么? 37.衡量曲线通过能力的指标由哪些?良好的曲线通过能力表现是什么?

新型高速列车隧道空气动力学模型实验系统

文章编号:100021506(2003)0420006205 新型高速列车隧道空气动力学模型实验系统 毛 军,薛 琳,谭忠盛 (北方交通大学土木建筑工程学院,北京100044) 摘 要:目前高速列车隧道空气动力学模型实验系统主要用于分析隧道内压力波的变化规律, 难以对空气动力学效应进行完整的分析.针对这一局限性,从科特流(Couette )理论出发,提出 了一种新型实验系统即旋转式高速列车—隧道模型实验系统,介绍了该系统的可行性、结构、 实验原理及其特点.分析表明:该新型实验系统结构简单、功能完善、成本低、实验重复性好,适 用于进行高速列车通过隧道时产生压力瞬变、微气压波、列车活塞风、行车阻力和气动噪声等 一系列空气动力学实验,并能测量隧道内和列车隧道环形空间的气流速度场,对研究高速列车 隧道空气动力学问题有重要意义. 关键词:高速列车;压力波;空气阻力;模型实验;科特流 中图分类号:U238;O357.1 文献标识码:A A N ew Type of Model Experimental System of Aerodynamics E ffects C aused by High 2Speed T rains Passing Through Tunnel M A O J un ,X U E L i n ,TA N Zhong 2sheng (School of Civil Engineering and Architecture ,Northern Jiaotong University ,Beijing 100044,China ) Abstract :The applied model experimental system is mainly used to analyze the changing rule of the pressure wave in tunnel ,which is one of the aerodynamics effects when high-speed trains passing through the tunnel.It is difficult for the system to analyze the other aerodynamics ef 2 fect s.For this reason ,the paper bases on the Couette flow theory to develop a new type of experi 2 mental system ,Which is named the circular model experimental system of aerodynamics effects caused by high-speed trains passing through tunnel ,and introduces its feasibilities ,structure ,ex 2 periment principle and specially characters.It is found that the new circular experimental system has a simple structure ,powerful functions ,lower cost and good repetitive performance ,and can be used for a series of aerodynamics experiments on such as the changing rule of the pressure wave in tunnel ,micro-pressure wave ,piston wind of trains ,resistance on trains and air noise.It can also measure the airflow velocity field in cylinder tunnel formed by the trains and tunnel.So ,it will be of great value to the researches of the aerodynamics problems caused by high-speed trains passing through tunnel. K ey w ords :high-speed train ;pressure wave ;air resistance ;model experiment ;Couette flow 1 问题的提出 高速列车在通过隧道时将产生压力瞬变、微气压波、列车活塞风、行车阻力和气动噪声等一系列明显收稿日期:2003206217作者简介:毛军(1966— ),男,湖北公安人,助理研究员,硕士.em ail :junmao @https://www.wendangku.net/doc/bd14056090.html, 第27卷第4期2003年8月 北 方 交 通 大 学 学 报JOURNAL OF NORTHERN J IAO TON G UN IV ERSIT Y Vol.27No.4Aug.2003

磁悬浮技术原理

磁悬浮技术原理 磁悬浮技术原理 空间电磁悬浮技术简介随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。电磁悬浮技术(electromagnetic levitation )简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。 目录 起源 概述 空间电磁悬浮技术 发展历史 国际 中国 中国磁悬浮技术 原理 应用 前景 磁悬浮列车 磁悬浮列车的优点 磁悬浮列车的缺点 起源 概述 空间电磁悬浮技术 发展历史 国际 中国 中国磁悬浮技术 原理 应用 前景 磁悬浮列车 磁悬浮列车的优点 磁悬浮列车的缺点

展开 编辑本段起源 磁悬浮技术的研究源于德国,早在1922年德国工程师赫尔曼·肯佩尔就提出了电磁悬浮原理,并于1934年申请了磁悬浮列车的专利。1970年代以后,随着世界工业化国家经济实力的不断加强,为提高交通运输能力以适应其经济发展的需要,德国、日本、美国、加拿大、法国、英国等发达国家相继开始筹划进行磁悬浮运输系统的开发。 编辑本段概述 利用磁力使物体处于无接触悬浮状态的设想是人类一个古老的梦。但实现起来并不容易。因为磁悬浮技术是集电磁学、电子技术、控制工程、信号处理、机械学、动力学为一体的典型的机电一体化技术(高新技术)。随着电子技术、控制工程、信号处理元器件、电磁理论及新型电磁材料的发展和转子动力学的进展,磁悬浮技术得到了长足的发展。 磁悬浮列车原理示意图 . 目前(2009年)国内外研究的热点是磁悬浮轴承和磁悬浮列车,而应用最广泛的是磁悬浮轴承。它的无接触、无摩擦、使用寿命长、不用润滑以及高精度等特殊的优点引起世界各国科学界的特别关注,国内外学者和企业界人士都对其倾注了极大的兴趣和研究热情。编辑本段空间电磁悬浮技术 随着航天事业的发展,模拟微重力环境下的空间悬浮技术已成为进行相关高科技研究的重要手段。目前的悬浮技术主要包括电磁悬浮、光悬浮、声悬浮、气流悬浮、静电悬浮、粒子束悬浮等,其中电磁悬浮技术比较成熟。 电磁悬浮技术(electromagnetic levitation )简称EML技术。它的主要原理是利用高频电磁场在金属表面产生的涡流来实现对金属球的悬浮。 磁悬浮列车工作示意图 将一个金属样品放置在通有高频电流的线圈上时,高频电磁场会在金属材料表面产生一高频涡流,这一高频涡流与外磁场相互作用,使金属样品受到一个洛沦兹力的作用。在合适的空间配制下,可使洛沦兹力的方向与重力方向相反,通过改变高频源的功率使电磁力与重力相

列车纵向动力学分析

第一部分 开行重载列车,就机车车辆本身来讲,重载列车技术涵盖牵引性能、制动系统性 能、列车纵向动力学性能、机车车辆动力学性能、机车车辆及其零部件强度以及合理操纵方法等众多方面。而重载列车的通信、纵向冲击力和长大下坡道的循环制动问题是开行重载列车的三大关键技术。而这三大技术其实就是制动系统的三大难题。下面就以制动系统来分析。 1.重载列车制动系统的关键技术 制动系统对列车运行安全具有举足轻重的重要作用,随着铁道技术的不断进步,已出现了多种制动方式,但对货物列车而言,空气制动仍是最基本的制动作用方式。众所周知,货物列车空气制动作用的制约因素甚多,列车长度就是主要影响因素之一。我国重载列车的发展始于20世纪80年代,至今列车编组重量已由5 000t级提高到2万t以上,编组辆数从62辆增加到210辆之多,列车最大长度已达2·6 km以上,导致空气制动作用条件严重恶化。 1.1制动空走时间和制动距离 影响货物列车紧急制动距离的主要因素除制动初速、线路条件(坡道)、列车制动率(每百吨重量换算闸压瓦力)和闸瓦性能以外,还有影响空走距离的空走时间,后者主要与列车长度或编组辆数有关。笔者在根据上述因素编制我国《铁路技术管理规程》中的制动限速表时,对货物列车考虑的列车编组条件为5000t级以下,由于重载列车编组辆数的增加,必然导致制动空走时间和距离相应增加,加上长大列车压力梯度对后部车辆制动力的影响,因此该限速表不适用于重载列车。对 于重载列车,其制动力应比普通列车高,以保持和普通列车同等的制动距离。1.2充气作用和长大下坡道的运行安全 列车空气制动后的再充气时间随编组辆数的增加而呈非线性的增加。重载列车需要有比普通列车长得多的再充气时间,因此,在长大下坡道多次循环制动作用时对司机操纵方法特别是再充气时间的要求更高。 1.3减轻列车纵向动力作用 货物列车在纵向非稳态运动过程中产生的纵向动力作用不仅是导致断钩、脱轨等重大事故的主要原因,也是破坏货物完整性和加速机车车辆装置疲劳破坏的重要因素。该纵向动力作用以空气制动时为甚,并基本上与列车的总制动力或辆数成正比。在同样装置、线路和操纵工况等作用条件下,重载列车的纵向力通常比普通列车成倍增加,因此,如何减轻重载列车的纵向动力作用是需要研究的重要课

HyperMesh软件在列车空气动力学仿真中的应用

HyperMesh软件在列车空气动力学仿真中的应用Application in Aerodynamics of Train of HyperMesh 摘要: 本文结合HyperMesh软件和Fluent仿真工具,探讨一种快速空气动力学仿真建模和仿真方法。以某高速车为例,建立列车的三维空气动力学计算模型,获得列车周围流场分布和表面压力分布特性,为车辆设计的改进提供参考。 关键词:流场 空气动力 HyperMesh Abstract Combining with the software of HyperMesh and Fluent, the paper discussed a quick simulation method of aerodynamics. Take some high-speed EMU for example, the 3D model of train is built, the flow field and the pressure around train is acquired. The conclusion offered reference for design. Key words:flow field, aerodynamics, HyperMesh 1概述 随着我国铁道车辆和线路装备水平的发展,列车的运营速度越来越高。200公里动车组和300公里动车组相继开通运营,高速动车组给交通运输带来了巨大的便利的同时,也给车辆设计带来很大的挑战。其中,高速运行时的空气动力学特性就是高速车需要克服的难点之一,它直接关系到列车的运行安全性和舒适性,同时对于减少空气阻力和节能有很大的贡献。 空气动力学的研究通常通过试验的方法获得各种数据,比如比例模型的风洞试验或整车的线路试验。但比例模型的风洞试验成本比较高,有时为了获得最优的方案需要做很多试验模型,更增加了设计成本的支出。整车的线路试验是在车辆设计完成之后进行的工作,一般带有一种验证性的成分。因此,基于有限元的虚拟仿真空气动力学试验在车辆的实际前期发挥了很大的作用。本文结合多种仿真工具,探讨一种快速空气动力学仿真建模的方法。以某高速车为例,建立列车的三维空气动力学模型,获得列车速度对流场分布和表面压力分布。

中国磁悬浮列车原理

磁悬浮列车 1.磁悬浮技术的原理 磁悬浮技术的系统,是由转子、传感器、控制器和执行器4部分组成,其中执行器包括电磁铁和功率放大器两部分。假设在参考位置上,转子受到一个向下的扰动,就会偏离其参考位置,这时传感器检测出转子偏离参考点的位移,作为控制器的微处理器将检测的位移变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力,从而驱动转子返回到原来平衡位置。因此,不论转子受到向下或向上的扰动,转子始终能处于稳定的平衡状态。 2.磁悬浮技术的应用 国际上对磁悬浮轴承的研究工作也非常活跃。1988年召开了第一届国际磁悬浮轴承会议,此后每两年召开一次。1991年,美国航空航天管理局还召开了第一次磁悬浮技术在航天中应用的讨论会。现在,美国、法国、瑞士、日本和中国都在大力支持开展磁悬浮轴承的研究工作。国际上的这些努力,推动了磁悬浮轴承在工业上的广泛应用。 国内对磁悬浮轴承的研究工作起步较晚,尚处于实验室阶段,落后外国约20年。1986年,广州机床研究所与哈尔滨工业大学首先对“磁力轴承的开发及其在FMS中的应用”这一课题进行了研究。此后,清华大学、西安交通大学、天津大学、山东科技大学、南京航空航天大学等都在进行这方面的研究工作。 目前在工业上得到广泛应用的基本上都是传统的磁悬浮轴承(需要位置传感器的磁悬浮轴承),这种轴承需要5个或10个非接触式位置传感器来检测转子的位移。由于传感器的存在,使磁悬浮轴承系统的轴向尺寸变大、系统的动态性能降低,而且成本高、可靠性低。此外,由于传感器的价格较高,从而导致磁悬浮轴承的售价很高,大大限制了它在工业上的推广应用。 2009年8月,参观者在北京看磁悬浮列车轨道,北京城建设计研究总院的总工杨秀仁透露,北京正在做一条磁悬浮线的长期规划———通往门头沟的S1轨道线路正在筹划,计划采用中国自主研发的磁悬浮技术。而由北京控股磁悬浮技术发展有限公司和国防科技大学合作的中低速磁浮列车,是中国唯一具有完全自主知识产权的磁悬浮列车。 3.磁悬浮技术的前景 随着电子元件的集成化以及控制理论和转子动力学的发展,经过多年的研究工作,国内外对该项技术的研究都取得了很大的进展。但是不论是在理论还是在产品化的过程中,该项技术都存在很多的难题,其中磁悬浮列车的技术难题是悬浮与推进以及一套复杂的控制系统,它的实现需要运用电子技术、电磁器件、直线电机、机械结构、计算机、材料以及系统分析等方面的高技术成果。需要攻关的是组成系统的技术和实现工程化。 磁悬浮轴承面向电力工程的应用也具有广阔的前景,根据磁悬浮轴承的原理,研制大功率的磁悬浮轴承和飞轮储能系统以减少调峰时机组启停次数;进行以磁悬浮轴

空气动力学基础知识及飞行基础原理笔试题

空气动力学基础及飞行原理笔试题 1绝对温度的零度是:C A -273℉ B -273K C -273℃ D 32℉ 2 空气的组成为C A 78%氮,20%氢和2%其他气体 B 90%氧,6%氮和4%其他气体 C78%氮,21%氧和1%其他气体 D 21%氮,78%氧和1%其他气体 3 流体的粘性系数与温度之间的关系是? B A液体的粘性系数随温度的升高而增大。 B气体的粘性系数随温度的升高而增大。 C液体的粘性系数与温度无关。 D气体的粘性系数随温度的升高而降低。 4 在大气层内,大气密度:C A在同温层内随高度增加保持不变。B随高度增加而增加。 C随高度增加而减小。D随高度增加可能增加,也可能减小。 5 在大气层内,大气压强:B A随高度增加而增加。B随高度增加而减小。 C在同温层内随高度增加保持不变。C随高度增加可能增加,也可能减小。 6 增出影响空气粘性力的主要因素 B C A空气清洁度B速度梯度C空气温度D相对湿度 7 对于空气密度如下说法正确的是B A空气密度正比于压力和绝对温度B空气密度正比于压力,反比于绝对温度C空气密度反比于压力,正比于绝对温度D空气密度反比于压力和绝对温度 8 “对于音速.如下说法正确的是”C A只要空气密度大,音速就大”B“只要空气压力大,音速就大“ C”只要空气温度高.音速就大”D“只要空气密度小.音速就大” 9 假设其他条件不变,空气湿度大:B A空气密度大,起飞滑跑距离长B空气密度小,起飞滑跑距离长 C空气密度大,起飞滑跑距离短D空气密度小,起飞滑跑距离短 10一定体积的容器中。空气压力D A与空气密度和空气温度乘积成正比B与空气密度和空气温度乘积成反比

高速列车空气动力学动模型试验

高速列车空气动力学动模型试验 T约翰逊 摘要 AEA技术轨道动模型试验台是一个用来研究与评价高速列车在明线和隧道通过发射方式使列车模型沿150m长的测试轨道运行的装置,最高速度为305km/h。两平行轨道允许两列列车模型同时相向发射,以此来模拟列车交会效应。该装置适用于明线上的空气压力、隧道压力波,以及轨道间和平台上滑流空气速度的测量。 本文简要介绍了建造该试验台的原因,以及为了确保模型测试结果能够代表实车情况所需的技术要求,描述了该试验装置的工作原理,并且提供一些以前用该装置已经完成的研究案例插图。概述了该试验平台被引入研究铁路新的空气动力学要求的实用性。最后,介绍了该试验台未来在加快高速列车空气动力学领域发展的能力。 关键词:空气动力学,建模,测试,高速列车,压力,空气速度,隧道 引言 在20世纪80年代初,英国铁路研究组织认为需要一个移动的模型试验装置来研究铁路隧道空气动力学。原因是实车测试花费很大(现在依然是),需要复杂的规划,并且测试周期很长,属于劳动力密集型。此外,环境条件是不可控的,比如在恶劣的天气条件下,往往会使一天的测试失效,或者至少会对分析结果增加不确定性。最后,对于已经造好的列车和建好的基础设施的测试是有限的,限制了研究“可能性”设计潜力。尽管英国铁路组织在列车空气动力学方面所做的研究成果正在快速增加,但是完全排除实车测试的必要性只依靠理论研究和数值计算依然不能够充分研究空气动力学问题。 建立铁路空气动力学模型试验的技术要求:模型试验的雷诺数和马赫数必须足够的接近实车标准,以确保模型试验结果能代表实车情况。雷诺数确保了比例效应不重要,当列车进入隧道时,马赫数确保了压力波,表现在同一阶段作为其全尺寸当量。根据英国铁路研究人员丰富的风洞试验经验,众所周知,如果模型比例大于1/30时,雷诺数的影响将是很小的。列车马赫数,(即列车速度除以在空气中的声速),如果模型使用实车速度,那么其马赫数和实车也是相符合的(忽略外界对声速的影响)。最后,该试验装置列车模型比例为1/25(如果需要,可以更大),行驶速度为200km/h。最初的试验台是1988年建立的一个单一的发射轨道。 动模型(MMR)的发展始于1991年,最初欧洲和英国都是通过提高列车速度来推动其发展。MMR一个主要的扩展能力1992年完成的可以研究列车通过2个不同的分离轨道的二次发射轨道。达利和约翰逊在1999年对MMR未来的发展进行了详细的报道。

1第一章空气动力学基础知识

第四单元飞机与飞机系统 第一章空气动力学基础知识 大气层和标准大气 地球大气层 地球表面被一层厚厚的大气层包围着。飞机在大气层内运动时要和周围的介质——空气——发生关系,为了弄清楚飞行时介质对飞机的作用,首先必须了解大气层的组成和空气的一些物理性质。 根据大气的某些物理性质,可以把大气层分为五层:即对流层(变温层)、平流层(同温层)、中间层、电离层(热层)和散逸层。 对流层的平均高度在地球中纬度地区约11公里,在赤道约17公里,在两极约8公里。对流层内的空气温度、密度和气压随着高度的增加而下降,并且由于地球对大气的引力作用,在对流层内几乎包含了全部大气质量的四分之三,因此该层的大气密度最大、大气压力也最高。大气中含有大量的水蒸气及其它微粒,所以云、雨、雪、雹及暴风等气象变化也仅仅产生在对流层中。另外,由于地形和地面温度的影响,对流层内不仅有空气的水平流动,还有垂直流动,形成水平方向和垂直方向的突风。对流层内空气的组成成分保持不变。 从对流层顶部到离地面约30公里之间称为平流层。在平流层中,空气只有水平方向的流动,没有雷雨等现象,故得名为平流层。同时该层的空气温度几乎不变,在同一纬度处可以近似看作常数,常年平均值为摄氏零下度,所以又称为同温层。同温层内集中了全部大气质量的四分之一不到一些,所以大气的绝大部分都集中在对流层和平流层这

两层大气内,而且目前大部分的飞机也只在这两层内活动。 中间层从离地面30公里到80至100公里为止。中间层内含有大量的臭氧,大气质量只占全部大气总量的三千分之一。在这一层中,温度先随高度增加而上升,后来又下降。 中间层以上到离地面500公里左右就是电离层。这一层内含有大量的离子(主要是带负电的离子),它能发射无线电波。在这一层内空气温度从-90℃升高到 1 000℃,所以又称为热层。高度在150公里以上时,由于空气非常稀薄,已听不到声音。 散逸层位于距地面500公里到1 600公里之间,这里的空气质量只占全部大气质量的1011 ,是大气的最外一层,因此也称之为“外层大气”。 大气的物理性质 大气的物理性质主要包括:温度、压强、密度、粘性和可压缩性等。 气体的压强p是指气体作用于容器内壁的单位面积上的正压力。大气的压强是指大气垂直地作用于物体表面单位面积上的力。 随着高度的增加,由于大气越来越稀薄,大气的压强逐渐降低。 气体的温度T表征气体的冷热程度,是与气体分子运动密切相关的。温度的度量单位常用摄氏温标t[℃]和绝对温标T[K]来表示。从微观来看,气体分子作不规则的热运动时,它的运动平均动能越大,则宏观表现为温度越高。气体分子运动的平均动能与绝对温度成正比。在绝对温标零点,理想气体的分子热运动就终止了。 单位体积物体所含有的质量称为密度。在国际单位制中,密度的单位是千克/米3。空气的密度与压力的变化成正比,与温度的变化成反比。随着高度的增加,大气的密度逐渐降低。 当气体层间发生相对运动或气体与物体间发生相对运动时,在气体内部两个流体层接触面上或者在气体与物体的两个接触面上,便产生相互牵扯和相互粘连的内摩擦力,

高速列车底部结构的空气动力学模型研究

高速列车底部结构的空气动力学模型研究 邱英政 徐宇工 王艳丽 (北京交通大学机械与电子控制学院,北京,100044) 摘 要:本文提出了简化的高速列车底部结构模型,并利用国际上通用的流体力学计算软件FLUENT作为研究工具,对不同工况下的列车外部流场、列车所受气动力等进行了数值模拟计算分析,最后将计算结果与风洞实验结果及无底部结构空气动力学模型的数值模拟计算结果进行比较分析。结果证明,本文所提出模型不但可行,而且还具有简单、有效、适用范围广等优点。 关键词:高速列车空气动力学模型底部结构数值模拟计算 1.前言 随着高速铁路的出现,列车行驶速度的不断提高,列车的空气动力学问题也变得日益突出。空气动力学研究对于降低列车的气动阻力、提高它的气动性能、节省动力能源、降低运输成本都具有极其重要的作用[2]。随着计算机技术和计算方法的发展,数值模拟计算以试验研究所不具备的各种优势,逐渐得到了广泛地应用,数值模拟技术成为了现代工程学形成和发展的重要动力之一。目前,在国内外很多科研单位都已经开展了高速列车气动性能数值模拟研究,但在对列车底部复杂结构的简化处理过程中,目1前的做法基本上都是采取的直接去掉底部结构,降低列车底部缝隙高度来获得与实验研究所测等效阻力、升浮力的方法,这种方法在列车受到强侧风作用时,其升浮力的计算值与试验值差异很大[1]。因此有必要研究出一种更为有效的高速列车底部结构的空气动力学模型,以获得更准确的数值模拟计算结果。 2.高速列车模型选取及底部结构简化 2.1.模型的选取 本文采用中南大学设计的270km/h高速列车双拱流线型车体外形为计算对象,该车车头形状参见图1,车身断面参见图2所示,其外形设计满足《高速列车空气动力外形设计、计算及试验暂行技术条 件》[3]。 高速列车的外形复杂且长细比大,受计算机处理能力限制,对列车模型进行如下简化:列车长度缩短为两动一拖;去掉列车外部突出物;去掉底部结构,添加底部结构空气动力学模型。 作者简介:邱英政(1983-),男,湖南常德人,硕士生

车辆动力学仿真

车辆动力学仿真 课程编码:202060 课程英文译名:Dynamics Simulation of Vehicle System 课程类别:专业课 开课对象:车辆工程专业开课学期:第7学期 学分:2.5学分;总学时: 40学时;理论课学时:32学时;上机学时: 8学时 先修课程:理论力学、材料力学、机械原理、机械设计、机械振动 教材:车辆动力学模拟及其方法,威鲁麦特(德),北京理工大学出版社, 1998.5 ,第1版 参考书:【1】汽车系统动力学,张洪欣,同济大学出版社, 1996 ,第1版【2】汽车系统动力学及仿真,雷雨成,国防工业出版社, 1997 ,第1版一、课程的性质、目的和任务 《车辆系统动力学仿真》是车辆工程专业理论性较强的专业课。本课程的目的是,使学生初步学会汽车动力学分析方法,能够解决工程实际问题,以便增强其研究和解决车辆动力学问题的能力。本课程的任务,是以数学力学模型为基础,结合虚拟样机仿真技术,讲授汽车的垂直动力学、横向动力学、纵向动力学,为继续学习和掌握汽车新科技创造条件。 二、课程的基本要求 对汽车动力学有一定的了解,掌握有关的基本概念、基本理论和基本方法及其应用,掌握汽车多体动力学仿真的方法。具体要求为: 1.对汽车动力学仿真的基本概念和基本分析方法有明确的认识; 2.掌握单自由度系统的振动系统,自由振动、强迫振动的微分方程的建立方法; 3.掌握多自由度系统的振动系统的微分方程,初步掌握多自由度系统振动的模态分析方法; 4.了解随机振动的一些基本概念,掌握路面不平度功率谱密度的概念及其计算方法; 5.掌握汽车垂直动力学模型的建立方法,以及路面激励对汽车振动的影响; 6.掌握汽车弹簧、减震器、橡胶金属部件、轮胎等部件垂向动力学的特性; 7.掌握汽车纵向动力学微分方程,掌握滚动阻力、爬坡阻力、加速阻力的计算方法; 8.掌握驱动附着率、制动附着率对行驶极限的影响; 9.掌握汽车横向动力学的微分方程建立方法,及其横向动力学微分方程的特性; 10.掌握汽车操作稳定性的概念及其影响汽车操作稳定性的因素; 11.掌握轮胎的真实特性,初步掌握轮胎动力学的初步概念。

上海磁悬浮列车

原理上海磁悬浮列车是“常导磁吸型”(简称“常导型”)磁悬浮列车。是利用“异性相吸”原理设计,是一种吸力悬浮系统,利用安装在列车两侧转向架上的悬浮电磁铁,和铺设在轨道上的磁铁,在磁场作用下产生的吸力是车辆浮起来。 世界第一条磁悬浮列车示范运营线——上海磁悬浮列车,建成后试运行了一段时间。 磁悬浮有哪些优缺点?为什么引起如此大的争议? 磁悬浮列车有许多优点:列车在铁轨上方悬浮运行,铁轨与车辆不接触,不但运行速度快,能超过500 千米/小时,而且运行平稳、舒适,易于实现自动控制;不排出有害的废气,有利于环境保护;可节省建设经费;运营、维护和耗能费用低。 磁悬浮列车的缺点:磁悬浮列车突然情况下的制动能力不可靠,不如轮轨列车。在陆地上的交通工具没有轮子是很危险的。因为列车要从动量很大降到静止,要克服很大的惯性,只有通过轮子与轨道的制动力来克服。 磁悬浮列车需要高架,高架梁的绕度必须小于1毫米,因此,高架桥跨一般要小于25米,桥墩基础要深30米以上。比如在上海到杭州的地面上要形成一道200多公里的挡墙。此外,由于运行动力学的影响,轨道两侧各100米内是不允许有其他建筑物的。修建沪杭磁悬浮,占地多,对环境影响比较大。 北京有关磁悬浮的《公示》说明电磁环境影响:主要发生在地面高架桥段,高架线磁悬浮列车运行时可能会对开放式电视接收用户产生电磁干扰以及对人体健康的影响。 磁悬浮列车是连接上海机场和经济新区浦东以及老市中心的主要交通工具。然而这条线路,并没有把机场和浦东中心、老市中心以及上海火车站直接连接起来,只把机场和浦东龙阳 路2号地铁站连接起来,旅客们必须在此中转。这样,上海市的一般旅客,要先乘坐公共 汽车或地铁,再换乘2号地铁,最后再换乘世界上最先进的磁悬浮列车到机场。根据德国 公共交通的经验,一次换乘,旅客尚能接受;二次换乘,部分旅客将不优先选用公共交通 工具;三次换乘,只剩下不得不采用公共交通的顾客。从公共交通运输网的组成来看,选 用最高时速450公里的磁悬浮列车来连接相距33公里的两地,并非合理的选择,因为 磁悬浮列车的速度快、时间短的优点并显示不出来,而换车等车的时间和麻烦,超过选用磁悬浮列车所能节约的时间和舒适 有人算了一笔账,按照目前的设计水平,磁悬浮列车9节车箱可坐959人,每小时 可发车12列,双向运量可达2, 3万人,按每天运行18小时计算,最大年运量可达

叶片的空气动力学基础

叶片的空气动力学基础 在风力机基础知识一节中介绍过叶片的升力与阻力基本知识,本节将进一步介绍相关理论知识。在风力机基础知识一节中已作介绍的不再重复,仅介绍有关内容的提高部分。 常用叶片的翼型 由于平板叶片攻角略大就易产生气流分离,阻力增大;平板的强度也很低,所以正式的叶片截面都就是流线型的,即使有一定厚度阻力也很小。图1就是一幅常见翼型的几何参数图,该翼型的中弧线就是一条向上弯曲的弧线,称这种翼型为不对称翼型或带弯度翼型,比较典型的带弯度翼型为美国的NACA4412。 图1--翼型的几何参数 当弯度等于0时,中弧线与弦线重合,称这种翼型为对称翼型,图2就是一个对称翼型,比较典型的对称翼型为美国的NACA0012。

图2--对称翼型的几何参数 图3就是一个性能较好的适合风力机的低阻翼型,就是带弯度翼型,在水平轴风力机中应用较多。 图3--带弯度的低阻翼型 翼型的升力原理 有关翼型的升力原理解释有多种,归纳起来主要依据就是基于牛顿定律的气流偏转产生反作用力与基于伯努利原理的气流速度不同产生压差两个原理,我们结合这两个原理对翼型的升力作通俗的解释。

带弯度翼型在攻角为0度时的升力与阻力 图4就是一个带弯度翼型在攻角为0度时的流线图与压强分布图,左图就是该翼型的流线图,由于翼型上下面不对称,气流在上下面的流动状态也不同。翼型上表面就是凸起的,通道截面减小,气流的流速会加快,另一个原因就是凸起的表面使翼型后面的气压有所减小,前后的压差使得气流速度加快,特别就是翼型上表面前端流速较快。翼型下表面较平,多数气流基本就是平稳流过,由于由于上表面前端高速气流产生低压的吸引,翼型前端气流都向上表面流去,造成靠下表面的气流通道加宽,导致靠近下表面的气流速度有所下降。这样流过上表面的气流速度要比下表面快,根据伯努利原理,流速快的地方压力比流速慢的地方压力小,也就就是说翼型下方压力大于上方,压力差使翼型获得一个向上的力Fl,所以说带弯度翼型在攻角为0度时也会有升力。 图4--翼型在攻角为0度时的流线图与压强分布图图4右图就是该翼型的压力分布图,图中翼型上部分浅绿色区域内的绿色箭头线就是上表面的压力分布,箭头线的长短与方向表示该点的压

高速列车空气动力学性能计算和试验鉴定暂行规定

高速列车空气动力学性能计算和试验鉴定暂行规定 高速列车空气动力学性能计算和试验鉴定暂行规定

高速列车空气动力学性能计算和试验鉴定暂行规定附件7 目录 1 范围 (1) 2 引用标准 (1) 3 列车空气动力学基本参数、符号及单位 (1) 4 列车空气动力性能、噪声参数说明及坐标系 (1) 5 列车外形及空气动力性能基本要求 (1) 6 声学要求 (6) 7 流场数值模拟计算 (7) 8 空气动力学试验 (8) 附录A 列车空气动力学基本参数、符号及单位 (9) 附录B 列车空气动力性能、噪声参数说明 (10) 附录C 坐标系 (11)

1范围 本《暂行规定》规定了高速列车空气动力计算、试验及评估鉴定的要求。 本《暂行规定》适用于标准轨距铁路线上营运速度为200km/h到350k m/h范围内的高速客运列车;对最高营运速度低于200km/h的客运列车以及需要考虑空气动力性能问题的货运列车可参照使用。 2引用标准 下列标准包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时,所示版本均为有效。所有标准均会被修订,使用本标准的各方应探讨、使用下列标准最新版本的可能性。 GB1920-80 标准大气(30km以下部分); GJB1179-91 高速风洞和低速风洞流场品质规范; 《京沪高速铁路建设暂行规定》。 3列车空气动力学基本参数、符号及单位 本《暂行规定》所有参数均采用国际单位制。计算、试验中用到的基本参数及计量单位见附录A。 4列车空气动力性能、噪声参数说明及坐标系 本《暂行规定》用于表示列车空气动力性能、噪声的参数及坐标系见附录B、附录C。 5列车外形及空气动力性能基本要求 5.1列车外形基本要求

叶片的空气动力学基础

叶片的空气动力学基础

叶片的空气动力学基础 在风力机基础知识一节中介绍过叶片的升力与阻力基本知识,本节将进一步介绍相关理论知识。在风力机基础知识一节中已作介绍的不再重复,仅介绍有关内容的提高部分。 常用叶片的翼型 由于平板叶片攻角略大就易产生气流分离,阻力增大;平板的强度也很低,所以正式的叶片截面都是流线型的,即使有一定厚度阻力也很小。图1是一幅常见翼型的几何参数图,该翼型的中弧线是一条向上弯曲的弧线,称这种翼型为不对称翼型或带弯度翼型,比较典型的带弯度翼型为美国的NACA4412。 图1--翼型的几何参数 当弯度等于0时,中弧线与弦线重合,称这种翼型为对称翼型,图2是一个对称翼型,比较典型的对称翼型为美国的NACA0012。

图2--对称翼型的几何参数 图3是一个性能较好的适合风力机的低阻翼型,是带弯度翼型,在水平轴风力机中应用较多。 图3--带弯度的低阻翼型 翼型的升力原理 有关翼型的升力原理解释有多种,归纳起来主要依据是基于牛顿定律的气流偏转产生反作用力与基于伯努利原理的气流速度不同产生压差两个原理,我们结合这两个原理对翼型的升力作通俗的解释。

带弯度翼型在攻角为0度时的升力与阻力 图4是一个带弯度翼型在攻角为0度时的流线图与压强分布图,左图是该翼型的流线图,由于翼型上下面不对称,气流在上下面的流动状态也不同。翼型上表面是凸起的,通道截面减小,气流的流速会加快,另一个原因是凸起的表面使翼型后面的气压有所减小,前后的压差使得气流速度加快,特别是翼型上表面前端流速较快。翼型下表面较平,多数气流基本是平稳流过,由于由于上表面前端高速气流产生低压的吸引,翼型前端气流都向上表面流去,造成靠下表面的气流通道加宽,导致靠近下表面的气流速度有所下降。这样流过上表面的气流速度要比下表面快,根据伯努利原理,流速快的地方压力比流速慢的地方压力小,也就是说翼型下方压力大于上方,压力差使翼型获得一个向上的力Fl,所以说带弯度翼型在攻角为0度时也会有升力。 图4--翼型在攻角为0度时的流线图与压强分布图图4右图是该翼型的压力分布图,图中翼型上部分浅绿色区域内的绿色箭头线是上表面的压力分布,箭头线的长短与方向表示该点的压力

相关文档
相关文档 最新文档